

## LPT with random walk model And interPhaseChangeFoam with non-homogeneous nuclei distribution.

Aurélia Vallier

#### Division of Fluid Mechanics Department of Energy Sciences Lund Institute of Technology, Lund Sweden



# INTRODUCTION

Cavitation in hydro-turbines

- Travelling bubble
- Attached cavitation
  - Sheet cavitation
  - Cloud cavitation
- Supercavitation
- Vortex cavitation

 $\rightarrow$  interPhaseChangeFoam (based on Sauer model)













- Sauer model
- Nuclei distribution
- Sauer model with a non-uniform nuclei distribution



| Pressure drop   | Cavitation number                                          | $\sigma = \frac{p_{\infty} - p_{\nu}}{1/2\rho u_{\infty}^2}$                                                                                                                                          |
|-----------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nuclei          | Nuclei density n0<br>Nuclei radius R                       | $\alpha = \frac{n_0 \cdot \frac{4}{3}\pi R^3}{1 + n_0 \cdot \frac{4}{3}\pi R^3}$                                                                                                                      |
| Two phase flow  | Interface tracking<br>Transport equation<br>Mass transfert | Volume Of Fluid<br>$\rho = \rho_v \alpha + \rho_l (1 - \alpha)$ $\mu = \mu_v \alpha + \mu_l (1 - \alpha)$ $\frac{\partial \alpha}{\partial t} + \nabla \cdot \alpha \vec{U} = \frac{\dot{m}}{\rho_l}$ |
| Turbulence      | Turbulence model                                           | RANS (2D)<br>LES(3D)                                                                                                                                                                                  |
| Bubble dynamics | Rayleght-Plesset equation                                  | $\frac{dR}{dt} = \sqrt{\frac{2}{3} \frac{p(R) - p_{\infty}}{\rho_l}}$                                                                                                                                 |

# **SAUER MODEL - Achievements**

The mechanisms of the unsteady behavior are well simulated.



. Re-entrant jet

. Attached cavity

#### . Cloud transported downstream

#### . Vapor shedding



# **SAUER MODEL - Limitations**





. Transition between the attached cavity and the cloud of vapor —



#### . The break-off with many small structures





. Compressibility  $\rightarrow$  collapse, shock wave, erosion

| Pressure drop   | Cavitation number                                          | $\sigma = \frac{p_{\infty} - p_{\nu}}{1/2\rho u_{\infty}^2}$                                                                                                                                          |
|-----------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nuclei          | Nuclei density n0<br>Nuclei radius R                       | $\alpha = \frac{n_0 \cdot \frac{4}{3}\pi R^3}{1 + n_0 \cdot \frac{4}{3}\pi R^3}$                                                                                                                      |
| Two phase flow  | Interface tracking<br>Transport equation<br>Mass transfert | Volume Of Fluid<br>$\rho = \rho_v \alpha + \rho_l (1 - \alpha)$ $\mu = \mu_v \alpha + \mu_l (1 - \alpha)$ $\frac{\partial \alpha}{\partial t} + \nabla \cdot \alpha \vec{U} = \frac{\dot{m}}{\rho_l}$ |
| Turbulence      | Turbulence model                                           | RANS (2D) + RandomWalk<br>LES(3D)                                                                                                                                                                     |
| Bubble dynamics | Rayleght-Plesset equation                                  | $\frac{dR}{dt} = \sqrt{\frac{2}{3} \frac{p(R) - p_{\infty}}{\rho_l}}$                                                                                                                                 |

| Pressure drop   | Cavitation number                                          | $\sigma = \frac{p_{\infty} - p_{\nu}}{1/2\rho u_{\infty}^2}$                                                                                                                                          |         |
|-----------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Nuclei          | Nuclei density n0<br>Nuclei radius R                       | $\alpha = \frac{n_0 \cdot \frac{4}{3}\pi R^3}{1 + n_0 \cdot \frac{4}{3}\pi R^3}$                                                                                                                      | >       |
| Two phase flow  | Interface tracking<br>Transport equation<br>Mass transfert | Volume Of Fluid<br>$\rho = \rho_v \alpha + \rho_l (1 - \alpha)$ $\mu = \mu_v \alpha + \mu_l (1 - \alpha)$ $\frac{\partial \alpha}{\partial t} + \nabla \cdot \alpha \vec{U} = \frac{\dot{m}}{\rho_l}$ |         |
| Turbulence      | Turbulence model                                           | RANS (2D) + RandomWalk<br>LES(3D)                                                                                                                                                                     |         |
| Bubble dynamics | Rayleght-Plesset equation                                  | $\frac{dR}{dt} = \sqrt{\frac{2}{3} \frac{p(R) - p_{\infty}}{\rho_l}}$                                                                                                                                 | OUT RVM |



