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Abstract

This work aims at getting a better understanding of the turbulent swirling
flow in a conical diffuser, which represents a highly simplified draft tube of a
water turbine. The numerical 3D (U)RANS investigations are quantitatively
compared to experimental data. Qualitative comparison with experimental
visualizations and computations of similar flows are also made, and strong
similarities to confined swirling flow have been found. Converging/diverging
smearlines at the walls reveal a very complex boundary layer and counter-
rotating vortex structures are found at the diffuser exit. The solutions to the
Reynolds averaged Navier-Stokes equations for the studied cases are asym-
metric. The asymmetry of the mean flow solution is originating from instable
properties of the symmetric mode, and the disturbance that triggers the in-
stability is proven to be imperfections of the CAD-geometry.

There are some discrepancies regarding the agreements with experimental
data, partly reminiscent of the nature of the (k — w) turbulence model that
was used in this work. The origins of turbulent anisotropy are theoretically
examined as well as the weaknesses of the Boussinesq assumption, which
constitutes an important part of the chosen turbulence model.

Also included are a discussion concerning the origin of turbulent aniso-
tropy and aspects of the filtered (LES) and the averaged (RANS) equations.
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Preface

This work will serve as a step towards a better understanding of hydraulic
turbine draft tube flow, since the diffuser that constitutes the computational
domain of this work can be considered a highly simplified draft tube. In
the first chapter the role of the diffuser in the context of hydroelectric power
generation is discussed. In chapter 2 the governing equations of fluid motion
are introduced, followed by the numerical considerations and the results in
chapter 3 and 4 respectively. The subsequent chapters includes conclusions
and some notes of future work. A theoretical discussion concerning the ex-
pected behavior of turbulence in swirling flow through a diffuser are included
in appendix, as well as a few words on the aspects of averaging the governing
equations.
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Nomenclature

Roman
A Area,
Cp Pressure rise coefficient
k Turbulent kinetic energy
L Length
Nerr Courant-Friedrichs-Levy (CFL) number, %
Pp Static pressure
P, Stagnation pressure
Py Production term in k-equation
podel Modeled production term
q Volume flow
R Radius
Re Reynolds number, Z£
S Swirl intensity
T Time
u, u; Velocity vector /tensor
U,V,W  Mean velocity components
u', v, w"  Fluctuating components of velocity vector
y* Dimensionless wall normal distance, %

X



X

Greek

A Length scale of computional cell

e  Dissipation

0  Angle

4 Dynamic viscosity

v Kinematic viscosity

v;  Turbulent viscosity

p  Density

Tw Wall friction

¢ Helicity, Ic:illm\

w  Specific dissipation

w  Vorticity vector, V x u
Symbols

<(-)> Ensemble average

)

—

()

Time average
Spatial or time filter

Super- and Subscripts

B,C,D,E,F Cross-section

axial Axial direction
calc Calculated

cl Centerline

cr Cross-sectional
exp Experimental

i, 7, k Principal direction
m Mixing (length)

P Pressure

R Ratio

rad Radial direction
5gs Subgrid scale

tan Tangential direction

x, Yy, 2,10 Direction in space

1,2

Inlet, outlet
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Abbreviations

CFD
CFL
DNS
FVM
HRN
LES
LRN
MPI
RANS
RSM
TDMA
URANS
PDE
PIV

Computational Fluid Dynamics

Courant, Friedrichs, Lewy (number)

Direct Numerical Simulation

Finite Volume Method

High Reynolds Number (model)

Large Eddy Simulation

Low Reynolds Number (model)

Messege Passing Interface

Reynolds Averaged Navier-Stokes (equations)
Reynolds Stress Model

Tri-Diagonal Matrix Algorithm

Unsteady Reynolds Averaged Navier-Stokes (equations)
Partial Differential Equation

Particle Image Velocimetry
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Chapter 1

Introduction

About 50 % of the electrical power produced in Sweden are generated by
water turbines. Consequently, even a small improvement of the hydrodyna-
mic design can contribute a great deal to the supply of electric power. In
this chapter, a few issues concerning the hydrodynamic aspects of the flow
through a water turbine are discussed, in order to elucidate the intentions of
this work.

1.1 Hydroelectric Power

Water turbines are designed to extract energy from water. The potential
energy of water is proportional to the (static) head and by letting gravity
work on the water, the potential energy is converted to kinetic energy. This
energy is in turn converted to electrical energy by leading the water through
a runner, connected to a generator (see figure 1.1.1). Depending on the
head, different types of turbines are used. As examples of two different
types, the Francis turbine! and the Kaplan turbine can be mentioned. The
latter was developed by the Austrian engineer Victor Kaplan (1876-1934).
At heads ranging from 40 to 700 m, Francis turbines are usually preferred.
Kaplan turbines are used at heads up to 60 m, a range that includes all
Swedish hydro-power stations. For a schematic description of the two types,
see figure 1.1.2. The Kaplan turbine is characterized by the fact that not
only the guide vanes, but also the turbine blades are adjustable and can
therefore be matched to the current flow. However, the draft tube can not
be adjusted. The efficiency of the draft tube is very important for a water
turbine working at low head, and it is determined by how well the flow
responds to the geometry. The design of many draft tubes in use today are

! James B Francis (1815-1892).
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Power distribution

Static head
= Generator
Turbine

Lo _

Pressure conduit

Axial diffusor—_L

Draft tube——=

FIGURE 1.1.1: Overview of a typical hydro-power plant including related glos-
sary.

(a) (b)

FIGURE 1.1.2: (a) A Francis runner at the entrance of the axial diffuser; (b) The
geometry of the Kaplan turbine of Holleforsen, including the draft tube and the
spiral casing. Also visible are the adjustable guide vanes just above the runner.

far from satisfactory, but when refurbishing old hydro-power plants there are
possibilities to modify the draft tubes. A hydrodynamically improved design
can increase the overall efficiency by 1.5% and yield a more reliable power
plant. Usually only the runner and wicket gate are refurbished. However,
the importance of adjusting the draft tube to the new flow conditions should
not be underestimated. If this is disregarded, the stability of the flow and
the efficiency may deteriorate.

Frequently the power plant has to run at non-optimal operating condi-
tions (off-design). At off-design the water exits the runner with a strong
vortical (swirling) flow. This vortical flow gives rise to a strong unsteady
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vortex core. In Francis turbines, the oscillations of the vortex can give rise
to pressure fluctuations and vibrations of a magnitude that may dramatically
decrease the efficiency, but may also cause structural damage to the turbine.
The same kind of oscillations are present in Kaplan turbines as well, but of
a lower amplitude. They will not cause structural damage but may have a
serious impact on the efficiency. The Kaplan turbine draft tube are more
sensitive to flow separation, which can be triggered by the pressure fluctua-
tions. The customer demands warranties with respect to both efficiency and
vibrations/noise. It is very important to be able to give warranties accurate
enough for making reliable economical estimates of the investments.

1.2 The Draft Tube

The purpose of the draft tube of a water turbine is to reduce the exit velocity
with a minimum loss of energy. Geometrically the draft tube is a fairly simple
device; a bending pipe diverging in the streamwise direction, as in figure 1.1.2.
However, the dynamical processes of the flow in a draft tube are very complex
and many unsteady effects have been observed. The flow is dominated by
large anisotropic turbulent motions, which effects the standard turbulence
models fail to predict. Hence, there is a need to determine what features
that are most crucial for a reliable numerical result. To accurately model
this complex flow it is necessary to first examine the nature of the swirling
flow in a similar but simpler geometry, like a straight conical diffuser. A
diffuser is a duct of which the cross-sectional area increases in the streamwise
direction, i.e. a diverging channel. Diffusers are used in many applications
where a transfer of kinematic energy into (static) pressure energy is desired,
including most kinds of turbo- and hydraulic machinery. In the design of
a diffuser there are two major phenomena to take into account. Too rapid
expansion (divergence of channel) can make the wall boundary layer separate,
which leads to large losses. If the expansion is too slow the diffuser must be
made longer and consequently the fluid will be exposed to an excessive area
of walls. This will lead to larger wall friction losses and a more expensive
construction. The optimal rate of expansion is obviously where the sum of
these losses are minimized. Many times there are spatial restrictions of the
size of the diffuser that also increases the importance of an optimal design.
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1.3 Some Implications of Swirling Flow

A swirling flow is a flow rotating around an axis, most often an axis of
geometrical symmetry. As already mentioned in section 1.1, the implications
of swirling flow can be severe. But what is so special about swirling flow?
Well, whenever a swirl component of the velocity vector is present, a radial
pressure gradient is also found. This can, if the gradient is strong enough
(i.e. for swirl numbers S > 1 [1]), give rise to recirculation and vortex
breakdown, as well as formation of unsteady vorter ropes. A vortex rope is
a coherent structure located in the center of the swirling flow, reminiscent of
(guess what) a rope. It is the result of a symmetrical instability and is most
often apparent in the shape of a cork-screw. Vortex breakdowns of swirling
flow originates from internal stagnation points. They have been observed to
wander back and forth along the streamwise axis with amplitudes depending
on both the Reynolds number and the swirl intensity, see Faler et al. [4]. The
same authors found recirculation zones that were dominated by low frequency
velocity fluctuations with amplitudes exceeding the mean flow.

