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Design and Validation of a
Scale-Adaptive Filtering
Technique for LRN Turbulence
Modeling of Unsteady Flow
An adaptive low-pass filtering procedure for the modeled turbulent length and time scales
is derived and applied to Wilcox’ original low reynolds number k-� turbulence model. It
is shown that the method is suitable for complex industrial unsteady flows in cases where
full large eddy simulations (LESs) are unfeasible. During the simulation, the modeled
length and time scales are compared to what can potentially be resolved by the compu-
tational grid and time step. If the modeled scales are larger than the resolvable scales,
the resolvable scales will replace the modeled scales in the formulation of the eddy
viscosity. The filtered k-� model is implemented in an in-house computational fluid dy-
namics (CFD) code, and numerical simulations have been made of strongly swirling flow
through a sudden expansion. The new model surpasses the original model in predicting
unsteady effects and producing accurate time-averaged results. It is shown to be superior
to the wall-adpating local eddy-viscosity (WALE) model on the computational grids con-
sidered here, since the turbulence may not be sufficiently resolved for an accurate LES.
Because of the adaptive formulation, the filtered k-� model has the potential to be
successfully used in any engineering case where an LES is unfeasible and a Reynolds
(ensemble) averaged Navier–Stokes simulation is insufficient.
�DOI: 10.1115/1.2911685�
Introduction
The standard two-equation eddy viscosity turbulence models

re designed to predict the influence of all turbulent scales. In
oing this, they have a strong damping influence on any resolved
urbulence or unsteady structures in the flow field. This is desire-
ble in steady calculations, in which the influence of any unsteadi-
ess on the mean flow field must, by definition, be modeled. How-
ver, when unsteady information about the flow field is necessary,
he turbulence model must be able to distinguish between resolv-
ble and nonresolvable scales. In this paper, it will be shown that
his ability can be achieved by applying a low-pass filter to the

odeled turbulent length and time scales.
There are many interesting strategies for unsteady turbulence
odeling. Spalart �1� gave an overview and discussion about the

dvantages and limitations of many of these. As the Reynolds
umbers of most engineering flows are usually very large, large
ddy simulation �LES� is very seldom an option for a full scale
ndustrial simulation. On the other hand, traditional statistical tur-
ulence models developed for the Reynolds �ensemble� averaged
avier–Stokes �RANS� equations do not distinguish between un-

teadiness and turbulence. This problem partly arises from the fact
hat most industrial closure models for the RANS equations are
uned for steady flow, in which the model must predict the influ-
nce of all turbulent time scales and, subsequently, all turbulent
ength scales. In a time-resolved computation, there is a potential
n resolving large turbulent time scales. In addition, the grid is
sually capable of resolving the largest turbulent length scales, at
east outside boundary layers. In a numerical simulation of an
nsteady internal �wall-bounded� flow, in which the boundary
ayer is not fully resolved, models that are tuned to steady flow
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usually behave very well in the near-wall region. Statistical turbu-
lence models are generally quite accurate in their prediction of
wall shear stress. However, there is also a conceptual aspect of the
aforementioned problem with statistical turbulence models. In
general, there is no way to mathematically distinguish unsteadi-
ness from turbulence. Although the uniqueness of a solution to the
three-dimensional Navier–Stokes equations has yet to be math-
ematically proven �2�, it is generally accepted to believe that the
solution is completely determined by the initial and boundary con-
ditions. If this is the case, there are no such things as randomness
or independent events in the flow. The lack of coherence we ob-
serve in a turbulent flow field only gives us a hint of our limited
perception. Hence, the concept of ensemble averaging is question-
able in unsteady computational fluid dynamics �CFD�, simply be-
cause one expects to get the same solution repeatedly if one uses
the same boundary conditions and the same computer. The en-
semble average of an infinite number of direct numerical simula-
tions would thus still be an unsteady and turbulent flow field. The
filtering approach of LES is physically more appealing, compared
to the concept of ensemble averaging. The limitations of LES are
related to a large extent to the simple turbulence models that are
used. These models are calibrated to give accurate results if most
energy-containing eddies are resolved everywhere, which means
that the computational grid has to be extremely fine near walls.
Usually, they do not provide any information about how turbu-
lence is convected through the domain. This information is as-
sumed to be carried by the resolved flow field.

There is obviously a need for a turbulence model that can dis-
tinguish between what can be resolved and what is not, at the
same time as it produces an accurate estimate of the wall shear
stress. One method to accomplish this is to introduce a filtering
procedure that limits the influence of the statistical turbulence
model on the unsteady mean flow field. This is sometimes called
very large eddy simulation �VLES� and may be viewed as a com-
bination of the LES and RANS approaches to turbulence model-

ing. Other common acronyms for the combination of LES and
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ANS methods are detached eddy simulation �DES�, limited nu-
erical scales �LNSs�, extra large eddy simulation �XLES�, flow

imulation methodology �FSM�, or simply hybrid LES-RANS. In
full LES, the Navier–Stokes equations are filtered in space in

rder to avoid the need of computing the smallest turbulent scales.
he equations are usually averaged �filtered� over the control vol-
mes of the grid, and the unresolved scales are regarded as sub-
rid turbulence. In contrast to LES, where the mean length scales
f all unresolved turbulence are assumed proportional to the local
rid spacing, VLES is usually based on statistical turbulence mod-
ls where the turbulent length scale is calculated and will depend
n the flow field. Consequently, the filtering procedure can be
ormulated in a more dynamic and general way compared to the
tatic spatial filtering of a LES. It can be activated locally in the
pace-time domain depending on the ratio between an estimation
f the resolved turbulent length scales and the magnitude of the
odeled turbulent length scales. There are many ways of formu-

