Modelling of Whiplash Trauma

Parametric study of rear-end impacts using FEM and CFD

Andreu Oliver González Mourya Vanama

07 June 2010

Outline

- Introduction
- Objective
- Methodology
- Results
- Conclusions
- Future Scope

Introduction

Introduction

Objective

Methodology

Results

Conclusions

Future Scope

Statistics – Whiplash Injuries

High cost to the society

	4 ·		
Introd	luction		

Objective

Methodology

Results

Statistics – Whiplash Injuries

Whiplash Injuries Other injuries

Methodology Results

Whiplash Injury

- Hyper extension of the neck
- Low speed rear-end impacts (16-24 km/h)

Results

Conclusions

Anatomy - Human Vertebral Column

Introduction

Objective Methodology

Results

Injury Mechanisms

Facet Joint Capsule Strain

- Impingement of the capsule
- Strain due to deformation

Atlas

(the first

C1

Injury Mechanisms

Pressure Gradients in Spinal Canal

Injury Criterion

Neck Injury Criteria (NIC)

$$NIC = 0.2 \cdot (T_{1Accel} - Head_{CgAccel}) + \left[\int (T_{1Accel} - Head_{CgAccel}) dt \right]^2$$

Calculated at maximum retraction phase

Retraction

Critical limit of 15 m^2/s^2

Objective

Investigate the effect of different parameters on:

- Facet joint loadings and NIC \rightarrow FE simulations (LS-DYNA)
- Pressure gradients \rightarrow CFD simulations (OpenFOAM)

Introduction

Methodology

Introduction

Objective M

Methodology Results

Procedure

V Results

Parametric Study

Objective Methodology

V Results

Parametric Study

Crash pulses

FE modelling

Introduction

Methodology Objective

Results

CHALMERS

Introduction

Objective Methodology

Results

Geometrical model

Spinal venous plexus modelled with respect to the THUMS

Objective Methodology

V Results

Geometrical model

Different zone heights and top view

Geometrical model The mesh

Objective Methodology

Results

Kinematic model

V Results

CHALMERS

- a) Rigid cylinders
- \rightarrow Extrapolation of the motion in two steps

- b) Deformable cylinders
- \rightarrow Interpolation of the rigid cylinders motion

Lower rigid cylinder

Fluid dynamic properties

- Blood \longrightarrow
- Newtonian
- Laminar flow

Properties	Value	
Density, [kg/m ³]	1050	
Dynamic viscosity, [kg/ms]	0.0035	
Kinematic viscosity, [m ² /s]	3.33·10 ⁻⁶	

Boundary conditions

- Extremes of side pipes and main pipe \rightarrow Inlet/Outlet
- The rest of the model \rightarrow Wall

Solver

• For incompressible fluid based on PISO and SIMPLE

Results

Introduction

Objective

Methodology

Results

Conclusions

Future Scope

Motion

With head restraint

Without head restraint

Introduction

Objective

Methodology

Results

Conclusions

Future Scope

CHALMERS

CHALMERS

Motion verification

LS-DYNA keyword deck by LS-Prepost Time = 0

Position and shape of the blood vessels network Simulation with 5g of acceleration pulse and head restraint

Time: 0.000000 s

Andreu Oliver Gonzalez OpenFOAM 1.5-dev

Methodology

Results

Motion verification

Introduction

Objective

Methodology

Results

Conclusions

F

E

FE simulations

Facet Joint Strains

Acceleration Pulses	Strains (With Head Restraint)							
	C2 - C3	C3 - C4	C4 - C5	C5 - C6	C6 - C7	C7 -T1		
2.5g	0.0342	0.0368	0.1309	0.2062	0.1883	0.2151		
5g	0.2265	0.2037	0.2759	0.2612	0.2076	0.2944		
7.5g	0.2893	0.2633	0.3482	0.3290	0.2843	0.3763		
Strains (Without Head Restraint)								
2.5g	0.1715	0.1712	0.4301	0.7561	0.5989	0.5792		
5g	0.4814	0.3383	0.5117	0.9172	0.6456	0.5791		
7.5g	0.4029	0.3088	0.5132	0.9236	0.6067	0.9326		

Future Scope

Neck Injury Criterion (NIC)

CFD simulations

Convergence

- All time steps should fully converge

Behaviour of Pressure

Introduction

Behaviour of Pressure

Behaviour of Velocity

Introduction

Methodology

Results

Behaviour of Velocity

Objective Methodology

Results

- Ford Taurus Seat Underperforms for 7.5g
- The CFD solver should be based on SIMPLE
 algorithm

Future Scope

- FEM simulations
 - Broader parametric study
 - Physiological factors for male and female
 - Analysis of N_{km}
- CFD simulations
 - Consider blood compressibility and vein flexibility
 - Use geometry without hole

Methodology

- Include flow resistance when exiting the model
- Deformation in radial and axial direction

THANK YOU FOR YOUR ATTENTION Questions?