In practice, swirl can be generated in numerous ways. Guide vanes,
tangential inlet velocity components, rotating honeycombs and propellers
are frequently used. Every type of swirl generator creates a unique tangen-
tial velocity profile. While a rotating honeycomb may give a profile that
resembles a solid body rotation, guide vanes and tangential inlets will give
profiles with developed tangential boundary layers. Structures created at the
inlet may persist for a long time depending of the type of generation, even
though it has been shown that the mean flow decay more or less uniformly a
few diameters length downstream [11]. Usually the tangential velocity profi-
les approximately assumes a combination of two characteristic vortex flows.
In the center the tangential component resembles a forced vortex (solid body
rotation) and elsewhere the tangential flow can be considered a free (irrota-
tional) vortex. The combination described is often referred to as a Rankine?
vortex, see figure 1.3. Mathematically the Rankine vortex can be described
as

Upr/R, 7€ (0,R)

= ’ ! 1.3.1
Us(r) { UsR/r, T € (R,00) (1.3.1)
which is a crude estimation of a real vortex. It will nevertheless serve as a
basis for understanding the flow field. The central region, the forced vortex
region has radially constant vorticity. In the outer, free vortex region, the
vorticity is zero. The concepts of vorticity and vortexes are not related.

2W J M Rankine (1820-1872), Scottish engineer.



1.4. METHODS AND SOFTWARE 5

Forced Vortex Region Free Vortex Region

Uy

T

FIGURE 1.3.3: A Rankine vortex. It is a crude approximation of a tangential
velocity profile of swirling pipe flow, but is used as a basis for understanding the
rotating flow field. The free vortex region is an example of irrotational flow, while
the forced vortex region resembles solid body rotation.

While a vortex is a coherent structure, vorticity is a vector describing the
rotation of the flow field at a point.

1.4 Methods and Software

The equations governing fluid motion are the Navier-Stokes equations. The
exact solution to these equations would provide an answer to most (if not all)
matters concerning the flow. Due to issues discussed in appendix B, the exact
solutions to the Navier-Stokes equations are not obtainable for real, industrial
flow problems. Instead, some kind of averaged or filtered equations are solved.
Even though the solutions to the averaged equations are not exact, they can
still provide a detailed description of the mean features of the flow field. In
this aspect CFD is outstanding. However, some caution must be taken when
interpreting the solutions of the averaged equations.

For the calculations in this work the CALC-PMB CFD software has been
used. CALC-PMB is developed at the Division of Thermo and Fluid Dyna-
mics at Chalmers University of Technology, Goteborg. This in-house code is
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based on the finite volume method and the pressure-velocity coupling is sol-
ved using the SIMPLEC algorithm [3]. Conformal block structured boundary
fitted coordinates are used and the code is parallelized for three-dimensional
flows by domain decomposition. MPI is used for the exchange of information
between the different processes/blocks, and two ghost cells are employed at
the block interfaces to enable different first and second order discretization
schemes. The principal unknowns are the Cartesian velocity vector compo-
nents (U, V, W) and the pressure (P). To avoid spatial oscillations of the
pressure field over the collocated (non-staggered) grid arrangement, Rhie &
Chow interpolation is applied for convections through the cell faces. For the
discretized (linearized) system of equations, TDMA is implemented as the
standard algorithm. For further details, see [8].

The geometries and the grids are generated in the ICEM CFD/CAE
commercial software. For post-processing, the Ensight commercial software
has been employed.

1.5 The Experimental Data

The experimental data used for comparison in this work has been provided
by Ole Gunnar Dahlhaug of NTNU, Trondheim, Norway. The measurements
were a part of his Ph.D. thesis [1], in which all details of the experimental
setup can be found. In short: The data were sampled by an LDA probe at
three different locations, referred to as section A, B and C, see figure 3.2.1.
The Reynolds number of the experiment, which from now will be referred to
as Rey, was 2,800,000. This number is based on the bulk velocity and the
diameter of the pipe upstream of the diffuser inlet. Dahlhaug investigated
several cases of swirling (conical) diffuser flow, including the flow through a
diffuser followed by a bend, the flow through a bend followed by a diffuser and
the flow through a diffuser without any bend. Dahlhaug also examined the

1 fA TUgzialUtan dA
R [ u2dA

S =0toS =0.7. In this work only one of the cases set up by Dahlhaug are
numerically analyzed; the case without any bend at a swirl number S = 0.35.

behavior at several different swirl numbers (S = ) rating from



Chapter 2

Governing Equations

The two gentlemen to whom the discovery of the equations governing fluid
motion are ascribed are the French engineer/mathematician C L M H Na-
vier (1785-1836) and the English mathematician G G Stokes (1819-1903).
Even though almost 200 years have passed since the equations were first
formulated, they are still subject to extensive research. In this section, the
Navier-Stokes equations, and a few others, are introduced.

2.1 Equations of Motion

A flow can be considered incompressible if the density is constant in time
and space. From the principle of mass conservation, the continuity equation
for incompressible flow can be derived:

dyu; =0 (2.1.1)
The incompressible Navier-Stokes equations can be expressed as

Dyu; = —% ip + v 0;0;u; (2.1.2)
where the operator

Dy = 0y + u;0; (2.1.3)

is the substantial (material) derivative.

2.2 The Averaged Equations - RANS

The governing equations are usually averaged. Depending on the underly-
ing assumptions made when choosing which type of average to employ, the

7
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solution obtained from a calculation must be interpreted accordingly. These
matters will be discussed thoroughly in appendix B. Anyhow, any averaging
of non-linear equations will result in additional unknowns that must be mo-
deled or related to the mean quantities through a constitutive relation. In the
case of the Navier-Stokes equations the additional unknowns turn out to be
correlations of fluctuating velocities. By introducing the ensemble average,
< x; >=limy_, o % Zfil x;, there is a way to separate turbulence from the
mean flow. The Reynolds' decomposition is defined as

and has a few nice properties. The ensemble average of a fluctuation is per
definition equal to zero

<u' >=0 (2.2.5)
and
<< up >>=< u; > (2.2.6)

These properties are extensively used in the derivation of all averaged equa-
tions below. In steady flow the ensemble average can be exchanged to a time
average without loss of the properties of above. If the flow is unsteady a
few other assumptions must be made, see appendix B. The basic equations
for both applied CFD and theoretical research has been the (U)RANS equa-
tions, which are derived by inserting the Reynolds decomposition, equation
(2.2.4), into equation (2.1.2). The unknown function Uj; is the mean solution
to the equations.

1
ooU; + UJ(?JUZ = —;@P + I/ajajUi — 8j < U;U; > (2.2.7)

The last term in equation (2.2.7) is the gradient of the Reynolds stress tensor.
It introduces six unknown quantities which must be modeled in order to close
the system of equations. See next chapter for the closure model used in this
work and appendix C for additional examples.

2.3 Reynolds Stress Equation

To close the system of equations of above, an equation for the Reynolds stress
is needed. A transport equation for the Reynolds stresses can be derived from

1Osbourne Reynolds, (1842-1912).
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equations (2.1.2) and (2.2.7),

!
do < wpuy; > +UR0 < uju; >=< %(@-u; + Ojuj) > —
1
< uiuy, > pUi— < uguy, > OpU; — O {; < pluy > O+
1
5 < Pu) > Ot < ujuuy, > 20 (< shul > 4+ < s >)} +

2 (< siy0pu > + < 85.0pu; >) (2.3.8)

where sj; = & (9;uf + Oufj). After some rearrangements and by renaming
the Reynolds stress tensor 7;; = — < wuj >

OoTij + UrOkmij = Pij — j + O (vOkTig + Cijr) + €4

Py = —7i0kU; — Tk 04 U;j
/
m; = <20+ 0u) > (2.3.9)
p
1 1
Cijp = P < plup > Ok + P < plug > Spet < wguguy, >
€ij = v < 6ku;6ku; >

The derivation of the Reynolds stress equation yields a large number of new
unknowns, but can still serve as a foundation for the understanding of the
Reynolds stress and the turbulent transport.