ating this dynamical filter. Speziale �3,4� and Fasel et al. �5�
rbitrarily defined an exponential filter function, f�� ,Lt�= �1
exp��� /Lt��n, that depends on a predefined length scale, � �pre-

umably proportional to the local grid spacing�, and a modeled
urbulent length scale, Lt, where subscript t denotes turbulence.
he exponential function will allow a smooth transition between

he RANS and LES modes of the simulation. The function is
ultiplied to the modeled Reynolds stress tensor before solving

he averaged momentum equations in order to limit the effect of
he turbulence model on the mean flow field in regions where
arts of the tensor can be resolved. As noted by Fasel et al. �5�,
ther forms of the filter function that are more universally appli-
able may be defined. Another approach to filtering is to limit the
ength scales in the transport equations for turbulent quantities, as
one by Spalart et al. �6�, Menter et al. �7,8�, Kok et al. �9�, and
enter and Egerov �10�. Spalart et al. �6� defined a maximum

ength scale, L̃=min�Lwall ,CDES��, to be used in the denominator
f the destruction term of the Spalart–Allmaras transport equation
or eddy viscosity. In this formulation, Lwall is the normal distance
o the wall and � is again proportional to the local grid spacing.

DES is a model coefficient that must be calibrated. When Lwall
CDES�, the simulation will run in RANS mode. Away from
alls, the destruction term in the equation for the eddy viscosity
ill be significantly larger than in the original formulation, and

he simulation will be forced to run in a LES mode. This approach
s aptly called DES. Menter et al. �8� used a similar filtering pro-
edure for the shear stress transport �SST� turbulence model.
owever, as the SST model, is a two-equation model from which
modeled turbulent length scale can be obtained, the filter is

ormulated in a more dynamic way by comparing the modeled
cales of the simulation to the predefined length scale, �. This
pproach is taken a step further by Menter et al. �7� and Menter
nd Egerov �10�, where instead the von Karman length scale is
omputed from the resolved velocity field and replaces the pre-
efined length scale. In the latter case, all information from both
he resolved and unresolved turbulent length scales is obtained
rom either the resolved velocity field or the turbulence model.
nother interesting hybrid LES-RANS method was recently pro-
osed by Templeton et al. �11�, in which precomputed lookup
ables for the RANS eddy viscosity are used to define wall func-
ions for coarse grid LES. The eddy viscosity that is active in the
olution of the LES equations in the near-wall region is here taken
s the difference between the RANS eddy viscosity and an aver-
ged resolved eddy viscosity. However, because the resolved eddy
iscosity must be averaged, the method is not entirely straightfor-
ard if the flow lacks homogeneous directions.
The filtering approach in this work may in some sense be con-

idered converse to the filtering approach that is used in LES.
nstead of solving the filtered equations to avoid the computation
f the small scales, the modeled length and time scales are filtered
n order to supress their negative influence on unsteady flow field.

his approach was initially developed by Willems �12� and is
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similar to the approach of Speziale �3,4� and Fasel et al. �5�,
because the filter is applied directly to the Reynolds stress tensor
and the turbulence model is left unchanged. However, in this
work, the functional form of the filter is derived from the relation
between filtered and nonfiltered turbulent length and time scales.
The modeled length and time scales are being compared to what
can potentially be resolved by the computational grid and time
step. If the modeled scales are larger than the resolvable scales,
the resolvable scales will replace the modeled scales in the formu-
lation of the eddy viscosity. To distinguish between large- and
small-scale turbulences, the upper limit of the length scales of
nonresolved turbulence is made proportional to the local grid
spacing or the product of the local velocity magnitude and the
time step of the simulation. The latter constraint will only be
active for large Courant, Friedrich, and Levy �CFL� numbers.
There is no lower limit because the mean nonresolved turbulent
length scale may be much smaller than the local grid spacing,
especially close to walls. This will allow a much coarser grid
resolution than in LES. The filter will allow large-scale unsteady
structures in the flow, and the model will still produce a wall shear
stress comparable to what is produced by a standard RANS
model. In this work, the filtering technique is applied to the Wil-
cox’ �13� k-� model, and the results are validated with experimen-
tal data �Dellenback et al. �14�� and compared to LES.

2 Filtered Navier–Stokes Equations
There are various filtering approaches for unsteady CFD. They

all give rise to new unknowns in the Navier–Stokes equations that
must be modeled. The main issue in eddy viscosity models is to
determine which length and time scales should be used. It is im-
portant to realize that the local value of modeled scales is the local
mean value of all nonresolved turbulent scales, and the distribu-
tion and magnitude of the eddy viscosity are the only parameters
that separate a LES from an unsteady RANS simulation. The local
mean value may be defined either as an ensemble average
�RANS� or a local volume average �LES�. The governing equa-
tions will nevertheless be identical in their form. However, for
conceptual reasons �see Sec. 1�, the local volume average is pref-
erable. John �2� made a review of several volume-averaging �fil-
tering� techniques of the Navier–Stokes equations, including esti-
mates of the errors that are associated with the new formulation.
The volume-averaged Navier–Stokes equations can be expressed
as

�0ūi + ūj� jūi = −
1

�
�ip̄ + �� j� jūi − � jRij �1�

where ūj is the resolved �volume-averaged� velocity vector and p̄
is the resolved pressure. The Reynolds stress tensor, R=−ūiūj
+uiuj, can be expanded into

