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Motivation: tandem arc welding

2 cathodes
rd

Figure : Tandem arc welding in operation (ESAB)

» Two heat sources
» High deposition efficiency
> Stability issue

» Extreme operating conditions

> Difficult experimental investigation

> Need for numerical simulations



Aim of this study:

> Develop a 3D simulation tool valid within the frame of tandem arcs.

Methodology used:

» Implementation in the open-source CFD software OpenFOAM

» Well documented welding arc test case:
single arc Tungsten Inert Gas (T1G) welding



Qutline:

> Introduction and motivation

» Problem description and main assumptions
» Mathematical model

> Implementation

» Results and discussions

» Summary and future work



Problem description: Tungsten Inert Gas welding
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Problem description: arc plasma flow

» Newtonian fluid, laminar and incompressible

» Thermally expansible fluid

» Local thermodynamic equilibrium (LTE) , Te=Th.
» Negligible heat dissipation due to viscous effects

» Optically thin media, i.e. no radiative absorption

» Local electrical neutrality
» Steady electromagnetic phenomena

» Negligible magnetic convection compared to the magnetic diffusion
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Governing equations: thermal fluid

» Continuity equation

op
V- (pU)=0
ot (pU)=

Where p = p(T) is the density and J is the velocity.

» Momentum equations

0 2 .
U)+V-(oUU)=V- | ulVU+VU" |-=u(V-U)I |=-V B
6t('0 )+V-(pUU) - { (Vu+vUT) 3/1( )} p+\_JY><_}
\ /)
~N Lorenz Force

Viscous friction for Newtonian fluid

where = 4(T) Isthe effective viscosity

» Enthalpy equation
a(ph)+pUVh V-(aVh)=U.-Vp+j-E - S, + S,

ot Joule Radiation Transportof
heating  loss electron enthalpy



Governing equations: electromagnetism

= Electric potential equation

V-(6Vep)=0

¢ is the electric potential, o = o (T) Iis the electric conductivity

" Magnetic potential equation
VA= ou,Vo

where ([, is permeability of vacuum, A the magnetic potential vector



Governing equations

The magnetic field B can be derived in 2 ways:

v’ 1st: for general 3D case

B=VxA where A magnetic potential vector

v/ ond - only for axisymmetric case

0B,
or

=—1,], where a cylindrical coordinate system (I, ®,X) is used

No need to solve the magnetic potential equation
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buoyantSimpleFoam solver

The buoyantSimpleFoam solver is a standard,
steady-state solver for buoyant, turbulent flow of
compressible fluids used for ventilation and heat

transfer.

The simulation tool developed for arc welding problem

arcFoam solver



Governing equations

» Continuity equation:

buoyantSimpleFOAM solver arcFOAM solver
@,
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Governing equations

» Momentum equations :

buoyantSimpleFOAM solver

V- (pUU)-

v-{ﬂ(vu +VUT)—§y(V°U)I}:—Vp

arcFOAM solver

0

—(pU )+V-(pUU) -
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Governing equations

» Enthalpy equation:

buoyantSimpleFOAM solver
pUV-h—V-(aVh)=U -Vp

K
PC,

where o =

arcFOAM solver

%(ph)+pU V-h—V-(aVh)

=U-Vp+jJ-E — S, + S

r

e
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Governing equations

» Electric potential and magnetic potential equations:

buoyantSimpleFOAM solver
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Validation of the electromagnetic part

» Governing equations

V-(6Vp)=0
VZA=ou,Ve

o =2700 [m'Q]

oc=1-5[m'Q"] =

Figure: Electric rod



Validation of the electromagnetic part

» Boundary conditions
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Validation of the results
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Validation of the results
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Test of boundary conditions

> Casel: A=0

A4

> Case 3:A =0 at Rside

> Case4: A=0
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» Case 2: A=0 at Rtop
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Validation of the results
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Validation of the results
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Conclusion on the rod test cases

> Test with a known solution:

" Analytical solution for magnetic potential vector and magnetic
field are available

" good agreement between the numerical and analytical
solutions

» Tests on various boundary conditions for the magnetic potentials:
" 4 boundary conditions were tested

" boundary condition of case 1 retained for TIG test case
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TIG test case:

Anode surface is considered to be flat
Axi-symmetric geometry

Argon shielding gas

YV V V V

200 A electric current

Cathode

Ceramic Nozzle



TIG test case:

Boundary conditions

» Cathode tip at 20 000K

» Linear temperature distribution on cathode sides

» anode surface temperature distribution set using

experimental measurements
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Results. Velocity vectors without electromagnetism
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Results. Velocity vectors with electromagnetic
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Results. Velocity evaluated along the symmetry
axis for both cases.

180

LWy
160 - '.;-r-l-l-1—|-l-l-4-’*
!

) ~f
# .

\'
140 ot 0B, A
4 Case 2: = —Hy Iy,

120~ s ' \

|
b

U [m/s]

k4 Casel: B=VxA '

Q)
O
|

LY
O
I




Results. Radial distribution of the x-velocity for
both cases evaluated x=1 mm.
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Results. Temperature profile
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From large radius to small radius, the isotherms correspond to 10000,
12000, 14000, 16000, 18000, 20000 and 22000 K.



Conclusion on TIG test case

» Two methods have been tested for computing the magnetic field
" Dbased on the electric potential (2DY2)
" pased on the magnetic potentials (3D)
» Qualitatively, similar behavior was observed:
" Dbell-shaped temperature profile
" high velocity plasma jet
» Quantitative analysis showed a visible disagreement
= 50% difference in the maximum velocity value

= different distributions of the isotherms

» Method based on the electric potential yields better agreement with
the results found in the literature



Conclusion:

» A simulation tool that is valid within the field of tandem arc welding:

" Fully three dimensional tool
" Coupled thermal fluid flow and electromagnetic fields

" |Includes thermodynamic properties suited to a plasma arc

» The electromagnetic part of the simulation tool:

" Tested separately using a problem with a known analytical solution.

" Tests of various boundary conditions for the electromagnetic potential have
been done.

» The complete simulation tool :

" Atungsten inert gas single arc problem (TIG)
" Two methods for computing the magnetic field have been tested



Future work :

> Investigation of the disagreement in the results for two
representations of the magnetic field.

» Supplement for tandem arc welding:
" Implement thermophysical data tables for CO2
" Test case with tilted cathode geometry

» Implement heat and electromagnetic equations inside the electrodes

» Introduce the dynamics of the droplet and welding pool
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