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Abstract 
Cavitation can be modelled with a wide spectrum of methods, ranging from simple potential flow 
methods to highly resolved multi phase flow simulations. In this work a transport equation for the 
liquid/vapour volume fraction is integrated into the Implicit Large Eddy Simulation (ILES) 
equations, giving a highly resolved and time accurate solution strategy. Two mass transfer 
models, also called cavitation models, are incorporated as source terms to model the transfer of 
mass from liquid to vapour and back. The mass transfer models used in the present work are 
inspired by the works of Kunz and Sauer. These two models are based on different physical 
background, but the resulting equations are relatively similar. A modification of the Sauer mass 
transfer model is proposed, where the cavitation nuclei distribution is obtained from a separate 
Lagrangian Particle Tracking (LPT) simulation. Two test cases are used for the validation of the 
Kunz and Sauer mass transfer models, a two dimensional (2D) NACA0015 hydrofoil and a three 
dimensional (3D) twisted hydrofoil, the Twist11. 
    The 2D NACA0015 case is primarily used for testing of parameters, such as the influence of 
the grid resolution, the mass transfer models and the numerical interpolation schemes. Yet the 
results show that the computational model captures many of the features seen in the experiments, 
such as reentrant jets and periodic shedding. The 3D Twist11 case is a very demanding test case 
with many flow phenomena of interest, such the side entrant jets, which results in a closure at the 
centerplane, this leads to a cavity that is caught in a hairpin vortex which is transported into the 
wake and a reentrant jet which cuts of the sheet cavity at the leading edge. These are all features 
that the models are able to resolve, and the simulations thus give a realistic cavitation pattern. 
The representation of the side- and reentrant jets are very important to obtain a physical shedding 
mechanism. If the shedding is precisely represented and the early development of the cavity is 
correctly modelled, experience and knowledge from earlier cavitation experiments can be used to 
evaluate the risk of erosion. 
 

Introduction 
Cavitation can occur in a wide range of liquid flows and this complex phenomenon is not yet 
fully understood. Experimental observations can show many of the phenomena occurring, but 
together with highly accurate numerical predictions the full picture of cavitation will be much 
clearer. Indeed the understanding of the cavitation phenomena and the ability to predict cavitation 
are crucial to prevent or reduce its effects, such as damages and performance alterations. 
Consequently numerical prediction of cavitation is of great interest from an engineering point-of-
view, especially for the hydraulic and marine industry. 
     Predicting cavitation is difficult partly because the physical properties of the fluid are 
unknown and these may vary randomly. To be able to overcome this difficulty, a high resolution 
simulation of the two phase flow can be used in combination with mass transfer models based on 
varying physical properties. In this work we study the behaviour of two different mass transfer 



models for the prediction of cavitation inception and transport, where the interface between the 
water and the vapour is tracked using a Volume of Fluid (VOF) approach [9]. In addition a first 
modification is proposed to one of the mass transfer models, based on a Lagrangian Particle 
Tracking (LPT) [2] method where the cavitation inception is enhanced by the presence of small 
bubbles of air or contamination particles. Both the air bubbles and the contamination particles 
may act as cavitation nuclei and increase the risk of cavitation. It is thus important to understand 
how these particles and air bubbles are distributed in the flow field and especially in low pressure 
regions near the wing. In this work an Implicit Large Eddy Simulation (ILES) [7] technique is 
used for the handling of the turbulent flow and the VOF method describes the ratio between the 
content of water and vapour at every position in the flow. The volume fraction, t)γ(x, , is a scalar 
Heaviside function, which is used to define the fluid properties by a linear relation. To also 
include mass transfer due to cavitation two mass transfer models are included as source terms in 
the continuity and volume fraction equations, the mass transfer models by Kunz et al. [11] and by 
Sauer [16]. 
     LES and ILES are founded on a separation of scales within the flow, accomplished by a low-
pass filtering of the Navier Stokes Equations (NSE) [15]. Large energy containing structures that 
can be resolved by the computational grid are predicted in the LES calculation, whereas the 
smaller, more isotropic turbulent structures are modelled. This gives LES a much higher 
generality than e.g. Reynolds Averaged Navier Stokes (RANS) [21] in which the complete 
spectrum of turbulent motion is modelled. Furthermore LES preserves more of the physics which 
can be useful in cavitation simulation. Earlier Wikström et al. [19,20] and Persson et al. [14] has 
presented work on ILES in combination with cavitation modelling and Wosnik et al. [22] has 
presented work with LES and cavitation modelling.  
     The presented models are tested on two different wing profiles, one with a two dimensional 
(2D) profile and one with a three dimensional (3D) profile. The 2D profile is a NACA0015 
profile, which is a relatively thick wing section, at 8 degree angle of attack. In this configuration 
a sheet cavity starts from the leading edge and this sheet grows until a reentrant jet forms and cuts 
it off. In addition a twisted wing is tested, referred to as Twist11, described by Foeth and 
Terwisga [3], in which phenomena not present on a 2D foil occurs. An example of such a flow 
phenomenon is the sidentrant jets which cut the sheet and form a closure from which a cavity in a 
hairpin vortex is convected. The sideentrant jets then forms into a reentrant jet which cuts the 
cavity at the leading edge.   

