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Populärvetenskaplig sammanfattning

Mycket få människor omkring oss vet innebörden av ordet kavitation, förutom de som såg
filmen "The Hunt for Red October" och kan relatera kavitation till Sean Connery i en ubåt.
Kavitation motsvarar bildandet av bubblor, som kan likna kokande vatten i en kastrull. Men
den uppstår inte på grund av en hög temperatur utan på grund av ett lågt tryck. Den finns
i de flesta tekniska anläggningar som innehåller vätska i rörelse. Problemet med kavitation
är dess negativa konsekvenser. Till exempel orsakar den oljud vilket inte är onskvärt för en
ubåt. Den kan också leda till förstörelse av ytor, vilket inte är onskvärt i en vattenturbin.

Kavitation i vattenturbiner orsakar förändringar och instabilitet i strömningen, och im-
plosion av bubblor. Detta resulterar i en minskning i effektivitet, vibrationer och erosion
(skador på ytor). Kavitation kan undvikas om turbinen ställts tillräckligt låg, så att det
statiska trycket är tillräckligt högt för att förhindra att vatten övergår till gasform. Men
byggkostnaderna för en sådan låg inställning är mycket höga. Därför måste man hitta en
kompromiss mellan motstridiga krav på en låg installationskostnad och undvikande av neg-
ativa effekter från kavitation.

Kavitation är mycket komplex. En stor mängd forskning har gjorts under de senaste 30
åren för att förbättra förståelsen för detta fenomen. För att få mer kunskap om kavitation
i vattenturbiner, kan man använda sig av numeriska modeller. Genom att lösa lämpliga ek-
vationer kan man beskriva hur kavitation börjar och utvecklas. Det finns modeller för varje
specifik företeelse. Dock är kavitationsmodellering fortfarande mycket utmanande eftersom
fenomenet leder till snabba variationer av strömingsegenskaper och samspelet mellan vat-
ten, ånga och gas. Ångan som bildas vid kavitation kan uppträda i varierande storlek och
form, från mikroskopiska sfäriska bubblor, till stora sammanhängande strukturer. Dessu-
tom är strömningen turbulent. Alla dessa egenskaper kräver lämpliga modeller för att exakt
förutsäga kaviterande strömningar.

I detta arbete utförs beräkningar för att utvärdera resultaten av olika modeller. En ny
flerskalig modell utvecklas och används på en kaviterande strömning kring en vingprofil.
Den nya modellen omfattar både små sfäriska bubblor, stora icke-sfäriska ånga strukturer
och övergången mellan dessa regimer. Det är mycket intressant att ha en modell som kan
förutsäga hur dem minsta bubblorna transporteras till regioner med lågt statiskt tryck, där
de växer och sen imploderar. Genom att mäta tryckvågen som släpps från bubblan, kan man
förutse risken för att närliggande ytor ska skadas. Tack vare den förbättrade modellen, kan
man förutse där kavitation orsakar skador. Denna kunskap kan i ett senare skede hjälpa till
att utforma geometrier som minskar de negativa effekterna av kavitation. Särskild omsorg
kan då tas, så att bubbelimplosionerna sker långt ifrån ytor. Detta skulle minimera skador
på ytorna, och därmed minska underhållskostnaderna.
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Abstract

Very few people around us know the meaning of the word cavitation, except from those
who saw the movie The Hunt for Red October and can relate cavitation to Sean Connery in
a submarine. Some of them know that it corresponds to the formation of bubbles, due to a
pressure drop, and causes erosion and noise. However, cavitation is much more complex. A
large amount of research work has been done over the last thirty years in order to improve
the understanding of the interactions between the various physical processes involved.

The present work aims at gaining more knowledge about cavitation in water turbines.
Some of the properties of cavitation at a water turbine runner blade are similar to those at
a hydrofoil in a water test tunnel. Therefore, the overall purpose of this work is to improve
the numerical models for cavitation inception and development on a hydrofoil. The focus
of this thesis lies on numerical methodologies that include the broad range of cavity sizes,
using appropriate models for each specific phenomenon.

The smallest bubbles, called nuclei, are tracked in the flow with the Discrete Bubble
Model, and their dynamics is resolved with the Rayleigh-Plesset equation. This approach
can predict how the nuclei are transported over a hydrofoil to regions of low static pressure,
where they grow and either collapse or contribute to the formation of large-scale vapour
cavities.

The large non-spherical structures are commonly modelled using the Volume-Of-Fluid
method together with a mass transfer model for vaporisation and condensation. This ap-
proach predicts the development of the vapour cavity, such as its breakup and the shedding
process observed experimentally in the context of cavitating hydrofoils.

