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                    Heat transfer and flow characteristics study of an air-side       
                                radiator duct for different geometries  
                                                                by 
                                                           Geo Joy 
                                            
                                                 
                                                                         
                                                       ABSTRACT 
 
              In the heat exchanger of a power transformer, oil is cooled by the atmospheric air 
which flows around the radiator plate either due to buoyancy effects or using any forced 
means. This investigation is concentrated on the flow of air due to buoyancy effects. The 
scope of this thesis work is to investigate the heat transfer by buoyancy driven natural 
convection flow in the air side radiator ducts of a transformer. The investigation is limited to 
vertical ducts for smooth planar, smooth folded and rib-roughened geometries subjected to 
uniform heat flux. The study covers Rayleigh numbers ranging from 110  to 610  and focuses 
on the effect of channel geometry on the characteristic of flow and heat transfer as well as on 
the average and local Nusselt numbers. In this investigation, the effect of heat transfer with 
smooth planar geometry is studied and is compared with the other complex geometries. 
Certain parameters on the V-rib geometry are modified and its effect on heat transfer is also 
discussed. 
 
 
 
              All the models are designed with Gambit and the computations are done with 
FLUENT.  
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NOMENCLATURE 
 
c                              constant in Rohsenow’s correlation, Equation (23) 
g                              gravitational acceleration, m/s 2             
H                             height of the geometry, m 
h                              convection heat transfer coefficient 
k                              thermal conductivity, W/mK  
P                             pitch of V-ribs in multiple V-shaped rib geometry, m 
p                              pressure, Pa  
R                              radius, m 
r                               radius of the three arcs forming rib (rib height), m 
S                              wall distance, m 
T                              temperature, K 
t                               time, s          
U                             average velocity, m/s 
u, v, w                     velocity along x, y, and z coordinates, m/s 
V                              velocity, m/s   
W                             width of the geometry, m 
X, Y, Z                      x, y and z coordinates  
 
  

cA                            area of a cross section, m 2  

pC                           specific heat, J/KgK 

hD                           hydraulic diameter, m 

lH                           see Eq. (22) 
llq                            heat flux, W/m 2  

bT                             bulk temperature, K 
)(v

ijT                         viscous or deviatoric stresses   

inT                            inlet temperature, K 

oT                             initial temperature, K 

wT                             wall temperature, K             

wavgT                         average wall temperature, K  

mU                           bulk velocity of the cross section, m/s 
 
 
Greek Symbols 
 
β                             coefficient of thermal expansion of air, 1/K 
µ                             dynamic viscosity, Kg/ms 
υ                              kinematic viscosity, m 2 /s 
θ                              angle of attack of ribs to the flow in multiple V shaped rib geometry 
ρ                             density, Kg/m 3  

oρ                            initial density, Kg/m 3  

fα                            thermal diffusivity, m 2 /s 
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Non-dimensional quantities 
 
 
Gr                           Grashof number 
Nu                           Nusselt number 
Pr                            Prandtl number 
Re                            Reynolds number 
Ra                            Rayleigh number 
 
 

avgNu                       average Nusselt number 

avgSNu ,                     Nusselt number with average wall temperature 

fdNu                        Nusselt number at fully developed duct flow 

plateNu                      Nusselt number for vertical plate 
Nu(y)                       local Nusselt number 
 
 
 
Subscript 
 
avg                        average 
b                            bulk 
in                           inlet 
i, j, k                      cartesian indexes 
wavg                     wall average 
w                           wall 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 10 

CONTENTS 
 
 
 
 
ABSTRACT 
 
ACKNOWLEDGEMENTS 
 
NOMENCLATURE 
 
 
1             INTRODUCTION................................................................................................... 13 
 

1.1      Smooth Planar ........................................................................................................... 15 
1.2. Smooth Folded ......................................................................................................... 16 
1.3      Multiple V shaped rib Geometry............................................................................... 17 

 
 
2 GOVERNING EQUATIONS........................................................................................ 19 
 
 

2.1      Non-dimensional numbers ........................................................................................ 21 
2.1.1      Rayleigh number ................................................................................................ 21 
2.1.2      Prandtl number ................................................................................................... 21 
2.1.3      Reynolds number................................................................................................ 21 
2.1.4      Nusselt number................................................................................................... 22 

2.2     Correlations ................................................................................................................ 23 
2.2.1      Ramanathan and Kumar ..................................................................................... 23 
2.2.2      Rohsenow........................................................................................................... 23 

 
3             NUMERICAL ASPECTS....................................................................................... 25 
 
 

3.1      Solver ........................................................................................................................ 25 
3.2 Computational Domain ............................................................................................ 26 

3.2.1      Smooth Planar .................................................................................................... 26 
3.2.1.1      Boundary conditions ....................................................................................... 26 
3.2.1.2      Grids ................................................................................................................ 28 
3.2.2    Smooth folded ...................................................................................................... 29 
3.2.2.1      Boundary conditions ....................................................................................... 29 
3.2.2.2  Grids ................................................................................................................ 30 
3.2.3    Multiple V shaped rib Geometry.......................................................................... 31 
3.2.3.1      Boundary conditions ....................................................................................... 31 
3.2.3.2  Grids ................................................................................................................ 32 

3.3 Cases Investigated .................................................................................................... 33 
 
 
 
 



 11 

4             RESULTS AND DISCUSSIONS ........................................................................... 36 
 
 

4.1      Smooth Planar ........................................................................................................... 36 
4.1.1     Inlet and outlet velocity profiles.......................................................................... 36 
4.1.2     Outlet temperature profile ................................................................................... 37 
4.1.3     Average Nusselt number versus Rayleigh number ............................................. 39 
4.1.4     Local Nusselt number versus Y/H ...................................................................... 40 
4.1.5     Validation of the three-dimensional model with the two-dimensional results.... 41 
4.1.6     Temperature distribution over the plates............................................................. 42 

