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This paper analyzes the properties of viscous swirling flow in a pipe. The analysis is based on the
time-averaged quasicylindrical Navier-Stokes equations and is applicable to steady, unsteady, and
turbulent swirling flow. A method is developed to determine the critical level of swirl �vortex
breakdown� for an arbitrary vortex. The method can also be used for an estimation of the radial
velocity profile if the other components are given or measured along a single radial line. The
quasicylindrical equations are rearranged to yield a single ordinary differential equation for the
radial distribution of the radial velocity component. The equation is singular for certain levels of
swirl. It is shown that the lowest swirl level at which the equation is singular corresponds exactly
to the sufficient condition for axisymmetric vortex breakdown as derived by Wang and Rusak �J.
Fluid Mech. 340, 177 �1997�� and Rusak et al. �AIAA J. 36, 1848 �1998��. In narrow regions
around the critical levels of swirl, the solution violates the quasicylindrical assumptions and the flow
must undergo a drastic change of structure. The critical swirl level is determined by the sign change
of the smallest eigenvalue of the discrete linear operator which relates the radial velocities to effects
of viscosity and turbulence. It is shown that neither viscosity nor turbulence directly alters the
critical level of swirl. © 2007 American Institute of Physics. �DOI: 10.1063/1.2717724�

I. INTRODUCTION

Swirling flows are found in numerous applications. Tur-
bines, compressors, and pumps all depend on the properties
of swirling flow. For some applications, e.g., diffusers, a
swirling velocity component may be introduced to stabilize
the flow and to prevent separation. However, the stability of
the flow can be completely lost if the swirl level is increased
towards a certain limit, i.e., the swirl level at which a vortex
breakdown may occur. A vortex breakdown often leads to a
highly unsteady and turbulent flow that recirculates along its
axis. In combuster applications, on the other hand, the turbu-
lence and the recirculation zone are necessary to stabilize the
burning flame. Beyond the complex interactions between the
velocity components that arise from the presence of viscosity
and turbulence, the governing equations are also unstable for
other mathematical/physical reasons.

The stability of the axisymmetric incompressible Euler
equations and its connection to vortex breakdown have been
studied in numerous papers; see, for example, Benjamin,1

Leibovich and Kribus,2 Szeri and Holmes,3 and Wang and
Rusak.4 In these papers, the equations are transformed to
either the Squire-Long �Bragg-Hawthorne� equation or to the
equations derived by Szeri and Holmes.3 The assumption of
radial equilibrium is often a part of the analysis1,3,4 as it
describes the class of columnar flows in which the radial
velocity component is zero and there are no axial gradients.
If the flow field is not homogeneous in the axial direction,
the assumption of radial equilibrium is taken locally.2 As

Szeri and Holmes3 pointed out, any combination of axial and
tangential velocities will in this case be a solution to the
Euler and continuity equations, i.e., the velocity components
are independent.

The radial velocity component is usually not measured
in swirling flow because of its low magnitude and other prac-
tical reasons, such as visual access. Numericists who use
measured data as inlet boundary conditions then lack some
information about the flow field, which is of course unsatis-
factory. Many times the radial velocity is neglected at the
inlet boundary, as in the numerical studies of axisymmetric
vortex breakdown by Brown and Lopez,5 Beran and Culick,6

and Lopez.7 However, as will be shown in Sec. III, radial
velocities are a direct consequence of viscosity and/or turbu-
lence and their magnitudes may be significant for low Rey-
nolds numbers. It will also be shown how an estimation of
the radial velocity component in steady flow can be obtained
if the two other components are known along a single radius.
An analytical estimation of the radial velocity in the case that
the other components are given is of interest to both experi-
mentalists and numericists. If the radial velocity component
of a low Reynolds number swirling flow is neglected at the
inlet boundary of a simulation, it is possible that the near
downstream flow may be forced to a columnar state that is
unphysical.