Nuclei distribution?

Assumption: uniform Experiments : non uniform

→ numerical simulations?





- Sauer model
- Nuclei distribution
- Sauer model with a non-uniform nuclei distribution



## **NUCLEI DISTRIBUTION - LPT**

Mean flow data (Converged, steady state solution – RANS) ➡ U

Particles (Lagrangian Particle Tracking LPT)

$$(\mathbf{P}) \quad x_p, D_p, U_p, m_p$$





## **NUCLEI DISTRIBUTION - LPT**

Mean flow data (Converged, steady state solution – RANS) ➡ U

Particles (Lagrangian Particle Tracking LPT)







## **NUCLEI DISTRIBUTION - LPT**

Mean flow data (Converged, steady state solution – RANS) ➡ ▶ U

Particles (Lagrangian Particle Tracking LPT)





### **NUCLEI DISTRIBUTION - Random walk model**



 $U \Rightarrow \tilde{U} = U + U^{fluct}$ 





#### **NUCLEI DISTRIBUTION - Random walk model**

$$U \Rightarrow \tilde{U} = U + U^{fluct}$$

$$U \Rightarrow \tilde{U} = U + U^{fluct}$$

$$U^{fluct} = \psi \sqrt{2k/3}$$
N(0, 1)
Eddy life time
$$t_e = \frac{l_e}{u_e} = \frac{C_{\mu}^{0.63} k^{3/2} / \epsilon}{\sqrt{2k/3}}$$
Particle transit time
$$t_{tr} = -\tau_P \ln (1 - \frac{l_e}{\tau_P |U - U_P|})$$
Interaction time
$$t_{inter} = \min(t_e, t_{tr})$$



## **NUCLEI DISTRIBUTION – Problem Set Up**



NR \* SIGIL







average of the number of particles



Lund university / Energy Sciences / Fluid Mechanics



Nuclei distribution?

Assumption: uniform Experiment: non uniform **LPT simulations: non uniform** 

 $\rightarrow$  sensitivity of Sauer model to a non uniform nuclei content?





- Sauer model
- Nuclei distribution
- Sauer model with a non-uniform nuclei distribution



# NON UNIFORM NUCLEI CONTENT

- InterPhaseChangeFoam n0=1e8
- Nuclei density



- MyInterPhaseChangeFoam
  - volScalarField n0nonunif
  - funkySetField (1e-6 or 1e-4 in the domain, and 1 in the layer).
  - n0  $\rightarrow$  n0nonunif . n0

#### NON UNIFORM NUCLEI CONTENT

|          | $\delta_N=0.5$ | $\delta_N=1$ | $\delta_N=2$ | $\delta_N=4$ |
|----------|----------------|--------------|--------------|--------------|
| $N=10^2$ | case 1         | case 2       | case 3       | case 4       |
| $N=10^4$ | case 5         | case 6       | case 7       | case 8       |





Lund university / Energy Sciences / Fluid Mechanics

### NON UNIFORM NUCLEI CONTENT

Uniform  $N = 10^8$ 

$$N=10^4, \delta_N$$
=2 mm)  $\Lambda$ 

$$N=10^2, \delta_N=2 \text{ mm}$$





7s

Lund university / Energy Sciences / Fluid Mechanics

# CONCLUSIONS

- Performances/limitations of Sauer model
- Non uniform nuclei content
  - $\rightarrow$  inception,
  - $\rightarrow$  thickness and velocity of the re-entrant jet,
  - $\rightarrow$  shape of the cavitating structures and volume of vapor.