Rij = − ūiūj + ūiūj + ūiuj� + ui�ūj + ui�uj� �2�

where Reynolds decomposition, ui= ūi+ui�, has been used. Here,
ui is the exact solution and ui� denotes a fluctuation from the
resolved velocity vector. The turbulence model that will replace
the Reynolds stress tensor, Rij, in a numerical simulation must
predict a nonresolved turbulent length scale, �t, that is smaller or
equal to the averaging length scale, or filter width, � f, which is
usually chosen to be proportional to the local grid spacing. Zero-
and one-equation subgrid models always use a length scale, �t,
that is proportional to the local grid spacing. However, the length
scale, �t, of the unknown, ui��x , t�, does not generally correspond
to the length scales of the grid. In near-wall regions, �t��, unless
the local grid spacing is extremely fine, i.e., near the resolution
required for a direct numerical simulation �DNS�. Obviously,
there is a need for a closure model that can predict length scales

that are smaller than the grid spacing, if necessary.
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Turbulence Modeling
The k-� model of Wilcox �13�, with the addition of the realiz-

bility constraint derived by Durbin �15�, has been used as the
asic turbulence model in this work. The main advantage of this
odel over, e.g., k-� models, is that it can be integrated all the
ay to the wall without damping or correction functions. The
odel is a two-equation eddy viscosity model, and it is coupled to

he averaged Navier–Stokes equations by the Boussinesq assump-
ion,

− Rij = 2�tSij − 2
3k	ij �3�

here Sij = �� jUi+�iUj� /2 and k=ui�ui� /2 is the turbulent kinetic
nergy. The Boussinesq assumption introduces the concept of a
urbulent eddy viscosity, �t. It suggests that the influence of tur-
ulence on the mean flow is dominated by a mixing process. The
ddy viscosity has the same dimension as the kinematic viscosity
f the fluid and is assumed to be proportional to a function of the
ocal turbulent length and time scales, i.e.,

�t � Lt
2/Tt �4�

The turbulent length and time scales are unknown local prop-
rties of the turbulent flow and must be modeled. If transport
quations for, e.g., the modeled turbulent kinetic energy, k, and
issipation rate, �, or specific dissipation rate, �, are solved, a
easure of the turbulent length and time scales can be obtained

rom these variables by dimensional analysis, see Sec. 3.1.

3.1 Consistent Derivation of the Filter Function. The filter-
ng approach of Willems �12� has earlier been successfully em-
loyed by Helmrich et al. �16� and Ruprecht et al. �17�. This filter
s applied to the turbulence model in order to allow the existence
f resolvable turbulent scales in the solution of the flow field.
illems derived the form of the filter function from the two-point

orrelation tensor and applied it to the k-� model. In the present
aper, the same form of the filter function is derived by simple
imensional analysis. It is also shown that the novel generaliza-
ion of the approach to other eddy viscosity models than the k-�

odel requires that the filter is applied to the turbulent length and
ime scales and not only to the turbulent kinetic energy, as in

illems’ work.
The local turbulent length and time scales may be obtained

rom a dimensional analysis of k and �. It follows that

Lt � k1/2/� �5�

Tt � 1/� �6�

he filter width, � f, is the upper limit of the modeled turbulent
ength scale. This corresponds exactly to the lower limit of the
esolved turbulent length scale and will in this work be a function
f time step 	t and local cell volume �. Hence, the largest length
cale that needs to be a part of the eddy viscosity formulation is

�t = min�Lt,� f� �7�
here

� f = 
 max��U�	t,�1/3� �8�

oefficient 
�1 takes into account the need for a limited number
f cells to actually resolve a turbulent structure. In the study by
yllenram and Nilsson �18�, a value of 
�3 was necessary to
btain accurate results. The product �U�	t, in Eq. �8�, is a measure
f the shortest distance, over which a fluid particle can be traced
n an unsteady computation, for which reason the computational
ime step may also set a lower limit to the resolved length scale.
his temporal constraint is especially important in complex geom-
tries, as discusseed by Batten et al. �19�, who also noted that a
teady RANS calculation would correspond to an infinite time
tep, for which �t=Lt, always. The upper limit on the modeled
ength and time scales can also be defined in terms of the filtered

nonresolved� variables, i.e.,

ournal of Fluids Engineering
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�t � k̂1/2/�̂ �9�

tt � 1/�̂ �10�

The specific dissipation rate, �, is related to the dissipation rate, �,
by the relation

� =
�

�*k
�11�

where �*=0.09. The filtered specific dissipation rate can be writ-
ten as

�̂ =
�̂

�*k̂
�12�

The dissipation rate, �, is never resolved in anything cheaper than
a DNS, because it takes action at the Kolmogorov scale, the very
smallest turbulent length scale. Hence,

�̂ = � �13�
and it follows from Eqs. �11�–�13�, that

�̂ =
�k

k̂
�14�

It is straightforward to show that Eqs. �5�, �9�, and �14� yield an
expression for the filtered turbulent kinetic energy according to

k̂ = g��t,Lt�k �15�
where the equality follows from the assumption that the constants
of proportionality in Eqs. �5� and �9� are equal. The filter function,
g��t ,Lt�, is defined as

g 	 ��t/Lt�2/3 �16�

in which �t is computed from Eq. �7� and the modeled turbulent
length scale, Lt, is taken as Lt=
k / ��*��. In regions where tur-
bulence cannot be resolved, i.e., where Lt�� f in Eq. �7�, the filter

function, Eq. �16�, is unity and k̂=k in Eq. �15�. However, there is
no need to compute the filtered turbulent variables explicitly. A
filtered eddy viscosity can be constructed directly from the non-
resolvable turbulent length and time scales, i.e.,

