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The rotordynamic behavior of a hydraulic turbine is influenced by fluid-rotor interactions at the
turbine runner. In this paper computational fluid dynamics (CFD) is used to numerically predict
the torsional dynamic coefficients due to added polar inertia, damping and stiffness of a Kaplan
turbine runner. The simulations are carried out for three operating conditions, one at about 35%
load, one at about 60% load (near best efficiency) and one at about 70% load.

The runner rotational speed is perturbed with a sinusoidal function with different frequencies in
order to estimate the coefficients of added polar inertia and damping. It is shown that the added
coefficients are dependent of the load and the oscillation frequency of the runner. This affect the
system’s eigenfrequencies and damping. The eigenfrequency is reduced with up to 65% compared
to the eigenfrequency of the mechanical system without the fluid interaction. The contribution to
the damping ratio varies between 30-80% depending on the load. Hence, it is important to consider
these added coefficients while carrying out dynamic analysis of the mechanical system.

I. NOMENCLATURE

Symbol Item Unit
θ Angular Displacement rad
ωD Damped Natural Frequency rad/s
ζ Damping Ratio −
ϑ Prescribed Frequency rad/s
Ω Rotational Speed rad/s

−→n face,i Normal Vector at one face −
pface,i Pressure one face N/m2

t time s
Aface,i Area of one face Nm
C Damping Nms/rad

CFluid Added Damping Nms/rad
−→
F face,i Force on one face N
JP Polar moment of inertia kgm2

JP,F luid Added Polar moment of inertia kgm2

K Stiffness Nm/rad
KFluid Added Stiffness Nm/rad
M(t) External Moment Nm
−→
Mface,i Moment at one face Nm
T ′(t) Total Torsional Torque due to Flow Nm
T1,2 Sine and Cosine Components of the Torque Nm
TAmp Amplitude of the Oscillating Part of the Torque Nm
TMean Constant Part of the Torque Nm

II. INTRODUCTION

Thomas1 initiated the research on fluid-rotor interactions on turbines in 1958. He suggested an analytical model
of destabilising forces due to non-symmetric clearance in steam turbines. Alford2 developed a similar model for
compressors, where the forces are obtained as a function of the change in efficiency due to increased eccentricity.
Ulrich3 carried out the first research in a test rig and suggested corrections to Thomas and Alford’s models. At
the same time Iversen et al.4, Agostinelli et al.5 and Csanady6 introduced models of hydraulic unbalance forces
due to asymmetry of the flow channel geometry in centrifugal pumps. Hergt et al.7 studied the influence of radial
forces during off-design operating conditions. Colding-Jorgensen8 used potential flow theory to determine damping
and stiffness coefficients. Adkins et al.,9 were the first to introduce an analytical model of both mass, damping
and stiffness coefficient and harmonic forces. Adkins et al.10 and Bolleter et al.11,12 used test rigs to continue the



development of models for fluid-rotor interactions of pump impellers. Childs13 used bulk flow theory to determine
rotordynamical coefficients at the pump-impeller-shroud surface.

The use of computational fluid dynamics (CFD) has recently increased within the area of fluid-rotor interactions.
It was introduced by Dietzen et al.14 in 1987, but has due to the computational cost not been widely used in the
past. The first applications of CFD within rotordynamics have been in the area of hydrodynamic bearings and seals.
Recently, CFD has entered into the research of fluid-rotor interactions in centrifugal pumps15. CFD has been more
common in research and development of hydraulic machinery. Ruprecht16,17 used CFD to calculate forces and pressure
pulsations on axial and Francis turbines. However, the results were not used in rotordynamical analysis. Liang et al.18
carried out finite-element fluid-structure interactions of a turbine runner in still water and showed a reduction of the
non-rotating eigenfrequencies compared to a runner in vacuum. The result had good agreement with the experimental
results presented by Rodriguez et al.19. Karlsson et al.20 analyzed the influence of different inlet boundary conditions
on the resulting rotordynamic forces and moments for a hydraulic turbine runner. The benefits of using CFD to
calculate rotordynamical forces and coefficients of hydraulic turbines have not yet been fully explored. In the present
work CFD is used for the determination of the torsional dynamic coefficients due to the flow through the turbine.