Benjamin1 introduced the concept of subcritical and su-
percritical states of a swirling flow by analogy with the hy-
draulic jump. By introducing perturbations to the Squire-
Long equation, the stability of the flow was analyzed as an
eigenvalue problem. He analyzed the sign of the smallest
eigenvalue for a given perturbation to a given columnar flow
field and showed that disturbances to the flow field may
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propagate upstream only if the swirl level reaches a certain
value. At this point, the smallest eigenvalue of the problem
must become negative. If the swirl level is higher than criti-
cal, the state of flow is referred to as the subcritical state. The
existence of these states has been verified by Wang and
Rusak,4 who analyzed the stability of the disturbances in a
forced vortex �solid body rotation� in a pipe and found that
the disturbance is stable in the subcritical state and unstable
in the supercritical state. The instability of the disturbance in
the supercritical state is explained by the washout effect of
the axial flow, which will be of greater magnitude than the
upstream propagation speed of the disturbance. If a distur-
bance turns out to be stable, it is proposed that it will lead to
vortex breakdown. Wang and Rusak8,9 introduced the effects
of slight viscosity in their analysis of the Szeri-Holmes equa-
tion and made an extensive analysis of the time-asymptotic
behavior of the flow. Rusak et al.10 extended this analysis
and derived necessary and sufficient conditions for the axi-
symmetric vortex breakdown of a q vortex in a pipe, of
which the latter corresponds to the critical swirl level of
Benjamin.1 The results are extended in Rusak and Judd11 to
include swirling flows in diverging stream tubes.

The breakdown of viscous swirling flows was numeri-
cally analyzed by Hall12 and Bossel,13 who both examined
the failure of the quasicylindrical approximation of the
Navier-Stokes equations. Bossel14,15 also used the quasicy-
lindrical approximation for the outer viscous field of a vortex
core and inviscid equations for the flow close to the axis.
Brown and Lopez5 used the Navier-Stokes equations to nu-
merically analyze a laminar axisymmetric swirling flow in a
pipe. They argue that the physical mechanism behind a vor-
tex breakdown rely on the production of a negative azi-
muthal component of vorticity. In fact, since ���−�rVz, this
is equivalent to a deceleration of the axial velocity at the
centerline, which often is observed in studies of vortex
breakdown. A more recent paper by Lopez7 discusses the
stability of laminar swirling flow subject to an axisymmetric
disturbance. Lopez solves the axisymmetric Navier-Stokes
equations at low Reynolds numbers, but neglects the effects
of boundary layers. Lopez finds a critical level of swirl that
is very close to the sufficient condition for vortex breakdown
derived by Rusak et al.10 Both steady and unsteady solutions
were analyzed. The steady solutions confirm the results ob-
tained by Beran and Culick6 for the same case. It is clear that
there is a range of swirl levels for which multiple solutions to
the axisymmetric Navier-stokes equations exist. Lopez7 also
showed that the steady solutions and time averages of un-
steady solutions do not coincide. Beran16 extended the re-
sults of Beran and Culick6 to include unsteady solutions to
the problem and found that every unsteady solution asymp-
totically reaches steady state and coincides with the solutions
to the steady equations, i.e., no stable unsteady solution
branch is found, as in the work of Lopez.7 However, the
time-asymptotic solutions were very sensitive to the initial
conditions, which confirms that there is a range of swirl lev-
els for which multiple solutions can exist. In Beran and
Culick,6 also the behavior of the quasicylindrical equations is
investigated. They found that the quasicylindrical method
provided an efficient approximation for the critical level of

swirl. The quasicylindrical approach was, however, criticized
by Lopez,7 who argues that this method is incapable of de-
scribing the evolution of any flow approaching vortex break-
down and fails at much lower swirl levels than those needed
for the flow to stagnate. Indeed, the equations can never de-
scribe the nonlinear physics of a vortex breakdown near a
stagnation point. However, as also mentioned by Lopez, “a
vortex should not be classified as having undergone break-
down based on the stagnation of its axial flow.” As will be
shown in this paper, the failure of the quasicylindrical equa-
tions occurs at exactly the same swirl level which determines
the sufficient condition for vortex breakdown as derived by
Wang and Rusak9 and Rusak et al.,10 and shown by Lopez.7

The reason why Hall12 and Beran and Culick6 did not reach
this critical swirl level may be explained by the iterative
stepping methods that were used. Any iterative method will
fail when the problem gets ill conditioned, as in the region
around a singularity.

Vortex breakdown has obviously been the subject of
many studies, and there are still several definitions of what it
actually is. However, it is most commonly agreed upon to be
a sudden change in flow structure of a vortical flow, most
often connected to a deceleration of the axial flow in the
vortex core. Experimental visualizations of vortex break-
down in laminar flows by Mattner et al.17 and Sotiropoulos
and Ventikos18 have shown structures reminiscent of
bubbles, which are approached by the surrounded flow field
as if they were solid obstacles. Snyder and Spall19 numeri-
cally reproduced the bubble-type vortex breakdown that was
found experimentally by Sarpkaya.20 The breakdown into
steady or unsteady spiral shapes, which is very common in
turbulent flow, has also been investigated �see Alekseenko
et al.21�.