Modelling 

Flow modelling 
The governing equations of an incompressible flow consist of the balance equations of mass and 
momentum (Navier-Stokes Equations, NSE) for a linear viscous (or Newtonian) fluid [13], 
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where v is the velocity, p is the pressure, S=2νD is the viscous stress tensor, )(2

1 TvvD ∇+∇=  is 
the rate-of-strain tensor and ν is the kinematic viscosity. Resolving all structures in the flow field, 
i.e. solving the full NSE, is referred to as Direct Numerical Simulation (DNS). This implies 
solving for the smallest scales in flow, the Kolmogorov scale, and this gives a computational time 
which will scale as Reynolds number (Re) cube. This results in a too long computational time for 
present-day computers, even for model scale. DNS may however still be useful for analyzing 



academic flows to gain detailed insight in the flow physics. The alternatives to DNS all involve 
some degree of modelling; here Implicit LES (ILES) is used. In the ILES approach the effects of 
the subgrid physics on the unresolved scales are incorporated in the functional reconstruction of 
the fluxes using high-resolution finite-volume methods. The spatial discretization effectively 
filters the NSE over the grid using an anisotropic top-hat shaped kernel, providing the implicitly 
filtered and discretized equations. These are closed by specific flux reconstruction schemes 
applied to the convective and viscous fluxes. In the viscous fluxes the inner gradient is usually 
evaluated using central differencing (as in LES) and similarly, linear reconstruction is used to 
finalize the discretization of these. 

Cavitation modelling 
The cavitation models used in this work are based on different backgrounds and physical 
properties, but a common problem is that all models introduce constants that are assessed by 
comparisons with experimental results. These empirical constants are not universal and they 
depend on the geometry and the flow conditions. It is consequently of great importance to 
compare the models using a common implementation of the CFD solver and using a simple 
geometry where the numerical predictions can be compared with experimental observations. 
    We will here refer to the cavitation modelling as mass transfer models for cavitating liquids, 
since that is what the models are actually about. It is not possible to resolve the mass transfer in a 
continuum representation and consequently mass transfer modelling is needed. The cavity in 
itself is not modelled, since it is present in the simulation, and it would then be confusing to refer 
to the models as cavitation models. If a true cavitation modelling would be performed, no cavity 
would be present in the simulation and the purpose of the cavitation model would be to account 
for the influence of the cavity on the main flow. In the present computations the cavity appears as 
a part of the basic ILES equations, i.e. as a part of the steady flow field, when the ILES equations 
are solved together with the mass transfer model, producing vapour inside the liquid when the 
pressure is below the vapour pressure. Although the production and destruction of vapour, 
described by the mass transfer model, is a crucial part of the cavitation process, other parts as 
reentrant jets and shedding being the main subject below, are controlled rather by the ILES 
equations. We therefore mean here by a cavitation model the entire set of equations solved to 
describe the flow. This nomenclature is motivated by the fact that changes of the basic flow 
solver can be of same importance, at least, as changes of the mass transfer model.  
     Using the VOF approach a transport equation for the volume fraction needs to be incorporated 
into the filtered balance equations of mass and momentum (1) 
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where B=(v⊗v−v ⊗v )  is the subgrid stress tensor arising from the filtering, see e.g. Fureby et al.[6] 
for clarification, and the volume fraction is used to scale the physical properties vapour and the 
liquid 
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The numerical behaviour of the volume fraction equation can be treated in several different ways, 
using high and low order, compressive and non-compressive reconstruction schemes for the 
convection of the volume fraction [18]. 

Kunz mass transfer model for cavitating liquids  
Kunz’ mass transfer model for cavitating liquids is based on the work by Merkel et al. [12], with 
a modification which corresponds to the behaviour of a fluid near the transition point. The 
behaviour near a transition point is described by methods within statistical physics and the 
inventors of the model refer to the Ginzburg-Landau potential [10] and van der Waals equation of 
state [8], as the basic physics. The mass transfer in this model is based on two different strategies, 
as compared to most similar models which only rely on one strategy for both creation and 
destruction of liquid. The destruction of liquid, or creation of vapour +m& , is modelled to be 
proportional to the amount by which the pressure is below the vapour pressure and the 
destruction of vapour −m&  is based on a third order polynomial function of the volume fraction 
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where −+ += mmm &&& is the specific mass transfer rate, p  is the filtered pressure, vp  is the 
vaporisation pressure, ρ  is the density and ∞UCC proddest ,,  and ∞t are empirical constants based on 
the mean flow. The mass transfer terms are incorporated into the flow modelling using source 
terms in the continuity equation and in the transport equation for the volume fraction, 
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here ρS  and γS  are the mass transfer source terms. For a volumetric source representation, Sρ can 
be expressed as, 