2.4 Turbulent Kinetic Energy Equation

By contracting the indices of equation (2.3.9) and dividing by two, an equa-
tion for the turbulent kinetic energy (per unit mass) k is obtained:

aok + Ujajk = — < Uu; > 8JUZ+
1 1
6j {; < pu; > 5]'1' + 5 < C]Q’u]' > 42v < SijUs >}
—2v < SijSij > (2410)
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This equation is often written in a condensed form:

80k+0k = Pk+Dk—€

Cr = Udjk
P, = —< Uy > 8]UZ
1 1
D, = —8j {; < pu; > 5jz' + 5 < qzuj > 42v < SijU; >}
€ 2v < 885 >
q2 = < uu; >
1 1
k:§<uii> = 5<u§+u§+u§> (2.4.11)

Above is the definition of the real dissipation €; the amount of kinetic energy
that is transfered to internal energy. Turbulence modelers often prefer a
reorganized form of the diffusion and dissipation terms,

1 1
D, = —(9j {; < pu; > 5]',' + 5 < QQUJ' > +Z/ajk} (2.4.12)
e = v< ajuz@jui > (2413)

where the sign of ¢ is always known. It is the latter definition that will
be implied throughout this work. The two definitions of ¢ is identical if
the turbulence is homogeneous, i.e. if the there is no (spatial) gradients of
average quantities. Many flows are approximated as locally homogeneous?.
The k-equation is often subject to analytic studies, so also in this work (see
appendix A).

2.5 Filtered Equations and the LES

Another way of averaging is to filter the equations. A time filter can be
defined as

1 [HT/2
i(et) = / ., b (2.5.14)
t—T/2

and a spatial (3D) filter frequently used in LES can be expressed as

1
i) = 30 /A v (2.5.15)

2Relations among derivative moments can be approximated as though they were ho-
mogeneous.
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A filter have some special properties,

() # () (2.5.16)

which means that (as opposed to averaging) a second filtering of a filtered
variable yields a new unknown, and filtering a fluctuation

u' # 0 (2.5.17)

will not yield zero. By applying a filter to the unknown function and the-
reby solving for a smoother solution than the exact, the LES equations are
obtained, i.e.

1
a()’ai —+ 11]6]111 = ——61-]3 -+ Vajﬁjﬂi — 8j7_isjgs (2518)
P

where the subgrid stress tensor 7,7° is defined as

The reader may observe that the only difference from the RANS equations
is the form of the stress tensor. In this case it can also be defined as

Ty = Lij+ Cyj + Ry (2.5.20)

where the terms

Lz’j = ’LLZ'UJ' — U,Z'U,j
S P

Cij = Quj+ ujly (2.5.21)
)

Rij = uiuj

are called Leonard Stress, Cross terms and Reynolds SGS stress respectively.
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Chapter 3

Numerical Procedure

This chapter concerns the numerical considerations. The setup of boundary
conditions and the grid design are discussed. Six cases have been studied and
the computations were done over three different grids and at two different
Reynolds numbers. For a complete list of the cases referred to, see table 3.1.
The (coupled) system of six non-linear partial differential equations were dis-

Case | Grid Re Steady /Unsteady
1:1 1 Reg Steady
1:2 1 Reg Unsteady
2:1 2 | Reg/10 Steady
2:2 2 | Reg/10 Unsteady
3:1 3 | Rey/10 Steady
3:2 3 | Reg/10 Unsteady

TABLE 3.1: Denotation of the different cases. Rey=2.8 - 10.

cretized by the van Leer second order scheme. The complete mathematical
setup is the subject of the following section.

13
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3.1 The System of Equations

The equations that were solved are the (U)RANS equations and Wilcox (88)
k — w turbulence model:

oU; +U;0,U; = —%@P + v 0;0;U; — 05 < wjuy >
oU; = 0
— <wu; > = 218 — gkdij
v, = kjw
ook + Uik = PP 4 0; (v + /o) Osk) —

0o +Ujdiw = 0 (v +11/0,)0w) = = (car PP + k)
P’;model = I (8JU1 + 8ZUJ) GJUZ
e = fwk (3.1.1)

where the closure coefficients are
B =0.09, c,1 =5/9, cpo =3/40, o, = 0, =2 (3.1.2)

The k£ — w turbulence model was chosen due to its good reputation and its
robustness.

3.2 The Computational Domain

The diffuser used in the experiment has an inlet radius of 50 mm and an
outlet radius of 75 mm. This gives an area ratio, Ag = 2.25. To have
something close to a fully developed swirling channel flow at the inlet, the
swirl generator was in the experiment located 2.71 m upstream of the diffuser
inlet. For the calculations, the pipe is cut 130 mm upstream of section B,
and 355 mm downstream of section C, see figure 3.2.1. Velocity profiles from

different computational cases has been analyzed at sections B, C, D, E and
F.

3.3 Boundary Conditions

The inlet boundary conditions for the mean velocities were linearly interpo-
lated from the measured data of section B provided by Dahlhaug [1]. Due
to the lack of measured data of k£ in the free vortex and near wall region
at section B, standard boundary conditions for non-swirling pipe flow were
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R R A R

B D E F C

FIGURE 3.2.1: The computational domain of the conical diffuser and the sections
referred to. Experimental values are supplied at sections B and C. Sections D
to F describe the additional locations of choice for comparison of the different
computational cases. Section A is located upstream of the computational domain,
and is thus not present in the figure.

used for the turbulent quantities. To evaluate the effect of these boundary
conditions on the mean flow, the inlet were in the calculations moved 130 mm
upstream of section B. According to Dahlhaug, the tangential and axial ve-
locity components do not change significantly upstream of section B, and the
measured data of section B may therefore be used as boundary conditions
at this cross-section. The standard boundary conditions for the turbulent
quantities demands an approximation of a fully developed pipe flow velocity
profile. This can be obtained by [15]

R\
vV =U, ( 7 T) (3.3.3)

where the centerline velocity U, was chosen to get the right mass flow through
the domain. The gradient of this profile was used for calculating the inlet
boundary conditions of £ and w, see equation (3.3.4).

ko= C,V12 (0 Ussiar)’ (3.3.4)
k1/2

T ol

where

C, = 0.09

lm, = min(ky, \J)

k = 0.41 (3.3.5)

A = 013

0 = R
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The common kinematic (non-porous walls) and viscous (no slip) conditions
were used at the walls. The wall boundary conditions can be summarized as

U, = 0

k =0 (3.3.6)
_ 6v

YT Cay?

Convective or Neumann boundary conditions were used at the outlet:

U; + U0, U; = 0
Ok = 0 (3.3.7)
Ow = 0

The convective boundary condition resembles the Neumann boundary con-
dition if the flow is steady.

3.4 The Grids

The geometry and the grids were constructed using the ICEM CFD software.
The axisymmetric geometry was captured by an O-grid formation, where a
block centered along the geometrical axis is surrounded by four wall-bounded
blocks, see figure 3.4.2. Coarse grids designed for wall functions were used
in cases 1:1-2:2. This means that the first interior nodes should be placed
in the log-layer' at y™ € (30,100). A posteriori verification of this criteria
were done by analyzing the distributions of the first interior wall nodes over
y* values. These are shown in figure 3.4.2. When using LRN? models (no
wall or damping functions), a much finer grid was used. In this case the
first node was placed at a wall distance corresponding to y* < 5. In the
wall normal direction the grids in the wall bounded blocks were stretched by
a factor 1.1 (case 2:1-3:2) or 1.2 (case 1:1-1:2). The total number of cells
were 100,000 for grids 1-2, and the grids were divided into ten blocks for
parallel computing. The size of grid 3 was 781,250 cells and a similar domain
decomposition was applied. The computations were considered converged
when all normalized residuals were of the order of 107%. The residuals of the
momentum equations were normalized with the corresponding convection
and the pressure (continuity equation) with the mass flow rate.

!Even though it may not exist any log-layer for this type of flow, it is only one among
many other approximations.

2LRN is an abbreviation of ‘low Reynolds number’ and refer to the local Reynolds
number Rejocqr = @ where u* is the friction velocity (u* = \/7y/p), n is the wall
normal distance and 7, is the wall shear stress.
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FI1GURE 3.4.2: The grids and the corresponding distribution of first interior
nodes over y* values. (a) Grid 1 has 100,000 nodes and has a stretch factor of 1.2
in the wall normal direction; (b) Grid 2 has 100,000 nodes and a stretch factor of
1.1 is employed; (c) Grid 3 is the largest grid. It has 781,250 nodes and the stretch
factor is 1.1. The stretch is only applied in the wall-bounded blocks.
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Chapter 4

Results and Discussion

In this chapter the results from the (U)RANS computations are evaluated.
The unsteady computations converged to the same solution as their ste-
ady counterparts due to issues discussed in section 4.5.1 and appendix C.4.
Since they did not yield any additional information, they are not referred to
in this section. To give an adequate description of the flow, visualizations
of iso-surfaces, streamlines, smearlines and profiles of mean quantities are
presented. The latter are compared to the experimental data. All 3D visua-
lizations are made from data obtained from case 3:1, due to the good quality
of the resolution. However, all large scale features were common to all cases.
Figure 4.0.1 gives a qualitative picture of the flow field. The solutions to the
equations were found to be asymmetric and in section 4.5 the origin and the
physics behind the symmetry breaking are discussed.