The analysis provided herein may in some sense be re-
garded as a link between the theories of Hall12,22 and
Benjamin1 as it connects the failure of the quasicylindrical
Navier-Stokes equations to the sign change of the smallest
eigenvalue of the system. The time-averaged quasicylindrical
Navier-Stokes equations are derived and analyzed in Sec. II.
The equations are rearranged to yield a single linear differ-
ential equation for the radial distribution of the radial veloc-
ity component. The critical swirl level is determined by the
properties of the linear operator that relates the radial veloci-
ties to effects of viscosity and turbulence. The singularities
of the equation are found by an exact numerical method, and
the results show that the singularities of the quasicylindrical
equations correspond exactly to the critical swirl levels
found by Wang and Rusak,9 Rusak et al.,10 and Lopez.7

II. DERIVATION OF A LINEAR EQUATION FOR THE
RADIAL VELOCITY COMPONENT

Vortex breakdown is generally unsteady and asymmetric.
Nevertheless, a time-averaged flow field will be axisymmet-
ric in any axisymmetric domain. Furthermore, the time-
averaged radial velocities of an unsteady helicoidal swirling
flow may be considered small even if the instantaneous flow
field has significant radial velocities locally. A time average
will be equivalent to a tangential average if the unsteady
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helicoidal flow is periodic, and a sign change of the radial
velocity component in the tangential direction will lead to a
small value in mean. Hence, a quasicylindrical approach
based on the time-averaged Navier-Stokes equations can in
some sense be considered more general than using the axi-
symmetric Navier-Stokes equations directly.

It is shown in the Appendix that a second-order approxi-
mation of the time-averaged Navier-Stokes equations for tur-
bulent swirling flow in a straight �or slightly diverging� pipe
read
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and the corresponding continuity equation is
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If the tangential and axial velocity profiles are prescribed, an
expression for the radial component can be derived. Taking
the radial gradient of the axial momentum equation �3� and
using the continuity equation �7� gives
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If this expression of the tangential momentum equation is
inserted into Eq. �9� we get
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which in turn can replace the pressure term in the axial mo-
mentum equation �8� to yield
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The left-hand side of Eq. �12� can be rewritten as
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and, after some manipulation, a second-order linear differen-
tial equation for Vr can be obtained, i.e.,
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where the coefficients are defined as
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Symbol ·� in the parentheses after coefficient b denotes the
dependence on turbulence or unsteadiness. For the steady
case, only source term b will have to be modified, i.e.,
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For a steady case, Eq. �14� can now be solved for any com-
bination of Vz and V� to give a corresponding radial velocity
component. The result will, however, only be useful if it is of
the same order of magnitude as was assumed.

The appropriate boundary conditions for Vr read

045108-3 On the failure of the quasicylindrical approximation Phys. Fluids 19, 045108 �2007�

Downloaded 11 May 2007 to 129.16.64.122. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp




Vr
r=0 = 
Vr
r=R = 0. �20�

The above relations assure symmetry at the centerline and
fulfill the necessary kinematic boundary condition for a
�nonporous� wall, thus closing the system. Equation �14� can
be discretized and written as

Av = s . �21�

The coefficients of matrix A are discrete functions of the
axial and tangential velocity profiles, the elements of vector
v describe the radial distribution of the radial velocity com-
ponent, and vector s is the integrated form of the source
term, Eqs. �18� and �19�. See the Appendix for details about
the discretization and solution method.

III. RESULTS AND DISCUSSION

A few conclusions can be directly drawn from the form
of Eq. �14�. If the flow is steady and inviscid, Vr=0 because
of the vanishing source term bst, Eq. �19�, and the boundary
conditions �20�. This can be mathematically proven by the
weak maximum principle,23 but it is rather obvious from Eq.
�14�. If we insert a uniform axial velocity profile and a solid
body rotation the source term, bst, will vanish independent of
the Reynolds number, and the solution to Eq. �14� is again
Vr=0. However, it will be shown in the following sections
that there exist critical swirl levels for which the matrix A in
Eq. �21� is not invertible. For these swirl levels there exist no
solutions to Eq. �14�.