�̂t � �t
2/tt �17�

It follows from Eqs. �9�, �10�, �14�, and �15� that

�̂t = g2 k

�
�18�

where the equality must hold in order to recover the original �non-
filtered� eddy viscosity formulation, �t=k /�, in regions where the
filter is inactive. Note that the only modification to the original
eddy viscosity formulation is the factor g2, i.e., the square of the
filter function. The filter function can be derived and applied using
any two-equation turbulence model. It will always obtain the same
functional form as in Eq. �16� and it will always end up as squared
when used in the formulation of the eddy viscosity.

There will obviously be an explicit grid dependence in the eddy
viscosity formulation, Eq. �18�, when � f �Lt in Eq. �7�. However,
the derivative of g2 with respect to the filter width,

��g2�
�� f

=
4

3
�� f

Lt
�1/3

�19�

will vanish in the fine grid limit, � f →0, because


 ��g2�
�� f



�f→0

→ 0 �20�

This shows that the eddy viscosity asymptotically approaches a
constant in the fine grid limit, as long as the model equations for

k and � do not explicitly depend on the local grid spacing them-
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elves. Actually, as the eddy viscosity is limited by the filter, there
ill also be less production of modeled turbulent kinetic energy, k,

nd specific dissipation rate, �. This is natural, because the re-
olved turbulent kinetic energy and specific dissipation should in-
rease. The importance of the novel approach of applying the filter
o the length and time scales of the eddy viscosity formulation
nstead of only to the turbulent kinetic energy, as in the work of

illems �12�, is now obvious. If the filter was applied only to the
urbulent kinetic energy, the square of the filter function g��t ,Lt�
n Eq. �18� would vanish and the filter would not have the proper
ehavior in the fine grid limit according to Eq. �20�.

3.1.1 Near-Wall Asymptotics. There could be an obvious risk
n applying a filter width that is too small in boundary layers
ecause, if � f �Lt in Eq. �7�, the eddy viscosity can be written as

�̂t = �*� f
4/3��*�k�1/3 �21�

his expression does not have the proper asymptotical behavior in
he near-wall limit unless the grid is abnormally stretched. In the
imit n→0, where n is the wall-normal coordinate, �̂t�n1/3, while

proper functional behavior of the eddy viscosity would be �t
n3, at least in a time-averaged sense �20�. However, the purpose

f the filtering approach is to avoid the need of an extremely fine
ear-wall resolution and, indeed, the wall boundary condition for
he turbulent kinetic energy, kwall=0, is expected to limit the mod-
led turbulent length scale and thereby inactivate the filter before
he wall limit is reached. Nevertheless, too small a filter width �
�
ay, as shown by Gyllenram and Nilsson �18�, cause the filter to

e activated all the way to the wall and the results to deteriorate.
owever, on a computational grid with a wall y+�2, the modeled

urbulent length and time scales obtained from the k-� model are
mall enough to inactivate the filter near the wall using 
=3 in
q. �8�, as will be shown in Sec. 5. In other words, the filter
hould not be active close to walls. Instead, the underlaying
ANS model should take care of the near-wall modeling.

Test Case and Computational Setup
A swirling flow through a sudden expansion has been investi-

ated, see Fig. 1. Measurements courtesy of Dellenback et al. �14�
ave been used to validate the results. The swirl number, defined
s

S =

�
0

R

V
Vzr
2dr

R�
0

R

Vz
2rdr

�22�

s approximately 0.6, based on the inlet radius, R=D /2. V
 and Vz
enote the time-averaged tangential and axial velocities, respec-
ively. The Reynolds number, based on the inlet diameter, D, and
ulk velocity, Ub, is 30,000. The case has earlier been studied

� � � � � � �

� �

�

� � �

�

�

�

ig. 1 Geometry of the test case. The inlet swirl is clockwise
n the z direction.
umerically by Schlüter et al. �21� and Gyllenram et al. �22�
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4.1 Code. The CALC-PMB �23� CFD software was used to
simulate the flow. The code was developed at the Division of
Fluid Dynamics, Department of Applied Mechanics, at Chalmers
University of Technology, Göteborg, and is based on the finite
volume method. The pressure-velocity coupling is solved using
the SIMPLEC algorithm developed by Van Doormaal and Raithby
�24�. Conformal block-structured, boundary-fitted coordinates are
used, and two ghost cells are employed at the block interfaces to
enable different first- and second-order discretization schemes.
The code is parallelized by domain decomposition. Message pass-
ing interface �MPI� is used for the exchange of information be-
tween the different processes/blocks. To avoid spatial oscillations
of the pressure field over the collocated �nonstaggered� grid ar-
rangement, Rhie and Chow interpolation is applied for convec-
tions through the cell faces. For the discretized and linearized
system of equations, TDMA �also known as Thomas’ algorithm�
and biconjugated gradient solvers are implemented. For this work,
a parallelized version of TDMA was used.