4.2      Smooth Folded .......................................................................................................... 43 
4.2.1      Average Nusselt number versus Rayleigh number ............................................ 43 
4.2.2      Local Nusselt number versus Z.......................................................................... 44 
4.2.3      Reynolds number versus Rayleigh number........................................................ 45 
4.2.4      Temperature distribution over the plates............................................................ 46 

4.3 Multiple V-shaped Rib Geometry ............................................................................ 47 
4.3.1      Average Nusselt number versus Rayleigh number ............................................ 47 
4.3.2      Local Nusselt number versus Z.......................................................................... 50 
4.3.3      Reynolds number versus Rayleigh number........................................................ 51 
4.3.4      Temperature distribution over the plates............................................................ 52 
4.3.5      Velocity vectors at the mid-plane of the V – rib geometry................................ 53 

 
 
4 CONCLUSION............................................................................................................... 55 
 
 
5 REFERENCES............................................................................................................... 57 
 
 



 12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 



 13 

1             INTRODUCTION 
 
 
             Considerable attention has been given to buoyancy induced flow in vertical channels 
due to its application in cooling of electronic equipment. This study is motivated mainly by its 
application in the cooling of the radiator in a power transformer.  
 
              In a transformer, the core and windings are bathed in oil and the oil is circulated 
throughout the transformer. This is done for the cooling of the hot transformer elements. The 
oil gets heated up after some time, which brings up the necessity of a heat exchanger to cool 
the oil.  It is very important to cool the oil in order to avoid break-down of the transformer. In 
many transformers a series of long vertical plates, with atmospheric air flowing in the 
adjacent channels to the heated oil, is used as heat exchangers. These are called radiators. 
These radiators extract heat from the oil to the atmospheric air. The rate at which heat is 
transferred from the plates of a radiator to the atmospheric air depends on certain parameters 
like distance between the plates, length of the plates, means of motion of air between the 
plates etc. Shape of the plates in the radiator also has a large effect on its efficiency in 
extracting heat from the oil to air. In this investigation, heat transfer on the air side of the 
radiator plates for different geometries is investigated and compared. 
 
             
                Natural convection is an energy transport process which takes place as a result of 
buoyancy-induced fluid motion occurring in the presence of a body force field. Buoyancy 
induced cooling is commonly used in the radiators of the power transformers. In fact, it is of 
great interest to design radiators compatible with both the forced and natural convective flows 
for a power transformer. The radiator plates designed for the cooling in a power transformer 
by means of natural convection are often very long. The length of the radiator plates plays a 
significant role to increase the velocity of the flow. This in turn increases the heat transfer in 
buoyancy-driven flows, while for the forced convection the velocity of the flow could be 
controlled by external means. It is appealing to optimize the size of the radiators without 
affecting the rate of heat transfer.  
 
              Three geometries are considered in this investigation for the study of heat transfer in 
the radiator of a transformer 
 

1. Smooth Planar 
2. Smooth Folded 
3. Multiple V- shaped Rib Geometry 
 
All the three geometries can be used as radiator plates for a transformer.  
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               The heated parallel-walled channel is the quintessential configuration where the 
heat transfer characteristics of the buoyancy-induced flow are studied. Extensive 
researches have been undergone in the flow inside smooth heated channels so far to 
understand the mechanisms involved and to provide more information necessary for the 
optimization of the design for the heat transfer. The first comprehensive study of the 
parallel channel was reported by Elenbaas (1942). He established overall heat transfer 
correlations for isothermal channels over a wide range of thermal and geometric 
parameters. Later on, many researches have helped to improve our understanding of the 
mechanisms involved in the heat transfer between the parallel walls. Researches by 
Bodoia and Osterle (1962), Kettleborough (1972), Nakamura et al. (1982), and Bar-Cohen 
and Roshenow (1984) provide useful information in the study of heat transfer between the 
parallel plates. There are numerous investigations reported in which the downstream 
region is also included along with the parallel walls. Investigations by Chang and Lin 
(1989), Ramanathan and Kumar (1991), Shyy et al. (1992), and Morrone et al. (1997) are 
some of the examples. These investigations show the importance of the downstream 
region in the calculation of the flow rate though the Nusselt number remains unaffected.  
 
 
              For practical reasons, radiator plates are often corrugated or folded. These folds 
on the parallel plates would increase the area of interaction of air with the heated wall. 
The effect of the folds on the heat transfer characteristics is also studied.  
 
              Ribs on the plate might induce a secondary flow which in turn mixes the flow 
well and enhances the heat transfer in a duct. The concept of  multiple V-shaped ribs are 
described in Olsson & Sunden (1997a) and Olsson & Sunden (1997b) where the 
performance of multiple V-shaped ribs was compared to the performance of a number of 
other rib-roughness geometries. It was found that multiple V-shaped ribs provided higher 
heat transfer than the parallel and crossed ribs, the difference being more pronounced at 
Reynolds numbers below 2000. The rib angle of the multiple V-rib geometry is taken as 

°45 which optimizes the heat transfer rate according to Olsson & Sunden (1998). The 
effect of ribs on the Nusselt number and the Reynolds number is also investigated by 
Olsson & Sunden (1998).  
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1.1      Smooth Planar 
 
Figure 1 and 2 shows the two and the three-dimensional geometries of the smooth planar case 
which have been used for the present investigation. In this case, two smooth vertical walls are 
heated and the effect of air flow due to the buoyancy effects in-between the heated walls are 
investigated. The gradients along the Z-direction could be assumed as zero which simplifies 
the flow in-between the two vertical walls and yields the two dimensional case. This model 
can be used to understand the flow behavior and heat transfer characteristics for this kind of 
flow. The smooth planar case is investigated and compared with available correlations. 
Results from this particular case are used for validating the results of other two complex 
geometries.  
 