A. Determination of supercritical and subcritical
regions of an arbitrary vortex

To determine whether supercritical and subcritical states
exist for a quasicylindrical flow, the eigenvalues of the dis-
crete linear operator A in Eq. �21� are analyzed. No knowl-
edge of turbulence or viscous terms is needed for this analy-
sis as they are not part of matrix A. Simple polynomial or
exponential functions for the axial and tangential velocities
are used throughout this work. The method is nevertheless
applicable for arbitrary vortices. As a start, we define a set of
axial and tangential velocity profiles as

Vz = U0�4r2/R2 − 5r3/R3 + 1� , �22�

V� = U� sin��r/R� . �23�

These profiles are chosen because they resemble a typical
vortex often found experimentally, as in Dellenback et al.24

With the exception of the boundary layers, this combination
of axial and tangential velocity profiles somewhat resembles
a q vortex �see Sec. III B�. The axial velocity profile fulfills
the necessary Neumann condition at r=0, where it has a
local minimum, and a no-slip boundary condition at r=R.
The low order of the polynomial reduces the discretization
errors to a minimum. The bulk velocity, U0, is used as a
scaling parameter. The form of the tangential velocity fulfills
the necessary boundary conditions, and the maximum tan-
gential velocity, U�, is used as a scaling parameter. In ana-
lyzing different swirl numbers, the relation between the
maximum tangential velocity and the bulk velocity should be

of the order of 1, i.e., U� /U0�1. The swirl number is here
defined as

S �
1

R

�
0

R

VzV�r2dr

�
0

R

Vz
2rdr

�24�

and relates the flux of angular momentum to the flux of axial
momentum. The condition number of A as a function of swirl
number is shown in Fig. 1. As one eigenvalue approaches
zero, the condition number approaches infinity and the �radi-
ally averaged� radial velocity approaches �/� infinity, de-
pending on the sign of the smallest eigenvalue. Once one of
the eigenvalues approaches zero, the flow must undergo a
drastic change in structure as the quasicylindrical approxima-
tion will not hold, i.e., Eq. �14� will be singular. At swirl
levels S	Scrit the quasicylindrical approximation is again
valid and a near columnar flow may exist. The possible ex-
istence of near columnar flow at subcritical swirl levels has
earlier been suggested by Wang and Rusak9 and is confirmed
by the �time-averaged� experimental results of Dellenback et
al.24 By further increasing the swirl number, Eq. �14� will
have other singular points as all positive eigenvalues will
decrease and eventually approach zero. This property was
also found by Bossel,13 who analyzed the two-dimensional
solution to the quasicylindrical equations by the method of
weighted residuals. Bossel found an infinite set of singulari-
ties. Obviously, for the present discretized case, the number
of singularities is directly linked to the size of the computa-
tional grid. Since the equations are derived under the as-
sumption that V��Vz, solutions for very large swirl numbers
cannot be trusted. Consequently, only the first few singular
points will have a physical meaning. With a refinement of the
grid, all eigenvalues will be influenced. However, the critical
swirl number is not influenced by the grid resolution, as is
shown in Fig. 2. Since the magnitude of the critical swirl
number is apparently independent of resolution, it is sug-

FIG. 1. Properties of matrix A for steady swirling flow at Re=100 over
swirl number S. The swirl is varied by increasing the coefficient U� of Eq.
�23�. �··� The smallest eigenvalue of matrix A, i.e., 
*

=min
� / �R−2�RV2 /2rdr�; �-� the condition number of matrix A, i.e.,
condA�S�*=condA�S� /maxcondA�S��; �·-� computed and averaged radial ve-

locity from Eq. �14�, i.e., V̄r�S�=R−2�RVr /U0rdr.
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gested that the critical point is connected to the axis of the
vortex core. Close to the symmetry axis, at small r /R, the
axial velocity profile is constant and the tangential velocity
profile is approximately linear. Hence, if a second-order nu-
merical scheme is used, the resolution is in this limit not
decisive for a proper representation of the coefficients of Eq.
�14�.

One eigenvalue is negative in the subcritical swirl re-
gion. From Fig. 3, which presents solutions to Eq. �14� for
steady flow, it can be concluded that the existence of a qua-
sicylindrical flow is also possible for swirl numbers above
critical. Another very interesting property of the subcritical
flow is shown in Fig. 3 �top�. When S	Scrit, but is not too
large, both the radial velocity and �consequently� its radial
derivative are positive in the core region �r /R�0.5�. It fol-
lows from the continuity equation �7� that

�zVz � 0, �25�

and it is obvious that, for this special vortex, the slightly
subcritical state must lead to a deceleration of the axial flow
in the vortex core. This behavior of the vortex at swirl levels
close to critical is by no means universal, as will be shown in
Sec. III C. The critical swirl level of a vortex is determined
by its axial and tangential velocity profiles. Moreover, the
behavior of the vortex near this critical level is also deter-
mined by the distributions of the axial and tangential
velocities.