4.2 Grids and Numerics. Two different block-structured
grids were used in this work. The sizes of the grids were
1,711,424 and 3,356,640 nodes. The two grids will in the follow-
ing be referred to as the coarse and fine grids, respectively. Each
grid consisted of 15 blocks. The block structure is shown in Fig. 2.
Each block of the coarse grid consisted of Ni�Nj �Nk=44�68
�44 nodes except the four wall-bounded blocks of the inlet pipe
section, which sum up to 44�68�22 nodes. The corresponding
block sizes of the fine grid are 56�81�51 and 56�81�31. For
the wall-bounded blocks, Ni, Nj, and Nk refer to the tangential,
axial, and radial directions, respectively. The first cell centers nor-
mal to the wall were placed at y+�2 in both grids. Consequently,
the coarse grid has larger grid stretching in the wall-normal direc-
tion, especially in the inlet pipe section and in the near-wall region
just downstream of the sudden expansion. The fine grid has an
axial resolution of �z+�50 and a tangential resolution of �
+

�20. The axial and tangential resolutions of the coarse grid are
z+�60 and 
+�25, respectively. The approximate values are es-
timated from a snapshot of the simulation. Both grids are consid-
ered fine enough for RANS simulations. The resolution of the fine
grid is considered merely adequate for LES. All simulations were
made using a second-order central differencing scheme for the
momentum and pressure correction equations. The transport equa-
tions for k and � were discretized using the van Leer �25� scheme.
The second-order implicit Crank–Nicholson time integration
scheme was used. For time-accurate numerical results, a CFL
number of CFL�1 is preferable. With this requirement, nondi-
mensional time steps, 	t*=	t�Ub /D, of 0.0027 and 0.0036 were
sufficient for the fine and coarse grids, respectively, yielding a
maximum CFL number of approximately 0.8. Thanks to the larger
time step and the smaller grid size, a simulation on the coarse grid
is more than twice as fast as a simulation on the fine grid for a
specific simulated real-time interval. Time series of the wall pres-

Fig. 2 Block structure. Only 10 out of 15 blocks are shown.
sure at several locations were sampled during the simulations. The
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olutions were considered as converged when the pressure levels
ere fluctuating around a steady mean value �i.e., when the flow
as fully developed� and all normalized residuals were of the
rder of 10−3 in each time step. The residuals of the momentum
quation were normalized by the global convection and the re-
iduals of the continuity equation were normalized by the mass
ow rate. The filtered version of the k-� model requires slightly
ore CPU time than the original formulation. Nevertheless, it is

xpected to be computationally cheaper than most other two-
quation models because of the simplicity of the original formu-
ation. The additional cost of computing the function g, Eq. �16�,
an be compared to that of, e.g., adding a damping function to the
ddy viscosity. Furthermore, the convergence rate of the filtered
odel was much better than the convergence rate of the original
odel.

4.3 Boundary Conditions and Turbulence Model
onstants. Spline curves based on the measured data of Dellen-
ack et al. �14� were used as the inlet boundary condition for the
ean velocities. The experimental data taken along two counter-

irected radial lines were averaged to obtain a fully symmetric
nflow condition. A boundary layer based on the log-law was
dded between the �radially� outermost measuring point and the
all. Earlier numerical investigations by Schlüter et al. �21�

howed that the resolved turbulence level of the inlet boundary
onditions has a great effect on the mean velocity profiles for low
wirl levels. However, the swirl level in the present study is high
nough for a fast transition to turbulence. Hence, to add unsteadi-
ess at the steady inlet boundary condition is superfluous. A con-
tant inlet turbulent intensity of 10% was chosen, and the inlet
oundary condition for � was approximated by �=
k / ��*R�,
here R is the radius of the inlet and a crude estimate of the

urbulent length scale. The assumption of a turbulent intensity of
0% was based on the levels of axial and tangential Reynolds
ormal stresses, as measured by Dellenback et al. �14�. The tur-
ulent intensity of 10% was estimated from measurements by
ellenback et al. The simulations using the filtered k-� model are
ot expected to be sensible to the values of turbulent quantities at
he inlet boundary. If the imposed length scale is too large, the
lter will activate and automatically decrease the production of

urbulence via the eddy viscosity, according to Eq. �7�. However,
his matter has not yet been studied in detail. At the outlet, a
omogeneous Neumann boundary condition was used for all vari-
bles. A no-slip condition was used for the velocity at the walls,
here the turbulent kinetic energy also vanishes. The wall bound-

ry condition for the specific dissipation was set at the first inte-
ior node as �=6� / ��*y2�, see Ref. �20�.

Two turbulence models have been considered, i.e., the k-�
odel by Wilcox �13� and the wall-adapting local eddy-viscosity

WALE� zero-equation subgrid model by Nicoud and Ducros �26�.
he filtering technique derived in Sec. 3.1 was applied only to the

ormer model. A filter width of 
=3 was chosen for the k-�
odel, and Cw=0.5 for the WALE model.

Results
The purposes of the novel filtering technique are to allow large-

cale unsteady structures in the resolved flow field and to give
ccurate time-averaged results on a typical RANS grid. In order to
ee what results can be obtained from a LES on the same grid, a
imulation using the WALE subgrid turbulence model, derived by
icoud and Ducros �26�, was also made. The WALE model is
nown to perform very well in complex flows as long as all
nergy-containing turbulent structures are sufficiently resolved. As
ill be shown in Sec. 5.2, the grid resolution is, as expected, not
ne enough to actually justify the use of the WALE subgrid
odel. Especially the wall-normal resolution must be higher.
The main features of the flow are visualized and discussed in

ec. 5.1. The time-averaged results of the computations are com-

ared to experiments done by Dellenback et al. �14� in Sec. 5.2.
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The filter function and the eddy viscosity are examined in Sec.
5.2.2, while the resolved and modeled turbulent kinetic energies
are discussed in Sec. 5.2.3. The unsteadiness of the flow is ana-
lyzed in Sec. 5.3.