),( 11 −−
ρ ρ−ρ= vlmS &                                                                                                                            (6) 

where )( 11 −− ρ−ρ vl  handles the bulk volume change when mass is transferred from one phase to the 
other. The bulk density for liquid and vapour, ρ l  and ρv, are kept constant throughout the 
computation. The source term in the volume fraction transport equation, Sγ , can be estimated 
from the mass transfer from vapour to liquid at a rate m& . The bulk density change rate can be 
represented as, 

( ) v⋅∇ρ−=ρtD                           (7) 

and as  
).()()( γρ−ρ=ρ tvlt DD                                                        (8) 

using equation (31). Combining equations (7) and (8) and rearranging the terms gives the volume 
fraction equation as 
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Sauer’s mass transfer model for cavitating liquids  
In contrast to Kunz’ model, the background to Sauer’s mass transfer model [16] is relatively 
explict and can be described in a few lines. Sauer’s model is based on bubble dynamics and the 
amount of vapour in a control volume is calculated from the number of nesting vapour bubbles 
and an average radius of these bubbles. The dynamic of the bubbles is governed by the Reyleigh 
equation 
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this equation is however simplified by neglecting the second-order derivative. The use of this 
model, with simplifications for bubble dynamics is discussed and justified in Sauer [16]. Solving 
for the derivative of the bubble radius gives the growth rate as  
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To incorporate the bubble dynamics into the flow equations, the source term in the continuity 
equation (51) can be written as  
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using the continuity equation for an incompressible fluid with density gradients   
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and the fact that there will not be any velocities across the density gradient. By using equation 
(31) and the fact that ( )lv ρ<<ρ  the source term can be rewritten as  
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The volume fraction 
VolumeTotal

vapourVolume
=α , used here, is expressed, in contrast to γ in kunz’ model, as 

the ratio between the vapour in a control volume and the total volume of the control volume, 
giving 
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where n0 is the number density, i.e number of bubbles per volume unit, and R is the average 
radius of these bubbles. Inserting equation (15) into equation (14) and rearrange gives the source 
term as 
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into which equation (11) can be inserted, giving 
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here the pressure at the bubble surface is replaced by the vapour pressure and p is replaced by the 
ambient cell pressure.       
        The source term in the volume fraction equation γS  is found by identifying the following 
relationship 
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The radius of the bubbles used in the source term can either be computed from equation (15), 
using a constant or pre-calculated specific bubble density n0, giving 
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or by solving a transport equation for the bubble radius using equation (11) and an initial bubble 
radius R0. The results presented here are primarily computed using equation (19) with a constant 
value of the specific bubble density.  
 

Sauer’s mass transfer model with a varying bubble density 
As an alternative of using a constant value for n0 in Sauer’s mass transfer model, a pre-calculated 
specific bubble density is a first step towards a more integrated approach where the estimation of 
the bubble density and the cavitation modelling is performed in conjunction. Here we intend to 
use a Lagrangian Particle Tracking (LPT) method to model and track the nuclei in the flow. A 
nucleus is defined by the position of its centre position xp, its diameter DP, its velocity UP and its 
density ρP. In the Lagrangian frame of reference each particle position vector is calculated from 
the equation P

p U
x

=
dt

d
 and the motion of the particles is governed by Newton’s equation 

∑= FUP
dt

dmP . The dominant force acting on the particle is the drag FD from the fluid phase given 

by  
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where the drag coefficient CD is given by  
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Since the fluid velocity v , calculated in the Eulerian frame of reference, is needed for the 
calculation of the drag force in the Lagrangian frame of reference, it has to be interpolated to the 
position of the particle from the neighbour grid points. 
     A one-way coupling is applied for the LPT which means that the source term due to particle-
fluid interactions in the Navier Stokes equations (1) is neglected and particle-particle interaction 
is not consider. Collision of a particle with the wing is modelled by evaluating the particle normal 
velocity after collision as n

Pw
n
P UU ε='  where εw∈[0,1] is the coefficient of restitution of the wall 

that accounts for the energy lost during the dissipative collision. The value of ∈ is 0.2 for a 
bubble and 0.7 for a hard particle. 
     The particles are injected randomly at every time step from a vertical plane upstream the wing 
and the simulations are time-averaged for several through-flow times in order to achieve a 
statistically stationary result for the nuclei density. This time-averaged nuclei distribution will 
then be used as the pre-calculated specific bubble density n0 for the Sauer model. 
 