4.1 Vortex Structures and Boundary Layer

Interaction
By examining the iso-surfaces of normalized helicity, i.e. the projection of the
normalized vorticity vector on the normalized velocity vector (¢ = \:”ﬁ‘;\),

the largest values to the magnitude are naturally found in the central vortex;
the swirl itself, see figure 4.1.2 (a). Due to the alignment of the mean flow
and the negative y-axis, the sign of helicity will be negative for a counter-
clockwise rotation of the flow field. Positive helicity are found in two par-
ticular spots just at the diffuser exit, see figure 4.1.2 (b), where the vorticity
in the streamline direction changes sign. The feature is, as will be shown
in the following section, strongly connected to the pressure asymmetry. The
reversed vorticity is a necessary condition for the asymmetry of the central
vortex. The topology of the counter-rotating vortices has some similarities
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FIGURE 4.0.1: Streamlines and inlet pressure distribution where dark color re-
presents low pressure. Particles are released along a radial line at a fixed tangential
position at the inlet and are traced along the steady flow.

to the Taylor! vortices found in Couette? flow. The coherent structure of a
Taylor vortex is distinct even if the flow is turbulent. As can be seen from
figures 4.1.3 and 4.1.4, the complexity of the boundary layer is evident. Se-
condary (if not tertiary) flow is present from the entrance of the expansion
and further down. The flow resembles features observed experimentally by,
among others, Spohn et al. [14] and numerically by Sotiropoulos and Ven-
tikos [13], see figure 4.5.9 and discussion in section 4.5. There is a strong
coupling of the boundary layer to the counter-rotating vortices of the internal
flow. At the diverging smearlines a positive radial velocity and consequently
a thinner boundary layer will be found. The wall shear will be greater due to
a higher velocity gradient, which is shown in figure 4.1.4 (a). The opposite
situation is found at the converging streamlines. When wall functions were
used, the asymmetry of the smearlines are also present but less evident.

LG 1 Taylor (1886-1975), British scientist.
M F A Couette (1858-1943), French scientist.
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4.2 The Pressure Distribution

The interaction of the diffuser and the swirling flow gives rise to several ot-
her interesting features, such as an asymmetric pressure distribution. As
can be seen in figure 4.1.3 (b) the angle of thread of the iso-pressure surface
is corresponding to the local flow direction. A look at the mean pressure
profiles gives information about the pressure evolution; as the pressure ri-
ses through the diffuser there is a strong decay of the radial gradient, see
figure 4.2.5. During the expansion, the discrepancy between the cases is ob-
vious. The calculations over coarse grids are probably suffering from severe
numerical diffusion, smoothing the radial pressure gradient. The pressure
rise coefficients are compared in table 4.1. The two cases most suitable for
comparison are cases 2:1 and 3:1, due to their common Reynolds number.
The difference is about 2.6%. Case 1:2 is present in the table only to show
the negligible difference between the steady and unsteady calculations, the
values are identical to the forth decimal.

Case Re Cp
1:1 Rey 0.5937
1:2 Rey 0.5934
2:1 | Reo/10 | 0.5737
3:1 | Rep/10 | 0.5892

Pwall,Cfpw

TABLE 4.1: Pressure rise coefficients, Cp, = it @B~ The wall pressure is
2°U;

averaged tangentially. Reg = 2.8 - 10°.

4.3 The Mean Velocity Profiles

The mean velocity profiles is compared to experimental data in figure 4.3.6.
In figure 4.3.6 (a), the locations of the sample stations is clear, but it is
first after rescaling the picture the deviations are visible. A comparison of
the computed and the measured data at section B reveals the quality of
the inlet boundary conditions. There are some similarities to the idealized
Rankine vortex described in chapter 1. In the center the radial gradients are
almost constant (forced vortex region) and there are also inflection points
(0,0.Up > 0) like in the free vortex region of figure 1.3.

What is striking in figure 4.3.6 (b) is the discrepancy of the different
cases during the expansion, especially for the tangential component. The
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discrepancy is an indicator of the complexity of the flow through the diffuser
and is less obvious at the outlet. At section C, the measured axial velo-
city profile is not well represented by any computation. The total deviation
(ie. =N U‘:‘”#:Ue”’") from experimental data is of the same order for
the three calculations; 0.0461, 0.0890 and 0.0750 for cases 1:1, 2:1 and 3:1
respectively.

The discrepancies between the computed and measured data of axial ve-
locities in the forced vortex region can to a large extent be explained by the
choice of turbulence model, i.e. the Boussinesq assumption. Due to issues
discussed in appendix A, the radial turbulent mixing will in this region be
suppressed. The model however, will predict an isotropic turbulent viscosity
and consequently over-estimate the radial turbulent mixing. Only second
derivatives (i e 0,0,U;) of the velocity profiles will be affected by the error
induced by the model. Since the tangential profile in the central region clo-
sely resembles a forced vortex and is an odd function of the radius, the radial
second derivative will vanish. Hence, the tangential velocity profile will not
suffer from the over-estimation of turbulent mixing.

The calculated magnitudes of deviation of above should not be considered
estimates of the computational error. Even though case 1:1 gives the lowest
deviation from experimental data, it is probably due to the wrong reasons.
The difference in shape of the profiles of case 2:1 and 3:1 is a sign of strong
grid dependence. Considering the higher Re in case 1:1, grid 1 must be
regarded much more coarse than grid 2. As can be seen from figure 4.3.6,
the local axial velocity maximum of the well resolved case 3:1 is closer to
the centerline than the maximum of the not so well resolved case 2:1. From
this, there are reason to believe that it is the grid resolution that determines
the location of the local maximum. The least resolved calculation therefore
gives the ‘best’ results, since the skewness of this profile best captures the
skewness of the experimental data. If the reasoning of above is consistent,
it is an example of where numerical errors can reduce errors induced by the
turbulence model. All turbulence models depends on fully resolved mean
gradients, but also the errors induced by unphysical behavior of the model
will become more obvious if the gradients really are resolved.

4.4 The Turbulent Quantities

The plots of the evolution of turbulent kinetic energy in figure 4.4.7 shows
how the turbulence gets smeared out during the expansion. There is a decay
of turbulent kinetic energy in the axial direction. Evaluating the downstream
behavior of the modeled turbulence, there seems to be a dependence of Rey-
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nolds number. Case 1:1, computed at Re = Rey, display a decay of £ much
faster than the others. It turns out that the integral

o 1 Riniet 1 Routlet
P”“z—( / k(r)rdr — / krrdr)
k Ug Ainlet 0 ( ) Aoutlet 0 ( )

(4.4.1)

is negative for both Reynolds numbers, but the magnitude is four times lar-
ger in case 1:1. Experimental data by Dahlhaug [1] confirms the calculated
decrease of turbulent kinetic energy, see also appendix A.2 for a theoretical
explanation of this behavior. In figure 4.4.7 (b) the axial and tangential
normal stresses for the three cross-sections are plotted and the anisotropy of
the turbulence is obvious. The high values of normal axial and tangential
fluctuations at the center are due to the strong streamline curvature of this
region. There is also a tendency of the downstream distribution of the cal-
culated turbulent kinetic energy to move towards the center of the pipe. It
may be regarded as an indication of erroneous inlet boundary conditions for
the turbulent kinetic energy.

4.5 Instability of the Symmetric Mode

The predominant feature of the visualizations in section 4.1 is the asymmetry.
The conical diffuser is axisymmetric, and the use of axisymmetric boundary
conditions would suggest that the solution also is axisymmetric. However,
even though solutions to the axisymmetric (two-dimensional) equation do
exist, they will probably never be obtained in a real flow due to the instable
properties of the three-dimensional equations/physics.

Experimental investigations by Spohn et al [14] as well as numerical by
Sotiropoulos and Ventikos [13], concerning the three-dimensional structures
of a confined swirling flow generated by a rotating disc (see figure 4.5.8) both
show identical (steady) asymmetric behavior.