 

                  
 
Figure 1: Two-dimensional Smooth planar                   Figure 2: Three-dimensional Smooth planar 

 
 
 
. 
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1.2. Smooth Folded 
 
              The smooth folded geometry increases the area of the plate that is exposed to the air 
and increases the mixing in the flow which can have a positive effect on the heat transfer. 
Since heat exchangers are quite large devices, it is quite important to come up with different 
geometries which can decrease the size of the heat exchangers without affecting the heat 
transfer efficiency. For the present investigation, the smooth folded geometry shown in figure 
3 and figure 4 is studied and compared with the other two geometries.  

                    
                                 
                                 Figure 3: Three-dimensional Smooth-folded 
                                     

                                                     
                   
                                               Figure 4: Top view of Smooth-folded                                                                                    
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1.3      Multiple V shaped rib Geometry  
 
Figure 5 shows a part of the multiple V-rib geometry together with the geometrical 
parameters that are considered for this investigation. The pitch considered for this 
investigation is 20 mm and 40 mm while the rib angle is taken as °= 45θ . The V-ribs on the 
one wall is pointing downstream while on the other they are pointing upstream. Figure 6 
shows the cross section of the ribs which is defined by three arcs with the same radii. The 
grey area shown in figure 5 indicates the computational domain. The computational domain is 
explained in detail in the section 3.2.3. The influence of the rib on the heat transfer and flow 
characteristics is studied and compared with the smooth planar case. The effect on the heat 
transfer with an increase in height, pitch and rib length is also evaluated.  
 
 

 
                                                          Figure 5: V-rib geometry               

 
 

             
                                          
                                              Figure 6: Cross section I-I of Figure 5 
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2 GOVERNING EQUATIONS 
 
 
 
The governing equations are derived from the basic laws of conservation of mass, momentum 
and energy. The continuity equation is 
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Assuming the flow to be incompressible implies that the derivative of density of the fluid is 
zero, the above continuity equation can be written as  
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The assumptions made in this particular investigation are that the flow is laminar, 
incompressible, steady and with no viscous dissipation of thermal energy.     
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For incompressible flows, 
~

ρ = ρ  and viscosity is constant throughout the flow, the 
instantaneous momentum equation (3) reduces to  
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But in this flow with natural convection, the gravity is aligned with the Y-direction and hence 
the gravity term only occurs in the v-momentum equation, yielding  
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The Boussinesq approximation is used in the equation (5). This approximation is commonly 
understood to consist of the following. 
 
1. Density is assumed as constant except when it directly causes buoyant forces. This means 
that the continuity equation has its incompressible form and that density is considered 
variable only in the gravitational term of the momentum equation. 
 
2. All other fluid properties are assumed constant 
 
3. Viscous dissipation is assumed to be negligible 
 
These last two points simplify the equations so that attention is focused on the effect of 
buoyancy. The validity of boussinesq approximation could be referred in Donald & Aldo 
(1975).  
 
So, as a result of this application we can say that density variations are due only to 
temperature variations and hence ( )oρρ −  may be related to a fluid property known as the 
volumetric thermal expansion coefficient. 
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Applying boussinesq 
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This is the Y-direction momentum equation where all fluid properties including density may 
be assumed constant for small density/temperature changes. 
 
The heat transfer part of the convection problem requires a solution for the temperature 
distribution through the flow. The additional equation for accomplishing this ultimate 
objective is the first law of Thermodynamics or the energy equation which is the law of 
physics that states that heat absorbed by a system either raises the internal energy of the 
system or does work on the environment. 
 
The energy equation for an incompressible, steady flow without viscous dissipation can be 
written as 
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2.1      Non-dimensional numbers 
 
 In this section important non-dimensional numbers are explained. 

2.1.1      Rayleigh number 
 
The Rayleigh number (Ra) for a fluid is a non-dimensional number associated with the heat 
transfer within the fluid. The Rayleigh number can be defined as the ratio of the product of 
buoyancy forces and heat advection and the product of viscous forces and heat conduction of 
the fluid. 
 
It is equal to the product of the Grashof and Prandtl numbers 

PrGrRa =  
 
The vertical parallel plates of these geometries can have either uniform wall temperature 
boundary condition or uniform heat flux boundary condition. The uniform heat flux boundary 
condition is considered throughout the investigation and the following expression for the 
Rayleigh number based on surface heat flux ( ''q ) is used. 
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2.1.2      Prandtl number 
 
The Prandtl Number is the ratio of the momentum diffusion to the heat diffusion. In this case, 
the fluid used is air, and the Prandtl number for air is 0.71  
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2.1.3      Reynolds number 
 
The Reynolds number is the ratio of inertia force to viscous force. 

υ
UL=Re                                                                                                                                  (12) 

In this case we consider the Reynolds number using the hydraulic diameter as length scale 
 
i.e. 
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2.1.4      Nusselt number 
 
The Nusselt number is the ratio of convective heat transfer to the heat transfer that would 
occur under the same conditions, but only due to pure conduction. Nusselt number depends on 
the rate of heat transfer from the plate to the fluid 
 

k
hl

Nu =                                                                                                                                  (14) 

The length scale ( l ) is taken as the duct width S 
 
The average Nusselt Number is given as 
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The local Nusselt number is given as 
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where )( yTb  is the bulk temperature given by 
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In the equation (17) and (18)   
V(x) is the velocity at each node along the X-direction. 
T(x) is the temperature at each node along the X-direction. 

 

 
 
 
 
 
 
 
 



 23 

2.2     Correlations  
The following correlations are compared and analyzed by Olsson C.-O. (2004) for buoyancy 
induced flow between vertical parallel plates. 
 

2.2.1      Ramanathan and Kumar 
 
The following formula for the average Nusselt number is given by Ramanathan and Kumar 
(1991) 
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This correlation is valid for 151 ≤≤
S
H

 , 510310 ×≤≤ Ra  and Pr = 0.7 

 
 
The first term is in order to account for the increase in Nusselt number due to conduction 
effects that can be important for small Ra and small H/S.  
 