Validation of the NACA0015 case  

Setup 
In the first test case, the NACA0015, the computational results are compared with the 
experiments by Yakushiji [23]. The Reynolds number (Re) is 1,200,000, the cavitation number 
(σ) is 1.2 and the angle of attack is 8 degrees. Both models are used and the computations are 
performed on two different computational grids, see Fig. 1. 
 

a)    b) 



Figure 1.NACA0015 8 degree angle of attack a) High resolution computational grid, 267,000 cells b) Low resolution 
computational grid, 21,000 cells. 
 
The finer grid is used to study the small structures of the flow field, while the coarser grid is 
mainly used to study the influence of models and parameters. In the computations presented 
below the four constants introduced in Kunz cavitation model is used as  1.0=∞t , 10=∞U , 

710Pr =odc  and 1=cDest  and in Sauer’s mass transfer model the specific bubble density is 
710=n .  

Validation 
In Fig. 2a-h below a qualitative comparison between the experimental visualizations and the 
computational results produced on the fine mesh with Kunz mass transfer model is made. The 
major difference between the experimental view and the computed view is that the experiment 
shows a type of integrated view of the entire spanwise extension while the computations, which 
are two-dimensional, give the average of the spanwise direction. Consequently the experiment is 
only used as a qualitative comparison for some checking of the relevance of the simulated data 
and the main focus is put on the different models and settings presented below. 
 
 

 a)  b) 
 

 c)  d) 
 



 e)  f) 
 

 g)  h) 
Figure 2. Comparison between experiments and computations on the NACA0015 at 8 degree angle of attack. a-b) 
First cycle in the experiments showing the growth of the sheet cavity. c-d) The reentrant jet has almost reached the 
leading edge of the hydrofoil, the experiment starts to be bubbly. e-f) The first sheet is released and convected, while 
a new sheet cavity is growing. g-h) the second sheet is now convected and a third is growing.  
 
In figure 2 the experiments show a sheet cavity which is started at the leading edge. This cavity is 
transported along surface of the hydrofoil and when it exceeds a certain size it becomes unstable 
and sheds cloud cavitation periodically. This process is controlled by a reentrant jet which is 
forming downstream of the cavity and travels in the opposite direction to the outer flow towards 
the leading edge. When the reentrant jet approaches the leading edge it connects with the outer 
flow and a strong shear occurs between the outer flow and the opposite flow in the reentrant jet. 
The cavity is now broken up into a cloud of smaller bubbles which is transported with the free-
stream towards the trailing edge of the hydrofoil. This break-up of the cavity into a genuine cloud 
of bubbles is a process which the present cavitation models are not able to capture. Instead the 
cavitation models treat this cloud of bubbles as a combination of smaller and larger detached 
voids which is transported into the wake region, yet some resemblance with a real cloud may 
however be reflected in the γ-distribution in the shed parts. All computations presented here are 
performed on a 2D section of the wing, which is of course a strong limitation, but it is necessary 
to be able test as many conditions as possible. A 3D section, with a relatively sparse resolution in 
the spanwise direction has also been performed to check the differences between 2D and 3D 
results, but no large difference is found.  
    In the computations there is generally a difference between the first and the following cycles of 
cavities, this phenomena is expected since the first cavity is only affected by the undisturbed flow 
field only, while the following cycles will be affected by the disturbed velocity and pressure field 
from the preceding cavity. This disturbance becomes relatively large since the transported cavity 
remains as a sheet and is not broken up into bubbles. In experimental studies there is usually no 
first cavity, which can be compared with the first cavity of the computations. Yet the first cavity 



in the computations is interesting to study since it demonstrate the work of the cavitation model 
in relatively undisturbed flow and it is in this case easier to see the direct differences between 
models and parameters. The first cavity is in fact also of engineering relevance in cases of 
inhomogeneous inflow to for example propellers.    
 

Mass transfer models 
In figures 3-6 we compare the behaviour of the two mass transfer models on the coarse mesh. 
More combinations of the different parameters have been studied, but are not presented here. The 
experience from this study shows that Kunz’ cavitation model is relatively insensitive to the 
choice of the production constant. Generally one can see that the term should be as large as 
possible. However, if it is too large the computation might be instable due to the large source 
terms. The value of the destruction constant is more sensitive, especially in combination with the 
grid density. In Kunz’ mass transfer model the destruction is only related to the vapour fraction. 
As soon as the vapour fraction is between 0 and 1 the destruction term will be active and destroy 
vapour, making the surface sharper. If the destruction term is large the surface of the sheet cavity 
will be relatively sharp, but the cavity might be destroyed to early. With a lower value of the 
destruction term the surface of the cavity will be diffuser and the cavity lives longer. Using 
Sauer’s mass transfer model there is a number of ways to treat the constants. In the computations 
presented below the bubble radius is related to the volume fraction using a specific bubble 
density n0 . This specific bubble density can either be constant or have a distribution is space. If 
the distribution is constant the size of the destruction and production term will be relatively equal 
in space. Using a distribution where the nuclei’s are more densely packed close to the stagnation 
point and less densely packed on the suction side the production can be made larger than the 
destruction, which could be favourable. The third alternative is to integrate the bubble radius in 
time, giving smaller bubbles close to the inception point, which relates to a large production, and 
larger bubbles on the suction side, which consequently makes the source term smaller. 
 