B. Critical swirl level of a q vortex

In this section a q vortex7,10 is studied. The axial and
tangential velocity profiles of the vortex can be defined as

Vz = V0 + V1e−r2/Rc
2
, �26�

V� = �Rc
2�1 − e−r2/Rc

2
�/r . �27�

The shape of the velocity profiles are determined by four
parameters: V0, V1, Rc, and �. The sum of V0 and V1 defines
the centerline velocity and Rc is proportional to the radius of
the vortex core, i.e., the radius at which the tangential veloc-
ity has its maximum. For a q vortex rc=1.12Rc. � is the
angular velocity of the vortex core. The q vortex does not

fulfill the no-slip boundary condition at r=R. Hence, the
boundary layers are neglected. First, we analyze V1

= ±V0 /4 using various ratios of Rc /R. For each case, the
swirl level is varied by letting the radius of the domain in-
crease while the axial mass flow, the flux of angular momen-
tum, and the ratio Rc /R are kept constant. As the axial ve-
locity decreases quadratically with an increase in radius, the
swirl number will, according to Eq. �24�, increase linearly.
For each case, the radius is increased until the first singular-
ity of matrix A in Eq. �21� is found.

Three definitions of a swirl number have been used, i.e.,
the integral form, Eq. �24�, and two local forms,

Sc � 
max�V��/Vz
r=0, �28�

S� � max�V�/Vz� , �29�

of which the latter can be interpreted as the �tangents of�
maximum swirl angle. An analytical expression for the maxi-
mum tangential velocity of a q vortex reads10 max�V��
=0.638�Rc, which gives Sc=0.638�Rc / �V0+V1�. The
results are shown in Fig. 4. It is clear that none of the defi-
nitions of swirl number gives a constant value for the level of
vortex breakdown. However, the larger a vortex core radius,
the higher a level of critical swirl.

FIG. 2. The smallest eigenvalue, 
*, of the discrete operator A as a function
of swirl number S, calculated at three different resolutions: �··� 200, �·-� 300,
�-� and 400 nodes.

FIG. 3. The radial velocity component in steady flow around the critical
swirl number, Scrit, computed from Eq. �14� at Re=100. The swirl is varied
by increasing coefficient U� of Eq. �23�. Top: The results violate the quasi-
cylindrical assumptions in the near critical region because it is assumed that
100Vr /U0�1. With a finer resolution in the S dimension, the radial ve-
locities would approach ��/�� infinity at the critical level. Bottom: In nar-
row regions around the first and second critical swirl numbers, the results
violate the quasicylindrical assumptions. The tendency of flow deceleration
along the axis of symmetry appears only in the slightly subcritical region.
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Figure 5 shows the critical swirl number, Sc,crit, as a
function of the vortex core radius for two other q vortices,
V1 /V0=1 �top� and V1 /V0=−0.5 �bottom�. It is obvious that
the critical level of swirl predicted by the method derived in
this paper is identical to the sufficient condition for axisym-
metric vortex breakdown derived by Rusak et al.10 This

shows that the first singularity of the quasicylindrical equa-
tions corresponds exactly to the global minimizer solution of
Rusak et al.10

C. Critical swirl level of a Burgers vortex

A Burgers vortex is a special case of the q vortex, Eqs.
�26� and �27�, in which V1=0. Wang and Rusak9 calculated
the critical swirl level of an inviscid Burgers vortex and ob-
tained �Rc

2 / �V0R�=0.8829 �Rc /R=0.5�. This value corre-
sponds to the critical swirl level of Benjamin1 and will in the
following be referred to as �B. A possible Reynolds number
independence of the critical swirl level is indicated by a
comparison with the two-dimensional axisymmetric and un-
steady Navier-Stokes simulations of a swirling flow in a pipe
by Lopez7 at Re�1000, and the asymptotical method of
Wang and Rusak8 at Re=6000 �based on the pipe diameter�.
Lopez found that disturbances can propagate upstream only
if �Rc

2�1.8. According to the theory of Benjamin,1 this
value must correspond to the critical swirl level. If the value
obtained by Lopez is nondimensionalized by the bulk veloc-
ity and the radius of the pipe �V0=1 and R=2 in the work by
Lopez�, the critical swirl level predicted by Lopez is �B