2.2.2      Rohsenow  
 
The expression recommended by Rohsenow et al. (1998) is  
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3             NUMERICAL ASPECTS  
 
         This section deals with the numerical considerations. The set-up of boundary conditions 
and the grid design is discussed for all geometries. 
 
         The flow field is subdivided into finite volumes, each of which encloses a node. Scalar 
variables such as temperature are evaluated at the grid node, while to compute face pressure 
the discrete continuity balance for a “staggered” control volume about the face is used. The 
momentum and thermal fields are coupled in buoyancy driven flows. Hence they are solved 
together which in turn increase the tendency of being unstable.  
 
 
The under-relaxation factors used are shown in Table 1 for the smooth planar, the smooth 
folded and the V-rib geometries. 
 
                                                Table 1 : Under-relaxation factors  
    Geometry    Momentum      Energy      Body Force        Pressure 
  Smooth planar         0.7         0.98            0.45           0.20 
 Smooth Folder         0.4        0 98                          0.40             0.20 
 V-Rib         0.4          0.90            0.30           0.15 

 

 3.1      Solver 
 
                 The solver that is used for all the three geometries is the segregated solver and the 
pressure and velocity are coupled. The pressure velocity coupling scheme which has been 
used for the investigation is SIMPLE. 
                The schemes used for solving the momentum and energy equations for the two-
dimensional smooth planar geometry is the second-order upwind scheme and for all other 
geometries are first order upwind scheme. In this case the second-order upwind scheme 
makes the convergence very unstable. So the choice was first-order upwind for these cases 
and the pressure interpolation scheme which is used is PRESTO. Since the flow is aligned to 
the grid and is a laminar flow with quadrilateral and hexagonal grid all throughout, first-order 
upwind scheme gives a reasonably good accuracy though it is not as accurate as second-order 
upwind. 
 
 
 
 

 
 
 
 
 
 
 
 



 26 

3.2 Computational Domain 
 
In this section the cases are described in more detail. 
 

3.2.1      Smooth Planar 
 
         Both the two-dimensional and the three-dimensional geometries are studied for the 
smooth planar case in this investigation. The computational domains of both the geometries 
are shown in Figure 7 and Figure 8. The extension at the inlet has the purpose of giving a 
suitable inlet boundary condition.  
 

3.2.1.1      Boundary conditions 
 
         Figure 7 shows the domain that is used for the computational purpose along with the 
boundary conditions given. Since this case is a natural convection case, the definition of the 
inlet boundary condition can always be a problem. It is impossible to give velocity inlet 
boundary condition or mass flow inlet boundary condition since both of these are not known 
in this buoyancy induced flow. Hence the computational domain is extended further down so 
as to define the inlet boundary as a pressure inlet boundary condition. But the width and size 
of the extended portion should be designed so that it doesn’t affect the flow at the inlet. In this 
investigation, an inlet box is extended to a length of 2S towards each side of the inlet, which 
is assumed as far away enough from the inlet. The two walls at the sides of the channel are 
given a uniform heat flux boundary condition (UWF) and the extended edges are given a wall 
boundary condition with zero heat flux. 

                             
                                                 F igure 7: Two-dimensional smooth planar domain                              
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Figure 8 shows the computational domain that is used for the three-dimensional smooth 
planar case, and table 2 shows the boundary conditions given. In the three-dimensional case, 
the flow is considered as homogeneous along the Z-direction (throughout the width (W)). The 
three dimensional case is done for the purpose of validating the model with the two 
dimensional results. The extension-inlet box is not extended in the Z-direction because it 
behaves symmetrical towards that direction. Symmetry boundary conditions are given along 
the planes HRKF and LECD that are not extended.               

                 
   
Figure 8: Three-dimensional smooth planar domain             

                     

                                                                               
The dimensions given for the smooth planar case are 
S = 20 mm 
H = 200 mm, 400 mm 
W = 4S = 80 mm 
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3.2.1.2     Grids 
 
Figure 9 shows the grid of the channel and the extended portion in a smooth planar channel. 
In the three dimensional case, the grid used is coarse in the Z-direction because the flow is 
considered to have no gradients along that direction. Normal to the heat flux wall regions, 
sharp gradients are expected and so a denser grid is used in that region. 
 
 
 

                                                                     
                                    
       (a) Zooming of the channel                                                            (b) Inlet extension 

  Figure 9: Grid distribution for smooth planar 

 
 
Different Grid configurations were tested and the present grid is selected as the one which 
provides satisfactory results at a reasonable computational cost. The grid sizes for the two and 
the three dimensional cases were 25000 and 200,000 respectively. 
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3.2.2    Smooth folded 
The boundary conditions and the grid used for the smooth folder case are discussed in this 
section. 

 

3.2.2.1      Boundary conditions 
 

 
The smooth folded case which is shown in figure 3 is the real model which is to be 
investigated. For the computational purpose, only one quarter of the model is considered 
because all other parts of the smooth folded geometry may be as symmetrical to it. Figure 10 
and Table 3  show the computational domain and the boundary conditions given for this 
particular case. As in the smooth planar case, the inlet is extended for the purpose of defining 
the inlet boundary condition. 
 
 
 

 
         Table 3: Boundary conditions            

 

   
 
 

 
Figure 10: Computational domain for the smooth folded geometry        
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3.2.2.2 Grids 
 
Figure 11 shows the outlet of the computational domain of the smooth folded case. The grid 
used in the dotted folded faces of the outlet ‘a’ and ‘b’ in figure 11 is shown in figure 12. In 
the folded geometry, the grid that is used in the folded region near the wall is quite important 
to get a good convergence and reasonably good results. Careful attention must be given to 
have a good resolution of the grid normal to the inclined walls of the folded areas. The grid 
cells used are small enough to capture the behavior of the sharp gradients near to the wall. 
Mesh dependence is checked with much coarser mesh. The number of grid for the smooth 
folded geometry is 310,000. 
 