5.1 Visualization of Resolved Structures. A snapshot of the
flow is presented in Fig. 3. The vortical structures are visualized
by isosurfaces of the nondimensional second invariant of the ve-
locity gradient tensor and pressure. The second invariant of the
velocity gradient tensor is normalized by the factor �R /Ub�2 and
will in the following be referred to as II

� jUi

* . It can be physically

interpreted as the source term for the pressure equation, see Ref.
�27� for further details. A local maximum of II

� jUi

* is located inside

each small volume that is bounded by an isosurface, and corre-
sponds to local pressure minimum. The vortex that is defined at
the inlet breaks down near the sudden expansion. A helicoidal
vortex core is formed. The vortex core rotates around the geo-
metrical axis of symmetry with a well defined frequency. Other
counter-rotating vortex structures are formed in the near-wall re-
circulation zone just downstream of the expansion. These struc-
tures give rise to other frequencies. There is also a recirculation
zone along the axis of symmetry, i.e., the flow on the inside of the
helicoidal structure is reversed.

Fig. 3 Snapshot of the precessing vortex core visualized by
isosurfaces of the nondimensional second invariant of the ve-
locity gradient, II

�jUi
* =480 „top… and static pressure „bottom….

Both methods predict the same location and shape of the vor-
tex core. The results are obtained from a simulation using the
filtered k-� model on the fine grid. Only a part of the computa-
tional domain is shown. The helicoidal vortex structure is
formed immediately after the expansion and propagates up-
stream almost all the way up to the inlet. It dominates the flow
until a point approximately one and a half diameters down-
stream of where it is formed. At this point, the flow returns to a
quasisymmetric mode.
A comparison of the results obtained from using different grid
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Downlo
izes and turbulence models is presented in Fig. 4, where instan-
aneous isosurfaces of II

� jUi

* =120 are shown in Fig. 4. Large torus-

haped vortices are formed near the sudden expansion. The main
ortex core is very well defined near the axis of symmetry in the
pstream part of the domain. The simulation using the filtered k-�
odel on the fine grid resolves a larger part of the small-scale

urbulence, as compared with the result of using the same model
n the coarse grid, as expected. The WALE model is less dissipa-
ive than the filtered k-� model, resulting in an even higher den-
ity of small-scale turbulence.

5.2 Velocity Profiles and Time-Averaged Results. The time-
veraged results are based on 1480 samples, which correspond to
nondimensional sampling time of t

S
*=40, as there were ten time

teps between each sample. This is approximately equivalent to 20
ortex core revolutions or four mean flow residence times. The
xisymmetry of the computional domain also allows circumferen-
ial averaging, and thus the time-averaged profiles at four circum-
erential locations were averaged once again. This yields a virtual
ampling time of t

S
*=160. The evolutions of the axial and tangen-

ial velocity distributions and the swirl angle �arctan�V
 /Vz�� near
he sudden expansion are shown in Fig. 5. The experimental data
hown are for each z /D the averages of measurements taken along
wo counterdirected radial lines.

The agreement between the results obtained from using the fil-
ered k-� model and the experimental data is excellent. The

ALE model also performs quite well. The main differences in
he prediction of the axial velocity profiles are found in the most

ig. 4 Isosurfaces of the normalized second invariant of the
elocity gradient tensor, II

�jUi
* =120, using the filtered k-� model

nd the WALE model. Top: filtered k-�, coarse grid. Center:
ltered k-�, fine grid. Bottom: WALE model, fine grid. The iso-
urfaces are shaded by the static pressure. A darker shade de-
otes a lower pressure. As expected, the fine grid resolves a

arger part of very small scale turbulence. However, the stron-
est and largest vortices are well resolved on any of these
rids. An even higher density of small-scale turbulence is ob-
ained using the WALE model.
nsteady region, where the vortex breaks down. The swirl velocity
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far downstream is overestimated by the simulation using the
WALE model. On the other hand, the grid resolution may not be
at a level that fully justifies the use of this model.

As the length scale of the local grid spacing appears explicitly
in the filter function, Eq. �16�, it is expected that the instantaneous
solution is influenced by a grid refinement. However, the time-
averaged solutions should ideally not be sensitive to the grid re-
finement. Figure 5 suggests that the grid dependence seems not to
be a major issue. The results obtained when the filtered k-� model
is used on the coarse grid actually agree better with experimental
data than the results obtained from using the WALE model on the
fine grid. No study of the performance of the WALE model on the
coarse grid has been carried out, simply because it is not appli-
cable. It should be borne in mind that the filtered k-� simulations
on the coarse grid for a specific real-time interval are completed in
less than half of the time, as compared to the simulations on the
fine grid. The simulations using the WALE model on the fine grid
are approximately 30–50% faster than the filtered k-� approach
on the same grid, because fewer equations are being solved.

The original �nonfiltered� k-� model fails to predict reasonable
results. The simulation converges to a steady flow even if an un-
steady velocity field obtained from using the filtered k-� model is
used as an initial �starting� condition. Nevertheless, the axial ve-
locity profiles show good agreement with the other simulations
near the wall, and the tangential velocity profiles near the suddden
expansion, Fig. 5 �second row, to the left�, show very good agree-
ment at r /D�0.5. The results deteriorate closer to the centerline.
Figure 5 �second row, to the right� shows that the rate of decay of
swirl is far too high.