Though it may seem far-fetched to compare a swirling flow through a
diffuser to a confined, recirculating flow in a cylindrical container with a ro-
tating bottom, there are actually many similarities. Due to centrifugal forces,
the near-bottom fluid is accelerated towards the walls of the cylinder. At the
walls, the fluid is forced into an upwards motion, and a Stewartson® boundary
layer is formed, see figure 4.5.8. The boundary layers in figures 4.5.9 (a) and
(b) has converging/diverging streamlines, ordered in a near periodic manner.
The periodicity of the computed smearlines in figure 4.1.4 is not as obvious,

3K Stewartson (1925-1983), English fluid dynamicist.
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but a look at the velocity magnitude gradient (0,|U;|) reveals a clear peri-
odicity of the boundary layer thickness. As the boundary layer thickness
of the confined flow grows in the streamwise direction (figure 4.5.8), the ef-
fect of the boundary layer on the downward axial velocity component at the
center of the cylinder is the same as in a diverging tube. The presence of
an adverse pressure gradient is also common to both cases. Sotiropoulos
and Ventikos suggests that the asymmetry observed in confined container
flow is the result of outer disturbances from small but finite imperfections of
a non-ideal environment. Outer disturbances will from now on be referred
to as forced symmetry breaking. In the laboratory-environment, the forced
symmetry breaking may be caused by noise/vibrations, thermal gradients
or small asymmetries at the boundaries etc. It is almost impossible to ex-
clude this randomness from reality, although Spohn et al. made sure that the
disturbances did not emerge from imperfections at the walls. Numerically the
disturbances are of a different nature. The numerical noise is hopefully not
crucial in determining the path along which a solution converges. Instead,
the disturbances arise from round-off errors of the coordinates of the nodes,
asymmetries in the grid structure, CAD geometry or boundary conditions or
even from the block topology of a multi-block computation. In the numerical
case, it may be possible to isolate the source. However, whatever the source
to a disturbance may be, the same solution seems to be obtained regardless
of the origin of the (forced) symmetry-breaking phenomena. Further, since
the non-symmetric solution obviously is more stable, it is far more interesting
than the solution to an ideal problem. For sure, a real industrial flow will
almost always be subject to some level of distortion.

4.5.1 Spontaneous and Forced Symmetry Breaking

In an experiment similar to the one already mentioned, Hirsa et al. [5] exa-
mined the symmetry breaking disturbances in confined swirling flow with a
free surface (instead of the top lid) using PIV. They made a clear distinction
between forced and spontaneous symmetry breaking, and they found that
a misalignment of the rotating floor and the cylinder axis in the order of
0.002 diameters was enough to create a asymmetric behavior different from
the behavior of the fluid obtained after a spontaneous symmetry breaking.
According to the authors, the spontaneous symmetry breaking is a Hopf bi-
furcation® resulting from an azimuthal instability of the bottom shear layer.
The instability is produced by the turning of the boundary layer into the

“H Hopf (1894-1971), Swiss mathematician. A Hopf bifurcation is a periodic mode
originating from a state of symmetric time-invariant instability.
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interior. The spontaneous symmetry breaking gave rise to a rotating wave
at the free surface, and consequently a time-periodic pressure distribution
in the container (which can correspond to the unsteady rotating vortex rope
that has been found experimentally in draft tubes). The wave did not appear
if a forced symmetry breaking disturbance was present. If a similar instabi-
lity was to be found in the conical diffuser, it would not be addressed to a
boundary layer. Instead, it would be triggered by the gradient of tangential
velocity in the axial direction, which is quite evident (see figure 4.3.6) during
the expansion. The decay of tangential velocity will create a similar turning,
or tangential shear, of the fluid and if this instability is of decisive impor-
tance in this work, the source of outer disturbances may be important: If the
spontaneous symmetry breaking gave rise to periodic pressure fluctuations
they could have been found in the unsteady computations, if not destroyed
by forced symmetry breaking features. This may very well be the case.

The phenomena of a rotating asymmetric pressure field has been found
computationally by Ruprecht et al. [10], who investigated turbulence mo-
deling of a swirling flow in a diffuser, very similar to the flow discussed in
this work. Depending on the chosen turbulence model, they found steady
symmetric solutions (which may be the time averaged solutions, see appen-
dix B) or unsteady rotating asymmetric solutions. To summarize the notes
of above: If there are no forced disturbances present, the solution may be
unsteady. If a forced disturbance is imposed, it may ‘lock’ the flow in an
asymmetric mode.

4.5.2 A Search for the Disturbance

All computational cases in this work show the same asymmetry, where the
pressure iso-surface tends to lean towards the negative x-direction at the
outlet. Hence, there must be a common source of distortion that triggers the
instability of the symmetric mode. To derive the source of disturbance, four
additional cases were set up:

I A reference case.

IT Permutation of indices of the nodes.
ITIT The grid rotated 45° around the streamwise (symmetry) axis.
IV As III, but the grid is also re-projected on the CAD geometry.

Permutation of indices affects the TDMA solver. The sweep direction of
the solver may cause different rates of convergence in different parts of the
block. This did however not affect the solution. If the grid topology were
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decisive to the asymmetry, the last two cases would yield a rotated solution.
If small imperfections in the CAD-geometry was to be the possible source
of disturbances, the rotated and projected case (case IV) would give the
same solution as the reference, but the case where only the grid is rotated
(case III) would yield a solution rotated by 45° degrees. This turned out to
be the case, and figure 4.5.10 shows that the solution is determined by the
CAD geometry. Analyzing the radius obtained from the CAD software when
rotating the profile of the diffuser around an axis of (expected) symmetry,
figure 4.5.11 was obtained. As can be concluded from the figure, the diffuser
is neither circular or elliptic, but resembles a buckled shape. The symmetry
error (Rm“zi;f’"i") is 0.92%. This is probably what triggers the symmetric
instability. Also, it will seriously affect the inlet boundary condition for k
which includes the square of the radial velocity gradient, see fig 4.5.10. The
inlet boundary conditions for the velocities showed to be less sensitive to the
geometry.
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FIGURE 4.1.2: (a) Iso-surface of normalized negative helicity at a level of about

-0.8; (b) Iso-surfaces of normalized positive helicity at a level of about 0.2, with

streamlines emerging from the surface. The positive iso-surfaces fits perfectly

inside the two valleys of the negative iso-surface. The twisting of the bunch of
streamlines correlates to the change of sign of vorticity.
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(b)

FIGURE 4.1.3: (a) Iso-surface of positive normalized helicity and the boundary
layer interaction of the vortices, visualized by smearlines at the wall. (b) Two
different iso-pressure surfaces and one streamline, along with planes of pressure
distribution where dark grey denotes low pressure. The flow seems to follow the
thread of the iso-pressure surface. The pressure rise is obvious from the cross-

sectional planes.
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FIGURE 4.1.4: (a) Wall normal velocity magnitude gradient for case 3:1, where
dark color equals high value. The light regions reveal a clear periodicity of the
boundary layer thickness. (b) - (d) Smearlines for cases 3:1, 2:1 and 1:1 respecti-
vely. The use of wall functions in case 1:1 and 2:1 (fig (¢)-(d)) makes the irregular
structures less evident.
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FIGURE 4.2.5: Pressure distribution profiles. In the figure, the profiles are fixed
to zero at the wall in order to make the comparison more convenient. There is
a correlation between grid resolution and and the relative value of the minimum.
Markers: o: Case 3:1; (0: Case 2:1; &: Case 1:1.
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FIGURE 4.3.6: (a) Axial (left) and tangential velocity profiles. Markers: o: Case
3:1; O: Case 2:1; ©: Case 1:1; A: Experimental data. All computed values are
tangentially averaged. In figures (b) the data is re-scaled to expose the differences.
The discrepancies among the cases are quite large during the expansion. The
measured axial velocity component is not well represented by any computation
but the computed tangential components are more consistent. The calculated
values of case 1:1 are in best agreement with experimental data, but probably due
to the wrong reasons, see section 4.3.
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FIGURE 4.4.7: (a) Computed turbulent kinetic energy (left) and specific dissi-
pation profiles. Markers: o: Case 3:1; [I: Case 2:1; &: Case 1:1. (b) Experimental
data. Axial normal stresses (top figure) and tangential normal stresses (bottom
figure). The normalized values are plotted over three different cross-sections. Mar-
kers: <: Section A; O0: Section B; A: Section C. The decay of turbulent kinetic
energy during the expansion is evident and can also be analytically deduced, see
appendix A.2.
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Rotating lid ——— / ‘