 
 

                    
 

                           Figure 11: Outlet of the computational domain for smooth folded case 

 
 

                  
        
                                   
                              Figure 12: Grid distribution of the dotted folded faces ‘a’ and ‘b’ shown in figure 11 

 
 
 
 
 
 
 
 
 

a b 
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3.2.3    Multiple V shaped rib Geometry 
 
The boundary conditions and the grid used for the V-rib geometry are discussed in this 
section. 

3.2.3.1      Boundary conditions 
 
Figure 13 shows the computational domain considered for the V-rib geometry for the present 
investigation. This computational domain is a part of the whole geometry that is the grey 
portion in figure 5 . The remaining area that is not considered for the computational study 
might be considered as symmetry boundary condition since it behaves in a symmetrical 
manner with respect to the area of study. The cross-view of the V-rib domain is shown in 
figure 14.  
 
 

           
 
Figure 13: Computational domain for V-rib                                      Figure 14: Cross-View of the V-rib domain 

                 
                                              
The cross section I-I in Figure 13 is shown in Figure 6. The smooth curve of the rib is set at 
an angle of attack to the flow.  
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                                                    Table 4: Boundary conditions for V-rib geometry 

                               
Table 4 shows the boundary conditions defined for the V-rib geometry. Walls KLOQ and 
MNIJ are given different fluxes for each case corresponding to the Rayleigh numbers while 
all other walls are considered adiabatic. Defining the boundary conditions could always be the 
problem for the buoyancy-driven duct flows. A pressure inlet boundary condition is defined in 
an extended face (ABEF) from the Inlet (KLIJ).  

3.2.3.2 Grids       
 
The multiple V-shaped rib geometry is meshed with T-grid along with the hex core meshing 
scheme. This scheme creates a mesh consisting of two regions; the inner region composed of 
regular hexahedral elements and the outer region consisting of the pyramidal, tetrahedral 
and/or wedge elements as shown in figure 15. In the extension inlet box, structured 
hexahedral mesh is used which decreases the number of cells considerably. The grid 
distribution used for both the geometries is exactly the same for the comparisons to be 
accurate. 

                                     
                       Figure 15: Grid distribution for Multiple V-shaped rib geometry 
               
The number of grids for the multiple V-shaped rib geometry for 200 mm and 400 mm height 
are 300,000 and 500,000 respectively. 
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3.3       Cases Investigated 
 
 
The smooth planar (two-dimensional and three-dimensional) and the V-rib geometries 
consider exactly the same parameters to investigate while for the smooth folded geometry it  
varies slightly, due to the complex nature of the smooth folded geometry along the Z-direction 
to assume a good value for ‘S’. 
 
 
                                                          Table 5: Cases investigated 

       
 
                         
Table 5 shows the cases investigated for all the geometries. Equation (10) is used to find the 
relation between the heat flux and the Rayleigh number. The smooth planar case is 
investigated for two different heights, for H= 200 mm and for H= 400 mm. The smooth 
folded geometry due to its folded shape, assuming a value for ‘S’ is puzzling because it has 
different values along the Z-direction. For this investigation, ‘S’ is taken as 30 mm for the 
smooth-folded case since it is the maximum value ‘S’ takes throughout the geometry. For all 
other geometries ‘S’ is 20 mm while for the smooth folded it is 30 mm which shows the 
reason for the difference in Rayleigh number considered for the smooth folded case.  
 
The multiple V-rib geometry is investigated for different parameters. The pitch, the length of 
the channel and the height of the rib is doubled and its effect on the heat transfer 
characteristics is investigated. 
 
 
 
 
 
 
 
 
 



 34 

The different parameters considered for all the geometries are shown in table 6  
                                               
 
 
                                                     Table 6 : Parameters Investigated                
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4             RESULTS AND DISCUSSIONS 
 
The important flow parameters in this natural convection flow problem are the Rayleigh 
number (Ra) and the Prandtl number (Pr). The Rayleigh number varies from 110  to 610  in all 
the cases except for smooth folded case while the other parameters are maintained at a 
particular value (see table 5 and table 6 . The Prandtl number is 0.71 throughout the study 
since we are only interested in air flow. The heat transfer, the flow characteristics and the 
behavior of the non-dimensional numbers are discussed and compared with the available 
correlations for all the different geometries. 
 

4.1      Smooth Planar 
The flow behavior and the heat transfer characteristics of the smooth planar case are widely 
discussed in this section and the results are validated with the available correlations. 

4.1.1    Inlet and outlet velocity profiles 
 
Figure 16 shows the outlet velocity profile for the smooth planar case for different Ra. For 
low Ra, viscous effects are larger compared to the gravity effects and as a result due to the 
larger viscous diffusion, the presence of the heated wall is being influenced throughout the 
separation between the walls. But for the higher Ra, the gravity effects are much larger than 
the viscous diffusion, so the effects are mainly close to the walls. As the Ra increases, 
flattening of the velocity profile towards the centre of the channel increases and after a critical 
value of Ra, velocity decreases towards the centre of the channel.  For Ra = 610 , the centre 
line velocity becomes close to zero. The trend of the velocity profile is that a further increase 
in Ra would decrease the centerline velocity to zero which concludes that the presence of 
heated wall is not sensed in the centre of the channel for higher Rayleigh numbers. It is 
obvious from figure 16 that as Ra increases; the velocity boundary layer becomes thinner. 

               
                                                  Figure 16: Outlet velocity profile for smooth planar 
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Figure 17 shows the inlet velocity profile of the smooth planar case. The inlet velocity profile 
shows that the trend in the development of the velocity profile is the same, right from the inlet 
for the smooth planar case.  
 