=0.9, which is very close to the value obtained by Wang and
Rusak.9 Wang and Rusak8 found a critical swirl level of �B

=0.882 864 for a viscous vortex, a value more or less iden-
tical to the value obtained from their inviscid analysis. The
quasicylindrical solution method derived herein predicts a
critical swirl level of �B=0.8829. It should be mentioned
that the resemblance of the inviscid analysis of Wang and
Rusak and the viscous simulations of Lopez7 has earlier been
verified by Wang and Rusak.8,9 However, it is here shown
that identical results can be obtained by an analysis of the
quasicylindrical equations. A summary of the results are
shown in Table I. The radial velocity for a Burgers vortex at
Re=1000, as a function of the swirl number, Sc, is shown in
Fig. 6. It is interesting to note that there are feasible solutions
to the quasicylindrical approximation in the subcritical
region �Fig. 6 �bottom��. However, this vortex does not be-
have like the vortex in Sec. III A. The radial velocity is
positive for all swirl levels lower than the first critical limit
and it is negative in the slightly subcritical region. This also
applies for all q vortices considered in this work. There is a
sign change of the radial velocity component at the critical
swirl level, which will lead to an acceleration of the axial
flow in the subcritical region. This agrees with the two-
dimensional analysis of unbounded vortices by Bossel.13 In
his analysis, 
�zVz
r=0 changes sign from negative to positive
as the swirl number is increased through the critical region.

FIG. 4. The critical swirl levels of two q vortices as a function of the vortex
core radius. ��� The maximum swirl angle S�, calculated from Eq. �29�,
V1=0.25; �·� same as previous, except V1=−0.25. �··� The swirl number Sc,
calculated from Eq. �28�, V1=0.25; �--� same as the previous, except
V1=−0.25. �-·-� The integral swirl number S, calculated from Eq. �24�, V1

=0.25; �-� same as previous, except V1=−0.25.

FIG. 5. The critical swirl level Sc,crit as a function of the vortex core radius
for two q vortices. �--� The critical swirl level corresponding to the first
singular point of the quasicylindrical equations; �·� the sufficient level of
swirl for axisymmetric vortex breakdown derived by Rusak et al. �Ref. 10�.
Top: V1 /V0=1. Bottom: V1 /V0=−0.5. The results are identical.

TABLE I. The �nondimensional� critical swirl level �B=�Rc
2 / �V0R� of a

Burgers vortex at various Reynolds numbers. All methods predict nearly the
same, or identical, level of critical swirl.

Reference Re �B

Wang and Rusak �Ref. 9� � 0.8829

Lopez �Ref. 7� 1000 0.9

Present Any 0.8829
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A second critical swirl level is found at Sc=1.6595. When the
second singular point is crossed, the sign of 
�zVz
r=0 will
reverse again.

The radial velocity component at the inlet boundary is
many times ignored in numerical simulations of swirling
flow in a pipe; see, for example, Beran and Culick,6 Brown
and Lopez,5 Lopez,7 and Wang and Rusak.4 However, the
radial velocity component may be significant in the case of
low Reynolds number flows. In fact, Eq. �14� suggests that it
is inversely proportional to the Reynolds number. The con-
stant of proportionality for a Burgers vortex with Rc /R=0.5
and a swirl level of �Rc

2 / �V0R�=0.7305, is 7.1, i.e.,
max�Vr� /V0=7.1/Re. This swirl level corresponds to the
necessary condition for vortex breakdown as derived by
Wang and Rusak10 and shown by Lopez.7 At Re�500 �based
on the pipe radius� the ratio max�Vr� /V0�0.0142, i.e., it is
of the same order of magnitude as assumed in the derivation
of the quasicylindrical approximation �see the Appendix�.
For very low Reynolds numbers, the method derived herein
will not be applicable, at least not for an arbitrary vortex.