It can be shown that the original k-� model is insensitive to
rotation, see, e.g., Ref. �20�. Furthermore, the turbulence model
tends to damp out unsteady fluctuations during the simulation. It
is clear that the filtering procedure of the turbulent length and time
scales removes these inherent shortcomings of the turbulence
model, while retaining its good near-wall characteristics.

5.2.1 Reattachment Length. The flow enters the wider pipe
section as a swirling jet. The flow separates from the wall at the
sudden expansion and a large region of entraining and recirculat-
ing flows is formed near the wall of the wider pipe section. The
mean axial flow reattaches to the wall at some distance a few
�inlet� diameters downstream of the sudden expansion. This dis-
tance is called the reattachment length.

Dellenback et al. �14� measured the reattachment length of the
flow and obtained a value of zr /h=2.5, where h is the step size,
i.e., the difference between the outlet and inlet radii. The average
reattachment length obtained from using the filtered k-� model on
the fine grid is zr /h=2.5, in full agreement with the experimental
result. A reattachment length of approximately xr /h=3.3 was ob-
tained when using the WALE model. The reattachment length
obtained when using the filtered k-� model on the coarse grid is
almost 15% larger compared to the simulation on the fine grid,
i.e., zr /h�2.9. The longer reattachment length is directly con-
nected to the slight overshoot of the axial velocity profile at
z /D=1 and r /D�0.5. This can probably be explained in part by
the larger grid stretching that was applied in the design of the
coarse grid. Nevertheless, as can be seen in Fig. 5, the velocity
profiles agree quite well with the experimental data.

5.2.2 Eddy Viscosity and the Filter Function. The time-
averaged square of the filter function, Eq. �16�, and the filtered
eddy viscosity is shown in Fig. 6. The filter function is always
inactive near the wall region and sometimes in the strong shear
layer near the sudden expansion. In these regions, the modeled
turbulent length scales are small enough to pass through the filter.
The small turbulent length scales of the shear layer partly origi-
nate from the wall boundary layer of the upstream pipe section.
The distribution of eddy viscosity is directly influenced by the
shape of the filter function. Figure 6 �left� shows that the filter

function behaves approximately the same on both grids. The rea-
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Downlo
ons for this are that less turbulence is modeled on the fine grid
nd that the denominator of Eq. �16� has decreased in proportion
o the nominator, i.e., the filter width. The eddy viscosity, shown
n Fig. 6 �to the right�, is very dependent on the grid resolution,
owever. This is actually the advantage of the present approach.
hen the grid is not fine enough to resolve the turbulent struc-

ures, their effect must instead be present through the modeled
art of the turbulence. The maximum value of the nondimensional
ltered eddy viscosity that is shown in Fig. 6 �to the right� is �̂

t
*

�̂t /�=75. It is found at z /D=0.5 using the coarse grid. At that
ocation, the fine grid gives a maximum value of �̂

t
*=59.

5.2.3 Turbulent Kinetic Energy. Figure 7 shows the distribu-
ions of the modeled and the �time-averaged� resolved turbulent
inetic energy �TKE� for the two different grids at two different
ross sections, obtained with the filtered k-� model. The resolved
KE is computed as K= ��ūiūi�−UiUi� /2, where ūi and Ui are the

esolved �instantaneous� and time-averaged velocity vectors, re-
pectively, and ��·�� denotes time average. The weak grid depen-
ence of the resolved TKE, K, suggests that it is dominated by
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Fig. 5 Radial distributions of average
locity „center row…, and swirl angle „b
„—… Filtered k-� model, fine grid. „– –
WALE model, fine grid. „···… Standard
The scaling between the left and right
=1. The standard k-� model fails to pr
a steady solution. The WALE model p
lution. However, the agreement betwe
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arge-scale fluctuations. The maximum of resolved turbulent ki-
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netic energy in Fig. 7 �to the left�, at r /D�0.4, corresponds to the
location of the rotating vortex core. Further downstream, at z /D
=2, the resolved turbulent kinetic energy is quite evenly
distributed.

The grid dependence of the �nonfiltered� modeled TKE, k, is
explained by the fact that the filtered eddy viscosity is used in the
production term, Pk, in the transport equation for k, i.e., Pk

=2�̂tSij� jūi, where Sij is the strain rate tensor, see, e.g., Ref. �20�.
Consequently, the finer the grid, the less turbulence will be
modeled.

The distribution of filtered modeled TKE, k̂, as defined in Eq.
�15�, is determined by length and time scales smaller or equal to
what can be resolved. It is the only part of the modeled turbulent
kinetic energy that is fed to the momentum equations, via the eddy
viscosity. From Fig. 7, it is clear that the filtered modeled TKE
obtained on the fine grid is approximately one order of magnitude
smaller than the resolved TKE, K. In Sec. 5.2.2, it was shown that
the filter is inactive in the near-wall region, i.e., g2=1 in Eq. �18�.
Hence, the filtered modeled TKE, k̂, is identical to the nonfiltered
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um of the filtered modeled TKE occurs at r /D�0.5. The maxi-
um coincides with the local maximum of the filter function in
ig. 6 �to the left�. It is explained by the fact that nonresolved
KE of the inlet boundary layer is convected downstream into the

arger pipe section. This flow-history effect could not have been
redicted by anything but a transport model for turbulence.

