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Background and motivation
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When a turbine is operating at part load a swirling
flow will exit the runner. This gives rise to an
oscillating vortex core that cause vibrations and a
decrease in efficiency.
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of the present work:
- To analyse how sensitive the flow is to modeled

turbulent length and time scales.

of future work:
- To improve numerical simulations of unsteady

swirling flow in draft tubes.
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Unsteady modeling methods - overview
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LES An LES is obviously very good for predicting the
most important unsteady motions of swirling flow. In
LES, the energy containing eddies of the left hand
side of the turbulent kinetic energy spectrum must
be resolved everywhere. As the modeled turbulent
length scales is assumed to be proportional to the
local grid spacing, LES is not an option for the real
application, because the Reynolds number of a real
water turbine flow (

��� � �� �
) is too high.

URANS The (U)RANS turbulence models are tuned to
steady flow, i.e. to predict the effect of all unsteady
motions. This often results in steady solutions.
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Unsteady methods
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VLES In VLES, RANS models are used. However, away
from walls, where is easy (cheap) to resolve large
scale structures, a filter is introduced. The modeled
length and time scales are compared to what
potentially can be resolved in the simulation, and, if
larger, they are filtered. Contrary to LES, the
non-resolved (modeled) parts of the turbulent flow
may have length scales smaller than the local grid
spacing. As compared to an LES, coarser grids can
be used. In this study, we generalize the filtering
procedure of Willems to a LRN

� � 	 turbulence
model.
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Filtering the turbulent quantities
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The filter derived by Willems a can be generalized to
yield


���
 � � �
 ��� 
 � � � �
� � � � ��
��

where the filter function � � � 
 � � 
 �

is defined as

� � � � 
 � � 
 � � ���

aPh.D thesis: Numerische Simulation turbulenter Scherströmungen
mit enem Zwei-Skalen Turbulenzmodell, Rheinish-Westfälischen Tech-
nischen Hochschule, Aachen, Germany, 1996
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Upper limit of the turbulent length scale
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If we choose the upper limit of modeled turbulent
lengthscale as

 "! # $ %�& '( !�) * + $ ,- '. ) / 01 23 2)

a value of * 4 5

is needed because a turbulent
structure cannot be resolved on subgrid scales.



CHALMERS Chalmers University of Technology

Applied Mechanics

Upper limit of the turbulent length scale
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The main motivation for filtering is to limit the
influence of the model on the resolvable mean flow.

6 Because

798�: ; 8�: , the damping influence of the eddy
viscosity on the mean flow will be smaller.

6 Because of the above, the solutions are expected to
be more unsteady.

6 And why model something that has the potential of
being resolved?
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Unsteady RANS/VLES of swirling flow through a diffuser,

EGF H B C BJI C C C .

- Isolate the most important physics.

- Investigate the filtering approach using different values of K on two different
grids ( 1,000,000 and 2,500,000 nodes)

Experimental data courtesy of P. D. Clausen, Australia (available in the
ERCOFTAC database)
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Iime-averaged streamwise velocity
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Evolution of streamwise velocity. The results are obtained by varying the filter

width for the Wilcox (1988) LRN
RTS U turbulence model. [
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results in loss of unsteady data.
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Filter function c d

and eddy-viscosity
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Wall-normal distribution of the filter function (left) and

g h lj (right) obtained from

different filter widths and different grids. [ mn ]: op q

, Grid A. [ r]: o p s

, Grid A.

[

t

]: op q

, Grid B. The data are taken near the exit of the diffuser at

u kv p qJw x xy

. The wall-normal distance to the centerline is approximately

sz{

plus units. Only every second grid point is represented by a marker in the results

from Grid B.
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Frequencies of wall pressure
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Spectral power density of the wall pressure at � �� � �J� � ��

obtained from

variation of the filter width for the Wilcox

�T� � model on grid A. Left to right:

� � ��J� � � � � �� �� � � . The densities are based on 5,000 computational time

steps, which equals 1.25 s of real time. If � � �

, all unsteadiness vanish from the

flow field.
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Frequencies of wall pressure near the outlet
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Spectral power density of the wall pressure at the diffuser exit. Left: Variation of

the filter width on grid A. [ �� ]: �� �
. [� ]: � � �

. Right: Influence of grid

resolution when using the same filter coefficient � � �

. [ � � ]: Grid A. [� ]: Grid B.

The figures are based on 4,000 computational time steps which equals 1 s of real

time.
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Resolved vortices
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Positive iso-surfaces of the normalised second invariant of the strain rate tensor,� �  ¢¡ £ ¤J¥ ¦

. Left: Filtered

§T¨ © model ( ª £ «

), grid A. Torus-shaped vortices are

formed and convected downstream from the exit of the diffuser. Right: Filtered§ ¨ © model ( ª £ «

), grid B. Unsteady vortices are formed at the exit of the

diffuser. They are stretched orthogonally to the flow before being convected

downstream.
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Resolved vortices
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Positive iso-surfaces of the normalised second invariant of the strain rate tensor,¬ ¬®­ ¯ °J± °²

. The results are from a simulation in which the filtered

³T´ µ model

( ¶ ¯ ·

) was used on grid A (left) and grid B (right). On the coarser grid,

torus-shaped vortices that originate from the boundary layer of the diffuser are

formed at the diffuser exit and interact with smaller, counter-rotating torus-shaped

vortices. A vortex shape reminiscent of a double helix is formed in the dump. A

fully turbulent flow is obtained from the simulation on the finer grid.
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- Filtering is in some cases necessary in order to
obtain unsteady solutions.

- The filtering procedure improves the time-averaged
results as long as it is applied with some caution, i.e.
it should not be active in the near wall region.
Additional testcases using wall functions on a
coarser grid showed that, for these cases, the
solutions were not as sensitive to the value of alpha.

- The main frequency of the flow is not sensitive to of
the choice of the filter width.

- A grid refinement introduces overtones, but also a
high density of a lower frequency.
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