    

                  
 
                                                    Figure 17: Inlet velocity profile for smooth planar 

 

 4.1.2      Outlet temperature profile 
Figure 18, 19 shows the normalized outlet temperature profile for Ra 110  to 610 . The outlet 
temperature profile of the smooth planar case tends to flatten as Ra increases. As the Rayleigh 
number increases the heat flux on the heated wall is also increased. Consequently the air close 
to the wall due to gravitational advection gets more heated in turn increasing the velocity of 
air-flow inside the channel. Eventually, it is obvious that for the highest Rayleigh numbers the 
region away from the heated walls remain unaffected by the temperature increase at the wall. 
This behavior of the temperature profile is similar to the velocity profile for higher Ra. The 
temperature boundary layer also becomes thinner as the Rayleigh number is increased. For Ra 
= 110  the temperature profile is seen as a straight line. This is because of the change in 
temperature for the lowest Rayleigh number is very less compared to the other Rayleigh 
numbers.. 
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                                             Figure 18: Outlet temperature profiles at Ra= 110 , 210 , 310  

 

                                  
                                          Figure 19: Outlet temperature profiles at Ra= 410 , 510 and 610  
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 4.1.3     Average Nusselt number versus Rayleigh number 
 
In this section, the present data is validated against two correlations by Ramanathan and 
Kumar (1991) and Rohsenow et al. (1998) (see sections (2.2.1) and (2.2.2)). The values from 
the smooth planar case are further used to validate the results of the other two complex 
geometries. 
 
Figure 20 shows that the results presented in this investigation give a good agreement with the 
correlation which is recommended by Ramanathan and Kumar (1991). At the investigated 
range of Rayleigh numbers, the present data under-predicts the value as compared to the 
correlation except for the highest Rayleigh number. For Ra= 610 , the present data is in very 
good agreement with the Ramanathan and Kumar correlation. The correlation recommended 

by Ramanathan and Kumar (1991) is valid for 151 ≤≤
S
H

 and 510310 ×≤≤ Ra  for Pr = 0.7 

and the vertical diffusion is assumed negligible in this correlation.  
 

     
                                       Figure 20: Average Nusselt number versus Rayleigh number 

 
The present data is in good agreement with the correlation given by Rohsenow et al (1998). 
The present data shows a slight over-prediction for intermediate Ra but for low and high Ra it 
is in exact agreement with the Rohsenow’s correlation when the c is given a value of 1.07. 
When the c is given a value of 1.15 it under-predicts slightly for the high and low Ra. But 
other than these slight deviations no matter whichever value c takes, the present data is in 
good agreement with the Rohsenow’s correlation. 
 
 
Accordingly the present data for smooth planar case is validated for further comparisons.    
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4.1.4     Local Nusselt number versus Y/H 
 
Figure 21 shows the characteristics of the local Nusselt number for different Rayleigh 
numbers. It follows a general trend for all the Rayleigh numbers. Figure 22 (a) shows the 
local Nusselt number for Ra = 310 along the Y-direction. It decreases as it goes towards the 
outlet, it shows a regular pattern similar to as for Ra = 410  in figure 22 (b), except in the last 
three points. It might be the influence of the pressure outlet boundary condition. Ra = 310  is 
more sensitive to the pressure outlet boundary condition as compared to Ra = 410  because the 
variation of Nusselt number at Ra = 310  is very small. For Ra = 510 , local Nusselt number in 
the last three points doesn’t vary as shown in figure 22 (c). It gives almost the same values 
towards the end. 
 
 
 

                      
                                            Figure 21: Local Nusselt number for different Rayleigh number 

 

   
                            (a) Ra = 310                                                                     (b) Ra = 410                                                        
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                                                                        (c) Ra = 510  
                                                  Figure 22: Local Nusselt number versus Y/H  
 

4.1.5 Validation of the three-dimensional model with the two-dimensional results 
 
               Figure 8 shows the computational domain used for the three-dimensional smooth 
planar model. Special attention is given to mesh the three dimensional model to have the same 
resolution in the two directions as of the two-dimensional model. The velocity gradients along 
the Z-direction in smooth planar case are considered as negligible. As a result, the three-
dimensional model should give the same results as the two-dimensional model. This 
comparison is done to cross check the computational accuracy since the result is already 
known. Moreover all other geometries are three dimensional models and so it is good to 
validate the three dimensional smooth planar results with the validated two dimensional 
results. 
               Figure 23 shows a plot of the Reynolds number versus the Rayleigh number for both 
three-dimensional and two-dimensional cases. It exhibits the same values for both the cases 
which validates the three dimensional model.  Figure 24 shows a plot for the average Nusselt 
number versus the Rayleigh number for the three-dimensional and the two-dimensional cases. 
It shows a slight under-prediction for the highest Rayleigh numbers which can be considered 
as negligible. But the entire data is matching very well with the two-dimensional case. 
 

 
         Figure 23: Re versus Ra for H= 200 mm                   Figure 24: Nu versus Ra for H= 200 mm     
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4.1.6 Temperature distribution over the plates 
 

Figure 25 shows the distribution of temperature over the smooth planar plate for Ra 
= 510 . The temperature gradients can be observed only along the Y-direction. Near the 
inlet, steep temperature gradients occur and the temperature increases as it moves 
away from the inlet. Higher heat transfer is near to the inlet while it decreases as it 
moves away from it.  

 
 
 
                                                  

                                                
                                                 
              Figure 25: Temperature distribution of smooth planar 
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4.2      Smooth Folded 
 
         In this section the smooth folded case shown in figures 3 and 4 is compared with the 
smooth planar results. The range of Rayleigh numbers considered in the investigation of the 
smooth folded case slightly varies from the other cases (see section (3.3)) 

 4.2.1       Average Nusselt number versus Rayleigh number 
 
         Figure 26 compares the plot for average Nusselt number versus Rayleigh number for the 
smooth planar and the smooth folded cases.  
 