 

a)  b)  
Figure 3.  Growth of the first cycle. a) Kunz, cProd = 107 and cDest = 1. b) Sauer, n0=107.  
 
In the first cycle, see Fig. 3, no great difference between the mass transfer models occurs. Both 
models demonstrate a small overshoot of the leading part of the cavity over the fluid in which the 
velocity of the fluid is directed in the streamwise direction. Consequently no reentrant jet is yet 
initiated. The inertia of the cavity will act on this fluid and make it create a reentrant jet within 
this flow. When the reentrant flow is initiated a stagnation point will occur behind the cavity and 
this stagnation point will feed the reentrant jet with fluid from the outer flow.   



 

 a) b) 
Figure 4. Reentrant jet in the first cycle. a) Kunz, cProd = 107 and cDest = 1. e) Sauer, n0=107. 
 
When the cavity reaches its maximum length, see Fig. 4, the difference between the computed 
predictions is slightly larger than in Fig. 3. A distinct difference is the amount of liquid which is 
located under the cavity close to the trailing edge of the wing. The liquid in this region attains a 
rotational movement which almost cuts of the cavity before the reentrant jet reaches the leading 
edge. This phenomenon is especially visible when the destruction term is large in Kunz mass 
transfer model (this state is not shown). Using Sauer’s mass transfer model there are only very 
small differences between a smaller (n0=107shown here) and a larger specific bubble density 
(n0=1011 not shown here). In both cases a thicker region of fluid is collected close to the leading 
part of the cavity, as in the case with Kunz’ model with a large destruction term. The main 
difference is that the thickening is not directed towards the outer flow. Instead the whole cavity is 
lifted from the foil. The difference between the overall shape and thickness of the cavity between 
Kunz’ model and Sauer’s model is mainly related to the location and size of the mass transfer 
terms. 
 
 

a)  b) 
 Figure 5. Growth of the second cycle a) Kunz, cProd = 107 and cDest = 1. b) Sauer, n0=107. 
 
After the first cycle, in which the shedding mechanism is very similar for the different models 
and parameter settings, the second cycle is growing from the leading edge, see Fig. 5. This cycle 
is largely influenced by the transport and collapse of the previous cycle. If the destruction term is 
large the cavity will be destroyed rapidly which creates a favourable pressure distribution for the 
second cavity to develop. In this case the cavity grows faster and more distinct than the cavity 
which is controlled by a smaller destruction term, see Fig. 5a. An increase of the destruction term 



influences the results insignificantly. This depends on the narrow band where the construction 
term is active, excluding areas of strong rotation where construction also appears. The 
construction of vapour is limited to a small part of the leading edge and as long as the water that 
enters this region is vaporized, the difference between the models will be small.  
    Results from Sauer’s model show small differences between the different specific bubble 
densities (not shown). With a higher bubble density the cavities live slightly longer in the wake, 
which is expected, but the length and thickness of the attached cavity is quite similar between the 
two settings. Also at this time step Sauer’s model has a big similarity with Kunz’ model with a 
large destruction term.  
 
 

a) b) 
Figure 6, Reentrant jet in the second cycle. a) Kunz, cProd = 107 and cDest = 1. e) Sauer, n0=107.  
 
When the cavity in the second cycle has reached its maximum length, see Fig. 6, both settings 
with Sauer’s model and Kunz’ model with a large value of the destruction term predicts a thicker 
reentrant formation. The Kunz model with lower value on the destruction term still predicts a 
thinner reentrant jet. When the thicker reentrant jet enters the cavity it leaves a number of cavities 
located in small vortices which are formed by the shearing between the reentrant jet and the outer 
flow. These small vortices are then gathered by a larger rotational formation and become one 
large cavitation sheet.  
    By studying the sign and strength of the source term of the different models and settings the 
similarities can be better understood. All computations have a very narrow band close to the 
leading edge where a large positive source term appears, i.e. production of vapour. In Sauer’s 
model both the area of production and the peak value is larger than in Kunz’ model. This fact can 
probably be related to the fact that the construction term in Kunz model is proportional to vPP − , 
while Sauer’s source term is proportional to vPP − , and consequently Sauer’s model needs 
larger values to perform the same production. In both models some production also appears close 
to the surface of the cavity.  
      The destruction term is located along the surface of the cavity. This is especially clear in 
Kunz’ model since the destruction term is defined as a polynomial of the volume fraction which 
has its maximum at γ=1/3. The extension of the destruction term is similar in both models, but 
the peak value is different, Sauer’s model has a slightly higher peak value than Kunz’ model. It is 
harder to directly compare Kunz’ and Sauer’s destruction since they are based on different 
equations, but qualitatively they act in a similar way. 