III. MODELLING AND SIMULATION

A. Fluid-dynamical Model

1. The OpenFOAM CFD tool

In the present work the OpenFOAM (www.openfoam.org) open source CFD tool is used for the simulations of
the fluid flow through the Hölleforsen water turbine runner. The simpleFoam OpenFOAM application is used as
a base, which is a steady-state solver for incompressible and turbulent flow. It is a finite volume solver using the
SIMPLE algorithm for pressure-velocity coupling. It has been validated for the flow in the Hölleforsen turbine by
Nilsson21 . New versions of the simpleFoam application have been developed in the present work, including Coriolis
and centrifugal terms and unsteady RANS. All the computations use wall-function grids and turbulence is modelled
using the standard k−ε turbulence model. The computations have been run in parallel on 12 CPUs on a Linux cluster,
using the automatic decomposition methods in OpenFOAM. The version number used for the present computations
is OpenFOAM 1.4.

2. Operating Conditions

All the computations are made for the Hölleforsen Kaplan turbine model runner, shown in Figure 1. The compu-
tational grid is obtained from earlier calculations by Nilsson et al.21. The operating conditions used for the present
investigations are for runner rotational speeds of 52rad/s, 62rad/s and 72rad/s, which correspond to loads of about
70%, 60% and 35% respectively. The boundary conditions are kept the same for all operating conditions (in the
inertial frame of reference). The change in the load due to the rotational speed is explained by the fact that the
pressure drop (or head of the system) needed to drive the same flow through the turbine will change with different
rotational speed. The runner rotational speed is finally perturbed with a sinusoidal function in order to identify added
coefficients for the torsional dynamic system. This is described below.

3. Boundary conditions and computational grid

The inlet boundary condition was obtained by taking the circumferential average of a separate guide vane calculation,
yielding an axi-symmetric inlet flow22. This corresponds to a perfect distribution from the spiral casing and without
any disturbance from the guide vane wakes.

Wall-functions and rotating wall velocities were used at the walls, and at the outlet the homogeneous Neumann
boundary condition was used for all quantities. Recirculating flow was thus allowed at the outlet, and did occur. The
turbulence quantities of the recirculating flow at the outlet are unknown, but to set a relevant turbulence level for
the present case the back-flow values for k and ε were assumed to be similar to the average of those quantities at the
inlet. The background of this assumption is that the turbulence level is high already at the inlet due to the wakes
of the stay vanes and the guide vanes. It is thus assumed that the increase in turbulence level is small compared
with that at the inlet. It is further believed that the chosen values are of minor importance for the overall flow. For
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FIG. 1: The computational domain

the pressure the homogeneous Neumann boundary condition is used at all boundaries. The computations are made
for a complete runner with five blades. The computational domain is shown by the n Figure 1. A block-structured
hexahedral wall-function grid was used, consisting of approximately 2, 200, 000 grid points.

4. Discretization schemes

For the convection divergence terms in the turbulence equations the Gamma discretization scheme by Jasak et.al.23
was used. For the convection divergence terms in the velocity equations the GammaV scheme was used, which is an
improved version of the Gamma scheme formulated to take into account the direction of the flow field. The Gamma
scheme is a smooth and bounded blend between the second-order central differencing (CD) scheme and the first
order upwind differencing (UD) scheme. CD is used wherever it satisfies the boundedness requirements, and wherever
CD is unbounded UD is used. For numerical stability reasons, however, a smooth and continous blending between
CD and UD is used as CD approaches unboundedness. The smooth transition between the CD and UD schemes is
controlled by a blending coefficient βm, which is chosen by the user. This coefficient should have a value in the range
0.2 ≤ βm ≤ 1, the smaller value the sharper switch and the larger value the smoother switch between the schemes. For
good resolution, this value should theoretically be kept as low as possible, while higher values are more numerically
stable. Studies of different βm values have been made, and the results are however more or less unaffected by the
choice of βm. In the present work a value of βm = 1.0 has been used. The time derivative is discretized using the
Euler implicit method.