IV. CONCLUSIONS

A simple one-dimensional tool for determining the prop-
erties of an arbitrary vortex has been derived. In analogy

with the inviscid theories of vortex breakdown, the present
numerical analysis of quasicylindrical flows suggests that
there is a critical level of swirl that may determine the point
of vortex breakdown, i.e., where the quasicylindrical ap-
proximation fails to give a solution. This point is determined
by the sign change of the smallest eigenvalue of matrix A in
Eq. �21�. It is shown that the critical swirl level obtained
from the quasicylindrical approximation is identical to the
sufficient condition for vortex breakdown as derived by
Wang and Rusak9 and Rusak et al.10 The results also agree
well with the studies of Lopez.7 This may suggest that the
critical swirl level of a swirling flow in a pipe is determined
by the inlet boundary condition itself. In a narrow region
around the critical swirl, the solutions to Eq. �14� are not
consistent with the quasicylindrical assumptions unless the
source term, Eqs. �18� or �19�, vanishes. However, for swirl
numbers higher than critical, the existence of quasicylindri-
cal flow is again possible, at least in a time-averaged sense.

The critical level of swirl is not directly changed by
either viscosity or turbulence. Instead, the effects of viscosity
and turbulence will alter the critical level of swirl only by
their influence on the shape of the mean axial and tangential
velocity profiles. Numerical analysis of the equations that are
derived in the present study allows a study of the properties
of an arbitrary vortex. The major limitation of Eq. �14� is that
only local properties of the vortex can be analyzed. However,
by solving the equation for the radial velocity component of
an arbitrary vortex, the continuity equation determines the
near downstream behavior.

The determination of the radial velocity component for a
steady viscous swirling flow requires knowledge of the axial
and tangential velocity profiles only. In the turbulent or un-
steady case, a proper model for the source term, Eq. �18�,
must be employed. An inverse relationship between the ra-
dial velocity and the Reynolds number is shown. At very low
Reynolds numbers, no near columnar states exist for the vor-
tices examined in this paper.
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APPENDIX

1. Order of magnitude estimation

In “order-of-magnitude” estimates, equations governing
a somewhat general swirling flow can be obtained, analogous
to the derivation of the well-known boundary layer equa-
tions; see, for example, Schlichting.25 Steenbergen26 used the
methodology to derive a set of equations for turbulent swirl-
ing flow, and here we follow a similar approach.

FIG. 6. The radial velocity component of a steady Burgers vortex around
the critical swirl number, Sc,crit, computed from Eq. �14� at Re=1000. The
swirl is varied by increasing coefficient � of Eq. �27�. Top: The results
violate the quasicylindrical assumptions in the near critical region because
100Vr /V0�1. Bottom: In narrow regions around the first and second
critical swirl numbers, the results violate the quasicylindrical assumptions.
The tendency of flow acceleration along the axis of symmetry appears in the
entire subcritical region.
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The time-averaged Navier-Stokes equations for an axi-
symmetric turbulent flow read

Vr�rVr + Vz�zVr −
1

r
V�

2 = −
1

�
�rP +

1

r
�r��r�rVr − rvr�vr��

+ �z���zVr − vr�vz��

−
1

r
��

Vr

r
− v��v��� , �A1�

Vr�rV� + Vz�zV� +
1

r
VrV� =

1

r
�r��r�rV� − rvr�v���

+ �z���zV� − v��vz��

−
1

r
��

V�

r
+ vr�v��� , �A2�

Vr�rVz + Vz�zVz = −
1

�
�zP +

1

r
�r��r�rVz − rvr�vz��

+ �z���zVz − vz�vz�� , �A3�

and the corresponding continuity equation is

1

r
�r�rVr� + �zVz = 0. �A4�

The time-averaged equations follow directly from the instan-
taneous Navier-Stokes equations if the flow is decomposed
as vi=Vi+vi�, where vi� describes a fluctuation from the time-
averaged velocity field, Vi. Gradients of viscosity are al-
lowed in Eqs. �A1�–�A3� in order to facilitate the use of an
eddy-viscosity closure for the unknown terms, vi�v j�. The
equations will look exactly the same for a steady flow, but all
terms including turbulent fluctuations will vanish.

The order of magnitude of each term can be estimated by
introducing a set of scaling parameters, U, ut, L, and R. The
velocity parameter, U, can be regarded as a typical velocity
of the flow field and will scale Vz ,V�� in the Navier-Stokes
equations. Hence, the axial and tangential velocities are con-
sidered to be of the same order of magnitude. Length param-
eters L ,R� will scale z ,r� and, while L must be regarded as
the required length for a significant decay of swirl, R can
simply be considered the radius of the vortex itself. For
swirling flow in a pipe, R can be regarded as the radius of the
pipe. The relations between the length parameters are as-
sumed to be

L

R
� 1. �A5�

An estimate of the gradients will accordingly read

�z �
1

L
, �z�z �

1

L2 , �r �
1

R
, �r�r �

1

R2 . �A6�

By using the approximation of the gradients, Eq. �A6�, the
continuity equation �A4� will provide an estimate of Vr, i.e.,