Validation of the Twist11 case 
Even though 2D experiments are very useful and simple, they can also be very complicated to 
compare with 2D computations. A 2D hydrofoil has an extension in the spanwise direction in 
which the shedding can be intermittently and random, yielding a 3D flow field which is not 
directly comparable with a 2D computation. The computations can be extended to 3D, but then 
the intermittency and randomness is still a problem which can be hard to overcome. Instead a 
twisted 3D foil can be used and compared with a 3D computation. On a twisted 3D hydrofoil the 
shedding mechanism depends on the spanwise loading and the influences of the outer walls can 
be decreased, since the cavity can be positioned away from these. This allows for observations of 
controlled 3D effects and the shedding mechanism is somewhat simplified.  
    The 3D hydrofoil used here is referred to as the Twist11 hydrofoil, see Fig 7. This hydrofoil is 
generated from a NACA0009 profile with an alternating angle of attack. The largest angle of 
attack is located at the mid section while the lowest angle of attack is located at the walls. The 
number 11 in the name of the hydrofoil, Twist11, refers to the angle of attack which differs 
between the centerplane and the outer edges with 11 degrees, described by third degree 
polynomial function. The spanwise extent of the wing 300 mm and the chord length is 150 mm. 
With this hydrofoil an isolated sheet cavity is created around the centre plane and the hydrofoil is 
lightly loaded to suppress any interaction with the tunnel boundary layer. The three-
dimensionality of the cavity, and the hydrofoil, creates a reentrant flow which at some instances 
is directed sideways at a 90 degree angle with the free flow. This side entrant flow collects fluid 
towards the centre where the gathered fluid pierces the cavity and leaves a detached cavity which 
rolls-up into a hairpin. An upstream reentrant jet is now formed, which gathers fluid from the side 
entrant flow and is directed towards the leading edge of the hydrofoil. The reentrant flow breaks 
up the sheet around the centerplane on its way towards the leading edge. When the cavity hits the 
leading edge it is directed towards the outer side of the cavity and a new cavity is started. The 
cavity which has rolled up into a hairpin vortex is transported towards the trailing edge of the 
hydrofoil where it finally collapses. After the shedding of the main centre hairpin vortex several 
smaller vortices is shed from alternating sides of the centerplane until a new cycle is completed.  
 

Setup 
To be able to simulate at least some of these highly complicated flow phenomena a high 
resolution computational mesh is needed. For this purpose three different meshes have been 
produced, with 600,000, 2,000,000 and 3,000,000 cells respectively. To save cells only half of 
the domain is modelled, using a symmetry plane at the centre plane. We will here focus on the 
results obtained with Kunz’ mass transfer model on the grid with 3,000,000 cells. The 
computational domain, mirrored in the centre plane, can be seen in figure 7. The angle of attack 
of the hydrofoil differs from -2o at the wall to 9o at the centre plane. The experimental study on 
this hydrofoil is not yet published, but an experimental study with an almost similar twisted 
hydrofoil, Twist8, is published by Foeth and Terwisga [4,5]. Twist8 has the same profile as the 
Twist11 hydrofoil, but with a lower deviation in angle of attack, 0 degree to 8 degree, 
Computations have also been performed on the described geometry, Schnerr [17], using a 
compressible Euler solver.   
 
 



 
Figure 7. Computational domain for the twisted hydrofoil, the mesh contains 3,000,000 cells. This domain is 

mirrored in the centerplane for clarification, only half of the domain is used in the computations.   
 

Cavitation phenomena 
In the present numerical simulations of steady inflow cases the cavitation sources are gradually 
turned on during approximately 1 ms. The first sheet cavity that grows becomes very smooth and 
symmetric. This development may be influenced by the way in which the cavity sources are 
turned on as well as the fact that there are no vapour voids downstream, as residues from a cavity 
of a previous cavitation cycle. When the first cavity, by the reentrant jet, is terminated from the 
leading edge region and advected downstream, the next sheet starts growing. This second sheet 
behaves less smooth and symmetric, and its development is supposed to be noticeably controlled 
by the disturbances of the local flow induced by the residue void from the first sheet. This void is 
now, simultaneously with the growth of the second sheet, rotating and mowing downstream, and 
finally it leaves the foil and disappears in the region of higher pressure. Detailed velocity and 
pressure plots indicate existence of significant disturbances of the flow close to the growing 
second sheet.  
    It is noted in passing that Wikström and co-workers [20] record also the first cavity in a 
transient motion of the foil in the ILES simulations as well as in an experiment. The first growth 
was described reasonably well but due to the preliminary character of the experiment as well as 
the simulation, it was not at that time possible to make reliable observations beyond the growth of 
the first sheet. From an academic point of view an advantage of the first cavitation cycle is that 
the behaviour of the cavitation model is well defined and relatively easy to evaluate, and as 
pointed out above, this part can also be important in for example certain propeller cases. The 
possibly following cavitation cycles become more variable and disturbed by interaction from co-
existing shed voids, conditions that are typical for water turbines as well as propellers.  
    Figures 8a-11a show the extension of the cavity as an iso-surface of the volume fraction 5.0=γ , 
and the direction of the shear stress of the surface of the wing. Figures 8b-11b show the same iso-
surface, in combination with the vector field on the centre plane and the vector field in the first 
cell layer above the surface. The vector fields are coloured with the volume fraction γ . 0=γ  
(white) corresponds to pure vapour and 1=γ  (blue) corresponds to pure liquid.  
 