FIGURE 4.5.8: Calculated streamlines over a vertical cross-section in a confined
swirling flow with a rotating bottom. The calculations were made by Sotiropoulos
and Ventikos [13]. In the central region, the flow is moving axially downwards, and
along the walls there is an upwards motion. As the wall boundary layer grows,
the central flow will feel like it was subject to a geometrical expansion. Reprinted
with permission from F. Sotiropoulos.
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FIGURE 4.5.9: Smearlines and radial velocity iso-surfaces in a confined swirling
flow with a rotating bottom. (a) Experimentally visualized smearlines by Spohn
et al. (b) Smearlines (left) and iso-surfaces of radial velocity (right) computed
by Sotiropoulos and Ventikos. As the wall boundary layer grow in the upwards
direction, converging/diverging smearlines develop, a feature that also is found in
the diffuser flow. Reprinted with permission from F. Sotiropoulos.
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FIGURE 4.5.10: (a)-(c): Iso-surfaces of pressure. (a) Reference case. (b) The
mesh rotated by 45°. (c) The mesh rotated and re-projected at the CAD geo-
metry. It is obviously the CAD geometry that is crucial to the orientation of the
asymmetry. (d)-(f): Iso-curves of inlet turbulent kinetic energy. Also shown is a
block of the computational grid to clarify the orientation. (d): Reference case. (e):
The mesh rotated by 45°. (f): The mesh rotated and re-projected at the CAD

geometry.
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FIGURE 4.5.11: The radius of the diffuser inlet over the angle.
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Chapter 5

Conclusions

The swirling flow in a conical diffuser is very complex and the converging/di-
verging smearlines along the walls reveal a high level of secondary flow during
the expansion. Counter-rotating vortex structures are found at the diffuser
exit. The asymmetric behavior is due to instabilities of the axisymmetric
mode, and the disturbance that triggers the instability is imperfections in
the CAD-geometry.

Similarities to confined swirling flow have provided a deeper understan-
ding of the many phenomenas found in swirling diffuser flow.

The discrepancies regarding the agreements with experimental data are
partly reminiscent from the nature of the turbulence model which over-
estimates radial turbulent mixing in the forced vortex region. There are
experimental and theoretical evidence of a high level of anisotropy in swir-
ling flow, which cannot be accurately predicted with the standard £ — w
model that was chosen for the simulations.

The URANS computations did not yield any unsteady effects. This can
also be explained by the choice of turbulence model, but another possible ex-
planation is that the forced symmetry breaking disturbance, that is imposed
by the geometry, may lock the flow in a steady asymmetric mode.
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Chapter 6

Future Work

Further investigations of swirling flow in diffusers are needed. Different swirl
numbers must be considered and also the influence of a bending geometry,
which would to higher extent resemble the shape of a draft tube. To examine
the anisotropic properties of the large scale turbulent motions, these must
be computationally resolved using LES. This will give detailed information
of unsteady behavior not obtainable by (U)RANS modeling. Especially the
behavior of the central vortex rope are interesting. There are other advanta-
ges to LES as well, like the much weaker dependence of turbulence modeling.
The modeled part of the averaged (or filtered) Navier-Stokes equations are
depending on an accurate description of the turbulent quantities, which in
RANS modeling usually are obtained from at least two differential trans-
port equations. As differential equations, these are completely determined
by their boundary conditions. In LES, when modeling only small (more
isotropic) scales of turbulence, non-differential equation models can be con-
sidered. Thus, the dependence of boundary conditions for the modeled part
will vanish.

Other re-considerations which must be made are the use of steady sym-
metric inlet boundary conditions. In the experimental work by Dahlhaug,
observations were made of an asymmetric vortex filament originating from
far upstream of the diffuser, which calls for (unsteady) asymmetric inlet
boundary conditions for the LES calculations.

To obtain unsteady (turbulent) inlet boundary conditions for a LES of
swirling flow in a diffuser, different approaches are possible. The most ob-
vious one is to do a LES of a swirling flow in a pipe using steady (laminar)
inlet boundary conditions, but elongate the pipe far enough in the upstream
direction to allow development of turbulence from numerical instabilities (i.e.
transition). A disadvantage of this approach is that it is impossible to a priori
make a good estimation of how far the pipe must be elongated for ‘numerical
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turbulence’ to transform to ‘real turbulence’. Geometrical and/or superimpo-
sed numerical disturbances may be a way speed up the development. Another
approach is to compute the flow in a straight pipe with periodic boundary
conditions in the axial direction, i.e. to use the unsteady outlet solution as
the inlet solution. Results from such a computation can be used as inlet
boundary conditions for diffuser computations. However, for a computation
with periodic boundary conditions, some issues concerning the axial decay
of swirling flow must be solved.



Appendix A

A Return to the Equations

In this appendix, some important terms of the governing equations are analy-
zed in order to evaluate the computed solution. Also, the analysis will serve
as a step towards a better understanding of the most important features go-
verning the turbulent swirling flow through a diffuser. The expected behavior
of turbulence are discussed in the frame of the exact turbulent kinetic energy
equation, the momentum equation and physical reasoning. Also included are
an attempt to analytically describe the axial pressure gradient field which
must be known for the possible use of periodic boundary conditions in the
axial direction, as discussed in chapter 6.

A.1 The Influence of Swirl on Turbulence

To analytically deduce the effect of swirl on turbulence, the equation for the
turbulent kinetic energy (equation (2.4.10)) can be transformed to a polar
coordinate system by using the transformation (y,z to r,0):

v = u,cos(f) — ugsin(0)
w = u,sin(f) + ug cos(6)
0y = cos(0)0, — (sin(6)/r)0y
Ow = sin(0)0, + (cos(8)/r)0y (A.1.1)

If the axial gradients are neglected, the transformed production term of the
k-equation can be expressed

U,2
Pk = ——989U9 — ’U,gurarUg -
T

UgUy

; OpU, — u20,U, (A.1.2)
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Assuming U, = 0 and homogeneity (i.e. no mean gradients) in the azimuthal
direction gives

Pk: = —Wa,«Ug (A13)

It can be deduced by looking at equation (A.1.3) that the swirl will give
a positive contribution to the production of turbulent kinetic energy, since
ugu, and 0,(rUy) always have the opposite signs. This can be understood
by physical reasoning: A positive radial fluctuation in the boundary layer
moves down the negative radial gradient of Uy. Hence, it is carrying a lar-
ger momentum which will result in a positive tangential fluctuation. Since
the co-existing fluctuations have the same sign, the correlation will be po-
sitive. Similarly, a negative radial fluctuation will correlate with a negative
tangential fluctuation. A look at the radial momentum equation (see for ex-
ample [9]), simplified in the same manner as above, gives another hint. The
centrifugal forces are balanced by the radial pressure gradient, i e

2
)% _ P (A.1.4)
.

where 0, P > 0 always. Further, as long as Uy is growing in the radial direc-
tion, a positive radial fluctuation will be suppressed by the growing pressure
gradient and a negative radial fluctuation will be return to the streamline it
departured from, due to its higher angular velocity. Hence, radial turbulence
will be damped in the forced vortex region. The experimental data by Dahl-
haug [1] confirms this theory. Closer to the wall, where Uy is dominated by
the viscous boundary condition and accordingly 0, (Uy) < 0, a quite unstable
regime is found. According to equation (A.1.4) the pressure gradient decays
along with Uy in the radial direction (see figure (A.1.1), and positive radial
fluctuations will be augmented in the entire free vortex region. Of course,
also the negative radial fluctuations will be augmented, but this is due to
their lower angular velocity. One important thing can now be concluded; the
centrifugal forces will cause a high degree of anisotropy in the forced vortex
region since they only will affect radial fluctuations. This is also verified
by the measured data provided by Dahlhaug, see figure 4.4.7 (b); the radial
components of the fluctuations in the forced vortex region are found to be
three to five times smaller than the tangential and axial components.
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FIGURE A.1.1: A radial pressure gradient calculated from equation (A.1.4).

A.2 The Influence of the Diffuser on Turbu-
lence

Transforming back to Cartesian coordinates and writing the equations for a
2D diffuser gives (U and x again defined in the axial direction, V' and y in
the wall normal direction)

Py = —u20,U — wd,U — uvd,V — v20,V (A.2.5)

In steady 2D channel flow, all terms on the right hand side but —uvd,U are
zero. As soon as the flow reach the entrance of the diffuser, d,U and 0,V
enters the equation carrying negative values, while and 9,U remains positive,
although it will decrease in magnitude. An order of magnitude analysis gives
the relation among all gradients: Let the diffuser length be L, the inlet and
outlet radius be R and 2R respectively and let the centerline velocity be U,
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and U./2. Then, if R ~ L/10:

s~ Us <
8,U ~ 52%1 > 0
0,V ~ 1%1[, < 0
OyV ~ % > 0 (A.2.6)

To a first order accuracy, the term including 0,V can be neglected, being 25
times smaller than J,U. The two normal gradients that enters the equation
at the beginning of the expansion are equal in magnitude and will cancel
eachother due to continuity. The significant term of shear strain remaining
from the parallel flow will decrease in magnitude, but will still be the most
dominant term. In the upstream parallel flow it can be approximated as
O,U ~ %UC’ and the due to the expansion it will be reduced by a factor of
four. It can be expected that the decrease of this term is what determines
the rate of production of turbulent kinetic energy, and this can explain why
there is a decay of turbulent kinetic energy during the expansion.