  

                  
                 Figure 26: Ra versus average Nusselt number for the smooth planar and the smooth folded cases 

         

 
The average Nusselt number of the smooth planar case is slightly higher than for the smooth 
folded case for low Rayleigh numbers. As the Rayleigh number increases the smooth planar 
Nusselt number becomes closer to that of the smooth folded case and when it reaches 410 , the 
average Nusselt number for both the cases coincides and they continue to be the same for 
higher Rayleigh numbers.  
 
There is however no significant difference between the two cases in the average Nusselt 
number versus Rayleigh number plot in the investigated Rayleigh number range.  
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4.2.2       Local Nusselt number versus Z  
 

Figure 27 shows a plot of the local Nusselt number versus ‘Z’ at Y = 0.1 m for different 
Rayleigh numbers. The variations in local Nusselt number values are due to the folded 
geometry.  
 
Figure 28 shows the behavior of the local Nusselt number at Y = 0.02 m, 0.1 m and 0 .2 m for 
Ra = 310 . At Ra = 310 , the local Nusselt number has a high value near the inlet and moving 
away from the inlet it decreases its value and it gives a minimum value at the outlet.  
 
 
Figure 29 shows the plot of the local Nusselt number versus Z for Ra 310  to 510  at mid 
height. In figure 29 (a), for Ra = 310 the local Nusselt number along the wall shows the same 
nature of the wall geometry while as the Ra number increases, the Nusselt number takes a 
curve as shown in figure 29 (b) and (c) which are corresponding to Rayleigh numbers 410  and 

510 .  
 
    
 

                                       
         F igure 27: Local Nusselt number versus Z                  Figure 28: Local Nusselt Number versus Z  
                                                                                                                  at different downstream locations 

                                                                                                                  for Ra = 310 .The wall geometry is shown   
                                                                                                                 as a reference 
                                                  
 

 
                  (a)                                                  (b)                                                      (c) 

                          Figure 29: Local Nusselt number versus Z for different Ra at Y = 0.1 m 
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4.2.3   Reynolds number versus Rayleigh number 
 
Figure 30 compares the Rayleigh number versus the Reynolds number for the smooth planar 
and the smooth folded cases. Here, the Reynolds number predicted for the smooth folded case 
is lower compared to the prediction of Reynolds number for smooth planar case in the range 
of Rayleigh numbers investigated. Increasing the H/S would result in increasing the Reynolds 
number for a particular Rayleigh number for the buoyancy driven flows between vertical 
plates is shown by Olsson C.-O. (2004). Hence in this particular investigation H/S is 10 for 
the smooth planar case while for the smooth folded case it is 6.667, which reflects the reason 
of the decrease in Reynolds number for the smooth folded case as compared with the smooth 
planar case in the figure 30.  
 
 

              
 
               
             Figure 30: Rayleigh number versus Reynolds number for the smooth planar and smooth folded cases 
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4.2.4     Temperature distribution over the plates 
 
Figure 31 shows the temperature distribution over the smooth folded plate for Ra = 510 . It is 
seen that, the region of the smooth folded plate which projects outwards the channel gives low 
Nusselt number and hence the high temperature distribution on those regions is visible. The 
low heat transfer on this region is compensated by the region of the smooth folded plate that 
is projected into the channel that gives low temperature distribution and high heat transfer. 
The high and low Nusselt numbers on the different regions of the smooth folded plate give 
rise to an average Nusselt number very close to the smooth planar case as shown in section 
(4.2.1). 
 
 
 

                        
                      Figure 31: Temperature distribution for smooth folded geometry 
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4.3     Multiple V-shaped Rib Geometry 
 
The rib geometry creates a secondary flow which exchange heat and momentum between the 
wall regions and core regions. The roughness on the plate increases the heat transfer 
coefficient, but it also increases the pressure drop. Choosing parameters like angle of attack, 
rib angle and pitch to height ratios are important in the optimization of the heat transfer in this 
particular geometry. It should be chosen to have a minimum increase in pressure drop and a 
maximum increase in heat transfer. For this investigation, parameters are chosen based on the 
investigations done by Olsson & Sunden (1998) and Olsson (1999). The results are compared 
with results from the other geometries.   
 
 
The cases investigated for the multiple V-shaped rib geometry is shown in table 6 

4.3.1 Average Nusselt number versus Rayleigh number   
 
         Figure 32 shows the plot of the average Nusselt number versus the Rayleigh number for 
the smooth planar and the multiple V-shaped rib geometry for H = 200 mm. For the lowest 
Rayleigh numbers the average Nusselt number on the V-rib plates are lower than the smooth 
planar cases. But after a critical value (Ra = 1490), the V-rib geometry will have higher heat 
transfer than the smooth planar case. 
 

           
                                  Figure 32: Nu versus Ra for smooth planar and V-rib for H=200mm 

 
With the increase in channel height, the mass flow rate inside the channel is increased. As a 
result, the Reynolds number in the channel will increase by increasing the heat transfer due to 
natural convection. Figure 33 shows a plot of the average Nusselt number versus Rayleigh 
number for the smooth planar and the V-rib cases for H = 400 mm.  
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It can be seen from figure 33 that a decrease in the number of ribs would increase the heat 
transfer rate to some extent. But the smooth planar case, which can be considered as the rib 
geometry with infinite pitch length, has the lowest Nusselt number. As a result it is obvious 
that decreasing the pitch after a particular limit would tend to decrease the Nusselt number 
instead of increasing it. The critical Rayleigh number at which the Nusselt number for the V-
rib geometry crosses the smooth planar case is decreased further with the increase of height. 
For 20 mm pitch it gives a higher Nusselt number from Ra = 740 and for 40 mm pitch critical 
Ra is further decreased to 490 as shown in figure 34. However when the rib height is 
increased to 4 mm from 2 mm, the critical Ra is also increased to 1200.  