 



a) b) 
Figure 8. The first cavitation cycle. The cavity has grown to its maximum size and the side jets are fully active to 
collect fluid towards the closure. 
 
In Fig. 8 the first cavity has grown to its maximum extension regarding cavity length and width. 
The side entrant jets are clearly visible by the surface shear stress, collecting fluid towards the 
centre. This fluid gathers to a thicker reentrant jet and forms a closure which snaps of a first 
cavity in a hairpin vortex. From the shear stress restricting lines it is visible that a massive 
recirculation zone has developed close to the trailing edge, this recirculation zone is only very 
small, located close to the centerplane, for the fully wetted flow field. 
 

a) b) 
Figure 9. The side jets have formed a reentrant jet which has reached to the leading edge. 
 
In Fig. 9 the re-entrant jet has formed at the first closure and it is convected towards the leading 
edge, in opposite direction to the outer flow. The jet leaves several hairpin vortices in which the 
cavity grows stronger due to the high vorticity in these regions. The first hairpin vortex is 
transported towards the trailing edge of the wing and starts to break off from the main cavity.  
 
 



a) b) 
Figure 10. The cavity in the hairpin vortex is being transported into the wake and a new sheet cavity is started. 
 
In Fig. 10 the reentrant jet has hit the leading edge and is directed towards the outer sides of the 
cavity. The first cavity sheet, which is annihilated by the reentrant jet, is replaced by a new cavity 
sheet which is growing at the leading edge. The first hairpin vortex cavity is now released from 
the main cavity and starts to break up and the side entrant jet continually feeds the centre of the 
cavity with new fluid.    
  

a) b) 
Figure 11. The secondary vortices are being shed and the new cavity sheet is almost fully developed. 
 
After the first shedding cycle a new sheet cavity is created close to the centre region of the 
hydrofoil, see Fig. 11. This cavity is clearly affected by the first reentrant jet and becomes 
somewhat thinner than the previous cavity sheet, but the gathering of fluid from the side jet, 
which forms the reentrant jet, is still very distinct. The new cavity sheet is formed on top of a thin 
layer of liquid and a much thinner reentrant flow is controlling the shedding of this cavity sheet. 
But still a new hairpin vortex is shed close to the centre plane. The overall appearance of the 
cavity is now more realistic than in the first cavitation cycle where the cavity was too steady and 
smooth. In the experiments at stationary inflow the whole centre region is gathered with bubbles 
and wavy structures, and these wavy structures now also start to appear in the computation.  

Preliminary bubble density distribution from LPT simulations 
As mentioned above, the Sauer mass transfer model uses a bubble density, or cavitation nuclei, 
distribution. Lagrangian Particle Tracking is here used to study the distribution of cavitation 



nuclei for the 2D NACA0015 case. The same settings are used, as in the validation of the mass 
transfer models, but no cavitation modeling is included. Both the unsteady flow and the tracking 
of the cavitation nuclei are included in the simulations. The cavitation nuclei are randomly 
injected from a vertical plane upstream the wing at different rates of injection (number of nuclei 
per time step), and for different cavitation nuclei size. 30 injections (resp. 100) per time step lead 
to a mean particle density n0=4e8 (resp.  n0=1.4e9) at the inlet and in all the domain far from the 
wing. The cavitation nuclei are defined as small bubbles of air (1µm and 50µm) with density ρP 
=1 and coefficient of restitution εw=0.2. The cavitation nuclei distribution is then obtained from 
the time average of the number of nuclei per unit volume in each cell. Fig.12 shows the non-
uniform cavitation nuclei distribution by highlighting the cells where the density is larger than at 
the inlet. 
 

a) b) 

c) 
Figure 12: Non-uniform cavitation nuclei distribution. Cells with a larger density than at the 
inlet are highlighted.  a) 30 injections per time step, diameter 1µm. b) 30 injections per time 
step, diameter 50µm. c) 100 injections per time step, diameter 50µm 