Vr �
UR

L
. �A7�

Assuming that an appropriate velocity scale for the turbulent
fluctuations is ut�U, the fluctuations can be estimated as
ut�U�R /L, i.e., one order of magnitude smaller than the
mean velocity. This assumption is based on data from direct
numerical simulations of turbulent channel flow by Moser et
al.27 and experimental data from turbulent swirling flow by
Dellenback et al.24 It follows that the magnitude of the terms
in the steady axisymmetric Navier-Stokes equations �after
normalizing by U2 /L� can be estimated as

�A8�

�A9�

�A10�

To a second-order accuracy, all terms of order R /L�1 or
smaller can be neglected. The Reynolds number of the flow
is here defined as

Re = UR/� . �A11�

All terms including the viscosity are negligible when Re
	1000 is chosen for the unsteady or turbulent case. On the
other hand, if we choose to study a steady flow at 100
�Re�1000, all terms including turbulent fluctuations will
vanish and the viscous terms in the tangential and axial mo-
mentum equations �A9� and �A10� will remain, as they will
reach the order of 0.1–1.

The only way for the right-hand side of the radial
momentum equation �A8� to balance the left-hand side is for
the pressure term to be of the order of L /R. This implies that
the pressure must scale in the same way as the dynamic
pressure, i.e.,
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P � �U2, �A12�

and it follows that the pressure term of the axial momentum
equation �A10� must be of the order of 1. Since the two
remaining terms on the right-hand side of the radial momen-
tum equation �A8� are two orders of magnitude smaller than
the balance between the pressure term �−�−1�rP� and the
centrifugal force �−r−1V�

2�, they are negligible.
To a second order of accuracy, the time-averaged

Navier-Stokes equations for turbulent swirling flow in a pipe
read

−
1

r
V�

2 = −
1

�
�rP , �A13�

Vr�rV� + Vz�zV� +
1

r
VrV� = −

1

r
�r�rvr�v��� −

1

r
�vr�v��� ,

�A14�

Vr�rVz + Vz�zVz = −
1

�
�zP −

1

r
�r�rvr�vz�� , �A15�

and, for steady flow �100�Re�1000�, we have

−
1

r
V�

2 = −
1

�
�rP , �A16�

Vr�rV� + Vz�zV� +
1

r
VrV� =

1

r
�r��r�rV�� −

1

r
��

V�

r
� ,

�A17�

Vr�rVz + Vz�zVz = −
1

�
�zP +

1

r
�r��r�rVz� . �A18�

The latter equations are the quasicylindrical approximation
used by Hall12,22 and Bossel.13–15 They constitute the basis
for the estimation of the radial velocity component, if the
two other components are given or measured in a single
cross-sectional plane.

2. Numerical procedure

A finite volume method was chosen to solve Eq. �14�. It
can be rewritten as

�r�f�rVr� + �r��g − �rf�Vr� + �h − �r�g − �rf��Vr = b ,

�A19�

and integrated over small control volumes, �r, to yield a
linear discrete system of equations, i.e.,

Av = s . �A20�

After including the boundary conditions �20� and using a
second-order central difference scheme, we obtain a tridiago-
nal matrix in the form

A = �
ap,1 ae,1 0 ¯

aw,2 ap,2 ae,2 0 ¯

0 aw,3 ap,3 ae,3 0 ¯

� � � � � �

� ,

where the coefficients are

ae,i =
fe

�r
+

�g − �rf�e

2
,

aw,i =
fw

�r
−

�g − �rf�w

2
, �A21�

ap,i = −
fw

�r
−

fe

�r
−

�g − �rf�w

2
+

�g − �rf�e

2

+ �h − �r�g − �rf��p�r .

Subscripts e and w denote values at the east and west faces
of each control volume, respectively, while subscript p de-
notes the value at the center. The discrete expression for the
unknown radial velocity component is

v = �Vr,p,1,Vr,p,2, . . . �T, �A22�

and the integrated source term is simply

s = �bp,1,bp,2, . . . �T�r . �A23�

The equation is solved for all rp= ��r /2 ,3�r /2 , . . . ,R
−�r /2� by Gaussian elimination.

Note that, in order to compute the coefficients of Eq.
�14� in a proper way, the tangential and axial velocity pro-
files including their radial derivatives must be smooth and
continuous.
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