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• Context / Motivation:

better understand the heat source

• Aim:

develop a 3-dimensional simulation software 

for electric welding arc heat source

• Software OpenFOAM-1.6.x 

- open source CFD software

- C++ library of object-oriented classes 

for implementing solvers for continuum mechanics
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Specific heat as function of 
temperature 
for Ar (solid line) and CO₂ (dotted 
line).
J. Aubreton, M. F. Elchinger
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Angular component of the magnetic field
along the radial direction (r₀= 10ˉ³m)



Sketch of the cross section of a MIG torch

Test case: Metal Inert Gas welding 

Picture of a MIG torch

Shielding gas 
inlet 

Ar shielding 
gas inlet smu /36.2

Applied current: I=200A



Measured temperature profile for 
a current intensity 200 A and 2 mm long 
arc. 

Figure from: G.N. Haddad and A.J.D. Farmer (1985) .Temperature 
measurements in gas tungsten arcs, Welding J, 64, pp. 339-342.

Boundary conditions:
M.C. Tsai, and Sindo Kou (1990). Heat transfer and fluid flow in 
welding arcs produced by sharpened and flat electrodes, Int. J. Heat 
Mass Transfer, 33, pp. 2089-2098.
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Measured temperature profile for a current intensity 200 A and 2 
mm long arc. 
Figure from: G.N. Haddad and A.J.D. Farmer (1985). Temperature 
measurements in gas tungsten arcs, Welding J, 64, pp. 339-342.
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Measured temperature profile for a current intensity 200 A and 2 
mm long arc. 
Figure from: G.N. Haddad and A.J.D. Farmer (1985). Temperature 
measurements in gas tungsten arcs, Welding J, 64, pp. 339-342.
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