 
    All the cases with different rates of injection and different cavitation nuclei sizes give similar 
results, i.e. an almost constant value of the density in the overall domain, and higher values in 
certain regions close to the wing where the cavitation nuclei accumulate. The cavitation nuclei 
density reaches its maximum value at the stagnation point (n0~3e11), where the reduced velocity 
prevents the nuclei from flowing downstream. Accumulation is also observed very close to the 
wing both on the suction and pressure sides, where the low velocity in the boundary layer, and 
the small vortices near the wall capture the nuclei. One important result is that the nuclei are 
accumulated in the region of low pressure at the leading edge suction side. An increased 
cavitation nuclei density in regions of low pressure is likely to affect the inception of cavitation. 
The next step will be to use these nuclei distributions in a modified Sauer’s model and study how 
the non-homogeneous nuclei content influences cavitation inception and development.  

Conclusion  
General experiences regarding experimental observation of cavitation concludes that highly 
resolved numerical predictions of cavitation is necessary to be able to understand the mechanisms 
of cavitation behaviour better. Even though it is not possible to numerically predict collapses of 
cavities, general large scale behaviours can be studied to evaluate the risk of destructive 
collapses, i.e. erosion [1] This kind of early development is what the present cavitation models 
are able to predict with relatively high accuracy. To be able to better understand this capability 
both a number of simpler and a number of more advanced validation cases will have to be 
studied. These validation cases can be used to describe the limitations of the numerical 



simulations, and what to expect from the computed results regarding grid resolution, turbulence 
modelling and other numerical parameters.  
     The first test case, the 2D NACA0015, is primarily used as a quick parameter test case where 
properties such as numerical constants, grid resolution, numerical interpolation schemes and mass 
transfer models can be tested. Even though the spanwise averaging which takes place in a 2D 
simulation is a strong limitation, many of the features seen from experiments are present. This 
includes unsteady flow, realistic flow phenomena, well predicted cavity length, realistic 
behaviour of the reentrant jet and the basic shedding mechanism. The main limitation in this kind 
of modelling lies in the formulation of the vapour fraction. Using the transport equation for the 
volume fraction, with the VOF approach, all cavities will be treated as single volume cavities, 
even if the experiments clearly show a cavity comprised of bubbles. This limitation will affect the 
development of the subsequent cavity cycles, since the influence on the flow field, and the 
pressure distribution, will be much different from a convected sheet as compared to a convected 
bubble cloud.  
     The second test case, the Twist11 hydrofoil, is a computationally more advanced problem. 
The cavitating flow over this geometry comprises many of the flow characteristics which occur 
on e.g. marine propellers and hydraulic turbine runners. This includes features such as periodic 
shedding of main and secondary cavities in hairpin vortices, side jets and reentrant jets. To be 
able to predict these phenomena a relatively high resolution of the computational mesh is needed, 
especially in the spanwise and streamwise directions. The ability to predict this kind of flow 
structures is very important for predicting the risk of erosion. The experiments performed on the 
twisted hydrofoil also include controlled shedding frequency using flapped wings in front of the 
Twist11 hydrofoil. This case is more demanding in meshing and setup of the problem, but for 
solving the problem the natural frequency will be harder to predict than the controlled frequency.  
    In total we have shown the capabilities of the described mass transfer methods on two different 
cases, the NACA0015 and the Twist11 hydrofoil. With the present settings the main features of 
the cavitating flow field is described and the limitations are explained. Further developments 
towards a better flow prediction, i.e. sub-grid modelling and wall handling, as well as more mass 
transfer models will be implemented and tested. We also intend to evaluate these methods on 
more advanced problems such as propellers and water turbine runners.   
    The preliminary results from the Lagrangian Particle Tracking simulations show that the 
cavitation nuclei accumulate at the stagnation point and in the boundary layers. The most 
important result is that the nuclei are accumulated in the region of low pressure at the leading 
edge suction side. An increased cavitation nuclei density in regions of low pressure is likely to 
affect the inception of cavitation. The next step will be to use these nuclei distributions in a 
modified Sauer’s model and study how the non-homogeneous nuclei content influences 
cavitation inception and development. 
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Nomenclature 

Symbols 
B   Subgrid stress tensor 
C  Mass transfer constant 
D   Rate-of-strain tensor  
D  Diameter 
F  Force 
R  Bubble radius 
S   Viscous stress tensor 
S   Filtered viscous stress tensor 
S   Source term 
U   Velocity scale 
p   Pressure 
m&   Mass transfer term rate 

0n  Specific bubble density 
t   Time scale 
v   Velocity  
v   Filtered velocity 
x   Position 
εw  Coefficient of restitution 
γ   Volume fraction 
ρ   Density 
µ   Viscosity 
 

Superscripts and subscripts 
D  Drag 
P   Particle 
dest  Destruction 
l   Liquid 
n   Particle number 
prod  Production 
v   Vapour 
∞  Free stream value 
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