A.3 The Axial Pressure Gradient

By assuming that the radial gradients are much bigger than the axial gra-
dient, an expression for the axial gradient of pressure can be found. First,
by integrating equation (A.1.4), an expression for the radial distribution of
pressure is found. P, denotes the pressure along the centerline r = 0.

P(2),_n — Pa(z) = p / Uo(r,2)" (A.3.7)

0 T

Differentiating in the axial (x) direction gives the pressure gradient in the
center of the pipe,

R 7172
dyPoy(2) = do P(2)=g — pdw/ M

0 T

dr (A.3.8)

The first term on the right hand side is relatively small [12]. Due to viscous
forces, the integral term in the above expression will decay in the axial direc-
tion, creating an adverse (positive) pressure gradient at the centerline. If the
decay is strong enough, the flow at the centerline is completely decelerated,
yielding an interior ’free’ stagnation point (vortex breakdown).
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Keeping the upper integral limit as an variable in equation (A.3.7), diffe-
rentiating and using equation (A.3.8) gives the axial pressure gradient field.

T 5 )2
0

R 172(~

= d,P(2)r_p — pOs / M dF (A.3.9)

T

If the decay of swirl velocity is negligible the axial pressure gradient field can
be approximated with the gradient of the wall pressure, or the gradient of
any pressure along the radial axis, since all radial dependence will vanish.
The force of the axial pressure gradient will be balanced by the wall shear
stress. This fact can be used for deriving the source term in the axial mo-
mentum equation needed for driving swirling flow between periodic boundary
conditions, see chapter 6.
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Appendix B

Some Notes on Averaging

In this chapter, some different kinds of averaging of the Navier-Stokes equa-
tions are presented. The implications of the use of standard turbulence mo-
dels in unsteady calculations are discussed, i.e. the contradicton that the
URANS equations (together with the standard turbulence models) would
resolve large turbulent structures.

B.1 Why Average?

The main reason for the need of averaging (and consequently the need of
turbulence modeling) is the limited capacity of computers. The numerical
methods'® for solving PDE:s in use today depend on resolving all significant
scales involved in the problem. To resolve all scales, i.e. to perform a direct
numerical simulation (DNS) of a real industrial turbulent flow, is beyond the
scope of any supercomputer today. Instead, different averaging methods are
introduced, all giving - in spite of the similarities of the equations - different
unknowns. Depending on the nature of the averaging, the solution to the
average equations must be interpreted accordingly. Thus it is important to
get an understanding of the nature of averaging. In section B.2 some aspects
of the different kind of averaging are discussed.

B.1.1 Physical Instability - Numerical Stability

A non-linear problem must be solved iteratively. Numerically the problem
in trying to solve the not fully resolved Navier-Stokes equations appears as
instabilities during the iterations. The instabilities, given a numerical resolu-
tion, grow worse with increasing Reynolds number. This can be understood

!Finite elements, volumes or differences.
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by looking at the non-dimensionalized? equations, equation (B.1.1), where
the stabilizing viscous diffusion term goes to zero in the limit of infinite
Reynolds number.

1 1

Though the diffusion term might be numerically stiff, it will always act as
a smoother to the solution. In the averaged (volume, ensemble or time ave-
raged) equations, the modeled unknown quantities can always be put inside
the diffusion term, see equation (2.2.7), where they are allowed to grow with
increasing Reynolds number, amplifying the importance of the term. Ins-
tead of making the momentum equations unstable, the effect of the modeled
turbulence is the opposite.

B.2 Aspects of Averaging

The only alternative to DNS is to solve an averaged problem. There are quite
a few different kinds of averaging methods of the governing equations in use
today. In the following sections, the most common averaged equations are
discussed.

B.2.1 RANS

RANS modeling are based on solving the Reynolds averaged Navier-Stokes
equations, equation (2.2.7), and different types of closure models are used
for the Reynolds stress tensor. These equations can be solved in 1D or
2D, and are the least demanding of all equations for turbulent flow. Still,
the production of turbulent kinetic energy is depending of the mean flow
gradient, which can be seen from equation (2.4.10). This means that even
though the RANS equations do not depend on resolving turbulent structures,
the gradient of the mean flow must still be accurately resolved. In the CFD
community the RANS equations are usually synonymous to time averaged
equations, and subsequently only applied to steady flow.

2The equation is derived using significant length and velocity scales.
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B.2.2 URANS

Often, the unsteady RANS (URANS) equations are derived by a very special
kind of ‘time’ averaging,

T/2

Ui(x) = ui(x,t) = —/ wi(x, 7)dr (B.2.2)
T J 1

As can be seen, the function U; is no longer a function of time. To keep the

mean time derivative in the ‘time’ averaged equations one must assume that

there is a separation between the mean and turbulent scales.

1 t+T
— / Oo (Ui (x,T) + uj(x, 7)) dr
¢

T
_ Ui(x,t+T) ; ui(x,t+7T)  Ui(x,1) ; ul(x, ) (B.2.3)

In the limit 7" — 0 this is not equal to the time derivative for the ‘mean’
flow, but if the assumption that the mean scales are much slower than the
turbulent scales is valid, the differencing (and also averaging) time may not
have to be drawn to the limit. Instead it can be drawn to an arbitrary
value in the region between the turbulent and the mean scales, or ideally to
the sum of a sufficient many integral time scales. There is no way to make
an accurate estimate of where this region is situated. Also, most numerical
methods demands a timestep common to the entire computational domain.
In order to allow the ratio of mean and turbulent scales to vary at walls
and in free shear layers, there must be a very large separation of the scales
to assure that the averaging time is sufficient. However, given weakly time
dependent boundary conditions for the mean quantities, the timestep may
be chosen big enough.

Since there is usually no large separation between mean and turbulent
scales, turbulent structures are thought to end up in the solution of the
URANS equations. If the solution to the URANS equations would contain
turbulent structures; do the standard turbulence models get information of
what is resolved or do they still model all turbulence? As noted by Menter [6],
no information of what is resolved is transfered to the model. The only
feedback the model achieve is the resolved gradients, which in case of resolved
large turbulent structures usually will be greater than the mean gradients.
This may, as also will be discussed in appendix C.4, lead to overestimated
modeled quantities and can explain why the standard models are considered
too dissipative for unsteady flow. As an example: If the mean gradient of an
URANS calculation is exchanged to a gradient containing resolved turbulent
structures it will be less smooth. Since the turbulence models usually are
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insensitive to the sign of the gradient; the more turbulence that is resolved,
the more will be modeled. This is contradictory and may be one of the reasons
why the two-equation models tends to damp all expected unsteadiness of an
URANS calculation. If k is overpredicted, so is the turbulent viscosity, and
the diffusion term of the URANS equation (equation (2.2.7)) will be far too
large, resulting in a smoothed solution. The computation will probably end
up as the steady solution of the time averaged equations.

B.2.3 The Ensemble Average and the Randomness of
Turbulence

One way to avoid the assumptions of above is to use the ensemble avera-
ged equations. These are identical to the URANS equations, but here the
unknown function U denotes the average of an infinite number of realiza-
tions. They are extensively used by theoreticians. By definition, the solution
cannot be random, since the ensemble average equals an arithmetic mean
that is drawn to its limit. The randomness of the arithmetic mean will by
definition vanish in the limit. If turbulence were random fluctuations, the
ensemble averaged equations would not resolve any turbulence. Equivalently,
if URANS do resolve large unsteady structures, they may not be considered
random. Further, since all the turbulence is enclosed in the Reynolds stress
tensor 7;;, the solution obtained from a calculation of the ensemble averaged
equations would not contain turbulent structures. Still there is one problem
of solving the ensemble averaged equations, and that is to design a problem
without any disturbances. As the boundary conditions accordingly must be
regarded as ensemble averaged, they should not contain anything that might
distort the flow. In the case of symmetrical geometries, the level of symmetry
needed is almost impossible to obtain.