B. Identification of dynamic coefficients

To describe how the eigenfrequencies and damping of a torsional dynamic system change due to the flow, the model
illustrated in Figure 2 is used. In the model the generator is assumed to be stiff due to the connection to a rigid
electric grid, and hence only the torsional motion of the turbine runner is considered. The equation of motion for this
system is given by

JP θ̈ + Cθ̇ +Kθ = M(t), (1)

where JP is the polar inertia, C is the damping, K is the stiffness and M(t) an external moment, t is the time, θ
is the angular displacement, θ̇ is the angular velocity and θ̈ is the angular acceleration. It is further assumed that
the flow through a turbine will give additional inertia, damping and stiffness to the system. With these additional
coefficients the Equation of motion becomes
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FIG. 2: The mechanical model of a torsional dynamic system

(JP + JP,F luid)θ̈ + (C + CFluid)θ̇ + (K +KFluid)θ = M(t), (2)

where JP,F luid is the added polar inertia, CFluid is the added damping, and KFluid is the added stiffness. External
moments are negligible (M(t) = 0) in the present work. CFD is used to identify the added coefficients from the torque
of the turbine runner. Rewriting the moments due to the flow to

T ′(t) = −JP,F luidθ̈ − CFluidθ̇ −KFluidθ, (3)

where T ′(t) is the total torsional moment due to the flow, and insert this into Equation 2 yields

JP θ̈ + Cθ̇ +Kθ = T ′(t). (4)

To solve T ′(t), the forces and moments from the CFD-simulations are calculated at each time step. The force on a
control volume boundary face is given by

−→
F face,i = pface,iAface,i

−→n face,i, (5)

where pface,i is the pressure on the face, Aface,i is the area of the face, and −→n face,i is the normal vector of the face.
The moment of the centre of gravity of the runner at a face is

−→
Mface,i =

−→
F face,irface,i, (6)

where rface is the radius from the centre of gravity to the face. The total moment is calculated as

−→
M =

n∑
i=1

−→
Mface,i, (7)

where n is the number of faces. The torque is obtained as a scalar product of the moment and the direction vector
of the shaft
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T (t) =
−→
M−→n y. (8)

During steady conditions the torque is constant in order to provide a constant power to the generator. In case of
unsteady conditions, the torque can be written as

T (t) = Tmean + T ′(t), (9)

where Tmean is the constant part of the torque. In the present work the rotational speed of the turbine runner
is prescribed in order to determine the dynamical coefficients of the turbine runner due to the flow. The angular
displacement of the runner is given by

θ = Ωt+ acos(ϑt) = Ωt+ θ′, (10)

where Ω is the constant angular velocity, t is the time, a is an amplitude, ϑ is a frequency of the prescribed runner
oscillation and θ′ is the oscillating part of θ. Below, we are only interested in the oscillating part, where

θ′ = acos(ϑt), (11)

gives the velocity

θ̇′ = −aϑsin(ϑt), (12)

and the acceleration

θ̈′ = −aϑ2cos(ϑt). (13)

Inserting Equations 11, 12 and 13 into Equation 3 results in an equation for the fluctuation of the torque

T ′(t) = aϑ2JP,F luidcos(ϑt) + aϑCFluidsin(ϑt)− aKFluidcos(ϑt). (14)

This can be written as

T ′(t) = TAmpcos(ϑt− φ) = T1cos(ϑt) + T2sin(ϑt), (15)

where TAmp is the amplitude of the torque, φ is the phase angle and T1 and T2 are the cosine and sine components
of the amplitude. Then the additional damping due to the fluid can be identified as:

CFluid =
T2

aϑ
(16)

and the additional stiffness and polar inertia due to the fluid can be identified by solving

aϑ2JP,F luid − aKFluid = T1 (17)

for two simulations with different values of ϑ.
The eigenfrequency of Equation 2 can now be solved as

Draft paper 5



ωD =

√
K +KFluid

JP + JP,F luid
− (C + CFluid)2

4(JP + JP,F luid)2
, (18)

and the corresponding damping ratio is

ζ =
C + CFluid

2(JP + JP,F luid)
√

K+KF luid

JP +JP,F luid

. (19)

IV. RESULTS

In Figure 3 the torque is shown as a function of time for one of the simulated cases. The amplitude of T1/a
in Equation 17 is presented as a function of perturbation frequency in Figure 4. The perturbation amplitude is
a = 4.0 × 10−6rad for all simulations and is selected in the area where torque/angular velocity is linear and the
value is selected in order to separate the response from numerical noise. One can see that it is difficult to identify
the coefficients as stated in Equation 17. There are two possible explanations to this; the coefficients depends on
frequency and the stiffness is probably small due to the incompressible fluid. The stiffness is therefore assumed to be
negligible (KFluid = 0 in Equation 17) in the analysis below. The added polar inertia is presented in Figure 5 and
the added damping in Figure 6.