5.3 Frequency Analysis. The fluctuations of the wall pressure
s a function of the nondimensional time are shown in Fig. 8 �to
he left�. As can be seen, the time series obtained from the two
rids are quite similar. The fluctuations are somewhat larger in the
imulation on the fine grid. Fourier transforms of the wall pressure
ere used to analyze the large-scale unsteadiness of the flow. The
ourier transforms of 6609 overlapping segments of length 213

ere averaged in order to get rid of the noise. Each segment from
he simulation on the fine grid, in which a nondimensional time
tep of 0.0027 was used, corresponds to a nondimensional sam-
ling time t*�22. Figure 8 �to the right� shows that the resolution
eems not to play a major role in determining the main frequency.
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The most distinct nondimensional frequency is at Strouhal number
St= f �Ub /D=0.6. This frequency corresponds to the rotational
speed of the helicoidal vortex core.

Figure 9 shows the spectral density of the wall pressure
sampled at four different downstream locations. Near the expan-
sion, the solution obtained using the filtered k-� model shows
exactly the same frequency as the solution obtained by using the
WALE model. This is expected, as the vortex core is fully re-
solved in both simulations. The lower frequencies most likely cor-
respond to the bursting of large turbulent structures in the recir-
culation zone near the wall, just after the expansion, as these
structures are convected downstream. As the vortex core does not
propagate further downstream than to where the flow reattaches,
only the lower frequencies are present downstream z /D�1.25.
Because of the limited sampling time, the lowest frequencies are
not well resolved. Hence, the model and grid dependency of the
lowest frequencies cannot be analyzed.

Figure 10 shows the normalized frequency spectra of resolved
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xial velocity fluctuations at z /D=2 and r /D=0.25, obtained us-
ng the filtered k-� model on different grids. The largest scales of
urbulence are resolved on both grids, as already seen in Fig. 7.
owever, there is a difference in the prediction of intermediate-

nd small-scale turbulences. At the locations z /D=2 and r /D
0.25, the grids are not fine enough to resolve turbulent structures
ith frequencies higher than St�20. The results for higher fre-
uencies are accordingly not included in Fig. 10.

Conclusions
Numerical simulations of unsteady turbulent flow can be sig-

ificantly improved by applying an adaptive low-pass filter to the
odeled turbulent length and time scales predicted by a two-
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equation low Reynold number �LRN� turbulence model. The filter
limits the damping effect of the turbulent viscosity on the resolved
flow field away from walls. Large-scale unsteady turbulent struc-
tures are resolved, and the time-averaged results correspond very
well to experimental data. On the computational grids considered
in this work, the filtered k-� model surpasses the WALE LES
model in accuracy, while the results are equivalently unsteady.
The main frequency of the simulated flow is not sensitive to the
choice of model or grid size, while the amplitude of the largest
pressure fluctuations is. The difference in the prediction of the
largest scales is most likely connected to the difference in the
prediction of the reattachment length. While the simulation using
the filtered k-� model agrees very well with experimental results

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

�
�

	

� �

� � � � � 	 �

nal wall pressure fluctuations at z /D
„—… Fine grid. „– –… Coarse grid. Note
uite arbitrary, and thus no correlation
t: spectral power density of the wall
the filtered k-� model. „—… Fine grid.
l speed „St=0.6… of the vortex core is

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

�
�

�

� �

� � � � � � �

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

�
�

�

� �

� � � � �

ll pressure fluctuations at z /D=0.25
ttom left…, and z /D=2 „bottom right….
LE model, fine grid. The most distinct
to the rotational speed of the vortex
likely correspond to unsteady struc-
n zone near the wall, just after the
sio
el.

re q
igh

ing
ona
wa
„bo
WA
ds
ost
atio
MAY 2008, Vol. 130 / 051401-9

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



i
o
f

u
t
s
t
s
a
a
t
c
s
l
t
a
a
m
b

T
t
i
t
o
s
N
r

A

E
t

G
S
s
W
v
o

F
i
m
t
fi

0

Downlo
n this respect as well, the estimate of the reattachment length
btained from the simulation using the WALE model is not satis-
actory.

It was shown by Gyllenram and Nilsson �18� that the degree of
nsteadiness in the resolved velocity field is inversely related to
he size of the filter width, i.e., model coefficient 
. However, too
mall a filter width may cause the results to deteriorate because
here will be a spectral gap between the filtered scales and the
cales that can potentially be resolved. Furthermore, it is prefer-
ble for the filter width to be large enough to enable the original
symptotic near-wall behavior of the turbulence model. The posi-
ive effects of introducing the filtering technique to the present test
ase most likely owe to a more accurate prediction of the large-
cale unsteadiness. As shown by Gyllenram et al. �22�, the turbu-
ence is, at least in a time-averaged sense, extremely anisotropic in
he shear layer near the sudden expansion. However, most of the
nisotropy lies in the largest scales. If the large anisotropic scales
re accurately resolved in space and time, a simple turbulence
odel is sufficient for estimating the influence of small-scale tur-

ulence on the mean flow.
A study of the influence of the grid resolution was carried out.

he local grid resolution is explicitely used in the formulation of
he eddy viscosity when the filter is active. This will obviously
ntroduce a grid dependence in the instantaneous flow field, and
he time-averaged results are also expected to be affected. In spite
f this, the grid dependence of the time-averaged results seems
urprisingly weak and may just as well be a numerical issue.
either were the main unsteady effects sensitive to the spatial

esolution.
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ig. 10 Normalized frequency spectra of resolved axial veloc-
ty fluctuations at z /D=2 and r /D=0.75 using the filtered k-�
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he higher density of high frequencies obtained when using the
ne grid.
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