            
                                Figure 33: Average Nusselt number versus Rayleigh number   
 

              

                                                     Figure 34: portion inside the box in figure 33 
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Figure 35  shows ratio of the Nusselt number for the rib geometry and the smooth planar case 
versus Ra plot for H = 200 mm and H = 400 mm for both the pitch lengths considered. In the 
region below the straight dotted line (Nu-rib/Nu-smooth = 1), all the geometries give Nusselt 
numbers lower than the smooth planar case. At low Rayleigh number, ribs on the geometry 
would tend to resist the flow by reducing the Nusselt number. But increasing the height and 
pitch tend to improve the heat transfer of the V-rib geometry. However, when the rib height is 
increased to 4 mm from 2 mm it gives a lower Nusselt number. 

                         
                       Figure 35: Nu-rib/Nu-smooth planar versus Ra  

Figure 36 shows the Nu-rib/ Nu-smooth planar versus Re plot for H = 200 mm and H = 400 
mm for P = 20 mm and P = 40 mm and for r = 2 mm and r = 4 mm. V-rib geometry gives 
almost the same Nusselt numbers for the same value of Reynolds numbers for the highest 
Rayleigh numbers for different pitch lengths, while the smooth planar geometry gives higher 
Nusselt numbers for lower Reynolds numbers. Figure 35 and 36 shows that the variation of 
Nusselt number for the V-rib geometry with respect to the corresponding smooth planar case 
for different parameters of the V-rib doesn’t depend much on the Reynolds number. 

                        
                                         Figure 36: Nu-rib/Nu-smooth planar versus Re 
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4.3.2 Local Nusselt number versus Z  
 
         Figure 37 shows a plot of the local Nusselt number versus Z at Y = 0.1 m for P = .02 m 
and H = 0.2 m. With an increase in Rayleigh number, the local Nusselt number across the 
plate also increases since the heat flux given on the plates are higher for higher Rayleigh 
numbers.  
 
 
Figure 38 (a) shows the plot of the local Nusselt number versus Z at different downstream 
locations for the V-rib pointing downstream while Figure 38 (b) shows the plot for the V-rib 
pointing upstream. Both gives high Nusselt number in the inlet and decreases as it goes 
downstream. A higher heat transfer occurs near the inlet. Due to the ribs throughout the 
geometry, secondary flow is generated and it gives a higher heat transfer coefficient where the 
secondary flow tends to transport more heat into the flow. 
 
 

                         
 

            Figure 37: Local Nusselt number versus Z at y= 0.1 m at different Ra 

    
                                         (a)                                                                            (b) 

     Figure 38: Local Nusselt Number Versus Z at different downstream locations for Ra = 310  
 



 51 

4.3.3    Reynolds number versus Rayleigh number 
 
Figure 39 shows the plot of the Reynolds number versus the Rayleigh number with different 
parameters for the multiple V-rib geometry and for the smooth planar case. It is seen that the 
Reynolds number increases with increasing Rayleigh number. Increasing the duct height 
corresponds to increasing the Reynolds number. Almost for all Rayleigh numbers, the smooth 
planar channel gives a higher Reynolds number with respect to the V-rib geometry. When the 
rib height is increased from 2 mm to 4 mm, it resists the flow in turn reducing the Reynolds 
number as compared to the other V-rib cases. 

 

      
                                      Figure 39: Reynolds Number versus Rayleigh Number 
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4.3.4    Temperature distribution over the plates 
 
 
Figure 40 (a) shows the positions of V-ribs with respect to the flow while figure 40 (b) shows 
the temperature distribution between the two ribs. For uniform heat flux boundary condition, 
the region of the plate with high temperature has less heat transfer and the region with lower 
temperature has the high heat transfer. The rib geometry creates secondary flow which 
exchange heat and momentum between the wall regions and core regions. The edge with 
higher temperature will have the vortices directed away from it. As a result, less heat transfer 
occurs in that edge. While the other edge will have the vortices impinging on it that cause to 
extract more heat from the edges resulting in high heat transfer. Temperature distribution in 
this edge gives lower temperature. 
 
 
 

 
 
                          
          
  (a) Position of V-ribs with respect to flow direction                   (b) Temperature distribution between two ribs                                                                                              
                                                                                                                               
                                Figure 40: Temperature distribution for the V-rib geometry                                                                                                                                          
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4.3.5      Velocity vectors at the mid-plane of the V – rib geometry 
 
Figure 41  shows the velocity vectors of the V-rib geometry at Y = 0.2 m for Ra = 510 . Here 
the velocity vectors clearly show the presence of secondary flow along the X and Z-direction 
while the air flow is in Y-direction. Ribs on the plate induces a secondary flow as shown in 
figure 41  which in turn mixes the flow well and enhances the heat transfer in a duct . 
 
 

                                                                  
 

                                                
 

               Figure 41: Velocity vectors at mid- plane of the V-rib geometry of H = 400 mm at Ra = 510  
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4 CONCLUSION 
 
Numerical results have been presented for the buoyancy-driven flow of air between parallel 
plates with uniform heat flux for three different geometries. The physics of the problem and 
the heat transfer characteristics have been discussed for all the three geometries at a wide 
range of Rayleigh numbers.  
 
The flow and the heat transfer characteristics of the smooth planar case is analyzed and 
validated with the available correlations. The Nusselt number on the smooth folded plate 
doesn’t vary much with respect to the smooth planar plate.  
 
Ribs on the wall create secondary flow which exchange heat and momentum between the wall 
regions and core regions. Wall with ribs on it gives higher Nusselt number compared to the 
smooth planar case for all range of Rayleigh numbers except for the lowest Rayleigh 
numbers. Different parameters like pitch, height and rib height are varied and the effect of it 
on the heat transfer characteristics is evaluated. It is noticed that decreasing the number of ribs 
until a certain limit would result in an increase in the Nusselt number and doubling the height 
also results in an increase in heat transfer coefficient. However, increasing the rib height tends 
to decrease the heat transfer coefficient compared to the other V-rib cases of the same height. 
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