B.2.4 Filtered Functions and the LES

In this section there will be no distinct separation between mean and turbu-
lent scales, instead they will be referred to as resolved and unresolved scales
of unsteady motion. The idea about filtering is to obtain and solve for a fun-
ction much smoother than the exact solution. A ‘smoothed’ function will not
have to be resolved to the same extent as the original. One way of smoothing
is to apply a filter. Filtering is more general way of averaging than the ‘time’
average of above. A time filter defined as in equation (2.5.14) yields a func-
tion which is still dependent of time. The assumption of a scale-separation
is now superfluous since the filtered function is dependent of all time, i.e. it
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can be drawn to the limit 7" — 0 where the function resembles itself. Nu-
merically, given a finite time step, fast fluctuations will not be resolved and
a substep model must be used. Slower timescales will be part of the solu-
tion. A necessary condition for this is of course that the spatial resolution
correlates with the resolved timescales, since what is not resolved spatially
neither can be viewed in time. In practice numerical stability requires very
small timesteps, why it is in practice the spatial resolution that determines
the solution. The corresponding spatial filtering can be defined as in equa-
tion (2.5.15), and this is the most obvious and common filter for LES. The
part of u; that is not resolved is referred to as the subgrid part, since usually
the resolution of the computational mesh implicitly defines the width of the
spatial filter.

Some important properties of filtering will affect the governing equations.
Applying the filter twice yields a new unknown, and filtering the subgrid part
yields not zero, see section 2.5. Subsequently, the filtered equations of motion
will differ from the URANS equations. Using equation (2.5.18), turbulence
modelers will only have to consider modeling the subgrid scales of turbulence.
Ironically, the equations resulting from filtering the Navier-Stokes equations
are identical to the URANS equations, with the form of the term 7;; being the
only exception. LES is always run in 3D space and time, since turbulence
is always three dimensional and unsteady. Otherwise, the only difference
between LES and URANS is - if one for a moment forget about the underlying
assumptions in their derivations - the choice of turbulence model [6].
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Appendix C

The Most Common Turbulence
Models

To model correlations of velocities, there is a need for a length and a time
scale at every point in the domain. The two-equation models are the simplest
candidates for solving this problem, even though there are one-equation mo-
dels where the length scale is obtained from an algebraic relationship or the
grid, like in the case of the Smagorinsky model. The internal relation between
the velocity correlations are most often set by the Boussinesq assumption,
equation (C.1.6). More complex models include the v> — f model (four equa-
tions) and the Reynolds stress model (six equations). In this appendix the
most commonly used turbulence models are described. Some implications of
the two-equation models are discussed, especially the Boussinesq assumption.

C.1 The £ — ¢ Model

The standard k£ — € model is widely used, mostly because of its robustness
in performance. It is a two-equation model depending on the Boussinesq
assumption, equation (C.1.6), for the modeling of P, equation (2.4.11). The
exact e-equation can be derived from the Navier-Stokes equations, but due
to the many unknowns introduced by the derivation it is never used in tur-
bulence modeling. Instead a simplified equation for ¢ is invented and solved,
see equation (C.1.4).

Below the complete £ — € model is shown. The k-equation is written as
Ook + U;0;k = prodel 4 pmodel _ ¢ (C.1.1)

93
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where
Pkr:nodel - 21/t5”8]UZ (C12)
D,TOdel = @(V—F;@k) (013)
k

and the e-equation

Ooe + U;0je = % (Caa P — Coge) + 0; (v + v/ 0.)04¢)) (C.1.4)
The coeflicients are usually obtaining the values
Cqp = 144
Ceo = 192
C, = 0.09 (C.1.5)
O = 1.0
. = 1.3

The connection to the Reynolds averaged Navier-Stokes equations (equa-
tion (2.2.7)) are through the Boussinesq assumption:

2
—UU; = 2VtSij — gk(sm (016)
where v, is defined as
Vy = C'qu/g (017)

C.2 The £ — w Model

The first k¥ — w model was proposed by Kolmogorov as early as 1942. It has
evolved during the last decades and presented below is the version of Wilcox
1988 [16]. The k —w model resembles most of the k£ —e model and ¢ is related
to w by

e = Fwk (C.2.8)
The complete £ — w-equation is given as
dok + U;0;k = B + Dot — g*wk
dow + Udjw = 0 (v + n/0,)dw) — %(cwlp,gnodel + Conhw)
Pt = 21,8,,0;U; (C.2.9)
Dot = 9, (v + vy/ok)0;k)
v = kjw
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where the closure coefficients are

5 = 009, Cyl — 5/9, Cpo — 3/40, O =0y = 2 (0210)

C.3 The Reynolds Stress Model

The dependence of an eddy viscosity is avoided in the Reynolds stress model,
where a transport equation for each Reynolds stress is modeled. The model is
based on equation (2.3.9). One of the biggest advantages of this model is that
the there are no need to model the production terms. It also has the potential
to predict anisotropic properties of turbulence, and account for effects of flow
history. The only drawback is that the model is usually considered far too
unstable numerically. There are three terms in equation (2.3.9) that must
be modeled, ¢;;, II;; and Cjj;. The standard model by Launder-Reece-Rodi
is shown below.

807',']' + Uka,mj = I)z'j — Hij + O (l/akTij + ngk) + €45 (C.3.11)

The dissipation is modeled as:

805 + Ujajf‘f = % (CngijajUi — 0528) — Cgaj (ngmamc‘:) (0312)
2
€ij = §€5ij (C.3.13)

The pressure strain model is

€ 2 N 2
Hij = CIE (Tij -+ §k51]> — (‘PU — §P61]> —

N 2 . 1
g (Dij - §P5z‘j> — Yk <Sz'j - gSkk(Sij) +
k3/2

— [0.125% (sz + gk(sij) —0.015(P; — Dij)} (C.3.14)

The models for the convection and the diffusion are

2 k?
Cijk = 505? (0iTjk + 0Tik + Ok Tij) (C.3.15)

Dij = 70Uy + 7jx0:Us (C.3.16)
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The model coefficients are

a = (8+0Cy/11

B = (8C,—2)/11

5 = (600, —4)/55

C, = 18

C, = 06 (C.3.17)
Cs; = 0.11

C. = 0.18

C. = 044

Co = 1.9

For modeling of subgrid stresses, equation (2.5.19) in LES, the most popular
choice is the Smagorinsky model. It is a simple one-equation model, ba-
sed on the assumption that the not resolved local turbulent length scale is
proportional to the size of the local computational cell (A).

Tij = 21/,552']' (0318)

Vy = (CSA)Q\/SijSZ’j (0319)

The modeled 7;; are directly inserted in the governing (LES) equation.

C.4 Limitations of the Boussinesq Assump-
tion

The Boussinesq assumption introduces an isotropic eddy viscosity v;, which
is used in all two-equation models. By dimensional analysis, it can be defined
as

v =C,k*/e (C.4.20)

if it is only depending on local turbulent quantities. The coefficient C), is
usually set to the constant value of 0.09.

The assumption of an isotropic! eddy viscosity do not seem to apply
to swirling flow. Radial turbulence is damped by centrifugal forces, and
especially the tangential stress component is expected to be amplified due

nvariant of direction.
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to streamline curvature. Also, flow-history effects on the Reynolds stresses
can persist for a long distance, which makes the linear relationship between
u;u; and S;; even more doubtful [16]. A look at the Reynolds stress equa-
tion (2.3.9), immediately tells us that the Reynolds stress is subject to be
convected in space.

There are other limitations of the Boussinesq assumption as well. Substi-
tution of the Reynolds stress tensor in the production term of the equation
of turbulent kinetic energy, equation (2.4.11), yields

P]:HOdel = 21/t5ij6jUZ~ (0421)

It follows from the definitions that the production term (Py), modeled by
using Boussinesq assumption has limited ability to predict detailed physics
of a non-parallel flow. As soon as a positive normal strain? is introduced in
the flow, the exact production term Py, defined in equation (2.4.11), will get a
negative contribution. The modeled production term, equation (C.1.3), will
on the other hand obtain a positive value. This may lead to overpredicted
turbulent quantities. This is one of the reasons why standard k£ —¢ and k —w
models must be used with caution when modeling non-parallel turbulent
flow. Moreover, if the mean gradient is exchanged to a gradient containing
resolved turbulent structures (like the solution of an URANS equation) it will
be less smooth. Since the model is insensitive to the sign of the gradient; the
more turbulence is resolved, the more will be modeled. This is contradictory
and may be one of the reasons that the two-equation models tends to damp
all expected unsteadiness of an URANS calculation. If k£ is overpredicted,
so is the turbulent viscosity, and the diffusion term of the URANS equation
(equation (2.2.7)) will be far too large, resulting in a smoothed solution. In
fact, it will end up in the steady solution of the time averaged equations.

20;u; > 0, 4 = 1,2 or 3, no summation over i.
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