The later coefficients are added to the mechanical system, i.e. Equation 2. The polar inertia of the mechanical
system is JP = 1.57Nms2, the damping is C = 0Nms and the stiffness is K = 49000Nm. In Figure 7 the reduced
eigenfrequencies (Equation 18) and in Figure 8 the damping ratio (Equation 19) due to the flow for such a fluid-
mechanical system are presented and the influence of the different coefficients is illustrated.
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FIG. 3: The torque as a function of time for one of the simulated cases (rotational speed is 72rad/s and the oscillating frequency
is 1809rad/s)
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FIG. 4: Identification of the coefficients of Equation 17, together with a curve-fitted function (rotational speed is 52rad/s)
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FIG. 5: Additional polar inertia as a function of perturbing frequency and operating condition
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FIG. 6: Additional damping as a function of perturbing frequency and operating condition
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FIG. 7: Reduction of the eigenfrequency (the eigenfrequency of the mechanical system is 1) due to the flow through the turbine

. The ‘undamped’ markers represent the effect of a added polar inertia alone.

Draft paper 11



500 1000 1500 2000 2500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Perturbation Frequency [rad/s]

D
am

pi
ng

 R
at

io
 [−

]

 

 

52 rad/s
62 rad/s
72 rad/s

FIG. 8: Additional damping due to the flow through the turbine (the damping of the mechanical system is zero)
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V. DISCUSSION

Both added polar inertia and damping have a significant effect on the eigenfrequency of the mechanical system.
The added polar inertia decreases the eigenfrequency 3− 5% for all cases (see Figure 7). Concerning the damping, an
additionally decrease of the eigenfrequency of 5−60% is observed (see Figure 7). One can see that both damping and
polar inertia increases for off-nominal speed and with frequency. Recent research by Liang et al.18 and Rodriguez19

has shown that the eigenfrequencies are reduced by 10-39% for a non-rotating Francis runner in still water. The effect
of added inertia in these papers are significantly higher than the case of nominal operating condition in the present
work and the authors observe no strong effect of damping. An explanation to the difference between the present study
and the earlier work is the dependency of frequency for both added inertia and damping and that the present work
includes the turbine flow.

Iso-surfaces are here used to illustrate the difference between the different operating conditions. Figure 9 shows
iso-surfaces of regions where the turbulent kinetic energy is high. In Figures 10-12, smearlines at the blades are
presented in order to see the details of the flow.

FIG. 9: Iso-surface of turbulent kinetic energy, 52rad/s (left), 62rad/s (middle), 72rad/s (right))

FIG. 10: Smearlines and velocity vectors for 52rad/s

The difference in the rotating speed results in different flow conditions for the different operating conditions. The
guide vane angle is equal for all cases. Hence, the angle of attack at the leading edge of the runner blades is changed
when changing the rotational speed. The tip-clearance flow from the pressure side to the suction side is increased
when the rotational speed is reduced. For high rotational speeds there is also a tip vortex at the runner blade pressure
side due to the unfavorable angle of attack close to the tip. The tip vortex flow is the reason to the high turbulent
kinetic energy near the tip-clearence, which is shown in Figure 9. Figure 9 also shows high turbulence kinetic energy
in the flow stagnation at the leading edges of the runner blades, and in separation regions. A major difference in
the level of turbulence kinetic energy can be found below the runner cone in the recirculation region. The significant
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FIG. 11: Smearlines and velocity vectors for 62rad/s

FIG. 12: Smearlines and velocity vectors for 72rad/s

differences of the flow field for the different cases is also illustrated by the smearlines in Figures 10-12. Figure 10 and
Figure 12 shows a large non-axi-symmetric recirculation area below the cone. The wakes below the runner vanes are
also shown on the cone as well as the tip-vortex flow. Figure 11 shows a small axi-symmetric recirculation area below
the cone.

Recent research of added mass of a cylinder by Wang et al.24 has shown that the added mass is dependent on the
velocity around a cylinder. The same effect is suspected in the present study, where the flow velocity differs between
the cases.

VI. CONCLUSIONS

The added polar inertia and damping due to the hydraulic system significantly affect the mechanical system. This
results in a reduced eigenfrequency of 5-65% and an increase in the damping of 30-80%. It is further concluded that
the added coefficients are dependent on the turbine load and oscillating frequency. A change in the system properties
of the mechanical system is important to consider in design and operation. Future studies should include experimental
verification of the results in the present work.
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