The present work implements the above-mentioned models in the OpenFOAM C++
library, and performs simulations to assess the performance of the models. A new multi-
scale model is developed, implemented and used on a cavitating hydrofoil. The multi-scale
model includes both the small spherical bubbles, the large non-spherical vapour structures,
and the transition between those regimes.
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Nomenclature

Roman symbols
Cdrag Drag coefficient [−]
Clift Lift coefficient [−]
c0 Chord length [m]
D Diameter [m]
F Force [kg m s−2]
g Gravitational constant [m s−2]
m Mass [kg]
n Unit normal vector [−]
nnuc Nuclei density [m−3]
p Pressure [kg m−1 s−2]
R Radius [m]
S Source term [kg m−2 s−2] or [s−1]
t Time [s]
t Unit tangential vector [−]
U Velocity [m s−1]
V Volume [m3]
x Position [m]

Greek symbols
α Liquid volume fraction [−]
η Efficiency [−]
ε Coefficient of restitution [−]
κ Curvature [m−1]
μ Dynamic viscosity [kg m−1 s−1]
ν Kinematic viscosity [m2 s−1]
ρ Density [kg m−3]
σst Surface tension coefficient [−]
σ Cavitation number [−]
θ Angle [−]
τ Stress tensor [kg m−1 s−2]

Subscripts
a Acoustic wave
B Bubble
E Eulerian
g Gas
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l Liquid
L Lagrangian
nuc Nuclei
v Vapour
w Wall
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Chapter 1

Introduction

Cavitation in water turbines causes flow alterations and instabilities, and collapses of
bubbles. This results in a drop in efficiency, vibration, erosion and noise. Cavitation can
be avoided if the setting of the turbine (i.e. its location with respect to tailwater elevation)
is sufficiently low, yielding a static pressure at the runner that is high enough to prevent
evaporation. However, construction costs for such a low setting are very high. Therefore,
the setting is a compromise between the conflicting demands of a low cost installation, and
a few negative effects from cavitation.

A better knowledge of the cavitation phenomenon would help when designing geometries
that reduce the negative effects of cavitation. Special care can be taken, such that the bubble
collapse energy is reduced, or that the collapse occurs far away from surfaces. This would
minimise the damages on the surfaces, and thus reduce the maintenance costs. Computa-
tional Fluid Dynamics (CFD) simulations is an alternative to prototype experiments in order
to improve the understanding of how to avoid cavitation problems. CFD has been used, for
example, to study the influence of modifications of the shape of the trailing edge, the runner
or the curvature of the blade by Göde [20], Zobeiri et al [78], Ingvarsdottir et al. [31] and
Mishima [48] respectively.

Several numerical cavitation models have recently been introduced in the literature and
in general-purpose CFD codes. However, modelling cavitation is still very challenging since
it involves the interactions between liquid, vapour and undissolved gas, and moreover rapid
temporal and spatial variations of the flow properties. The cavities range in size from mi-
croscopic spherical bubbles, to large-scale coherent structures. Furthermore, the flow is
turbulent, and highly dynamic and unstable. All these features require appropriate models
in order to accurately predict cavitating flow.

Many of the cavitation properties found in a water turbine are similar to those at a hydro-
foil in a water test tunnel. The numerical models for cavitation inception and development
are thus in the present work evaluated for cavitation at a hydrofoil. The focus is on the
mechanisms of sheet and cloud cavitation, and the transition between those phenomenon.
A sheet cavity is a large attached structure which covers a part of the hydrofoil, while cloud
cavitation corresponds to a large number of small bubbles being transported with the flow.
The sheet cavity length may oscillate if the rear part is periodically detached from the cavity,
and the detached part turns into a cloud of small bubbles. Therefore, the present work has a
focus on including the broad range of cavity sizes, using appropriate models for each specific
phenomenon.
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The large-scale cavitation inception, development and break up is frequently modelled
using the Volume-Of-Fluid (VOF) method, with a mass transfer model for the vaporisation
and condensation [30, 41]. In the mass transfer model developed by Sauer and Schnerr [62],
the vaporisation is governed by the number of cavitation nuclei per unit volume in the fluid.
The cavitation inception is modelled by a linearized Rayleigh-Plesset equation for the rate
of growth of the nuclei. This approach successfully predicts the attached sheet cavity, the
re-entrant jet which breaks up the cavity, and the shedding process. The part of the cavity
that breaks off is however transported downstream as a large coherent structure rather than
a cloud of bubbles.

For the small bubbles, a more relevant approach is to use the Discrete Bubble Model
(DBM) to track individual bubbles, and a Rayleigh-Plesset equation to resolve the bubble
dynamics and model the collapse of individual bubbles. With a four-way coupling method,
the interaction between the bubbles is accounted for and the flow is affected by the presence
of the bubbles.

In the present work, simulations are performed to assess the accuracy of the VOF model,
with and without the mass transfer model of Sauer and Schnerr [62]. The mass transfer
model is modified to account for a non-uniform distribution of nuclei, and simulations are
performed to show the effects on the cavitation development. The DBM approach and the
Rayleigh-Plesset equation are implemented, and used to investigate the sensitivity to the
model parameters. Finally, a new multi-scale model is described, implemented and used
on a cavitating hydrofoil. It models both the small spherical bubbles (using DBM and the
Rayleigh-Plesset bubble dynamics model), the large non-spherical vapour structures (using
VOF and the Sauer and Schnerr mass transfer model), and the transition between those
regimes.

1.1 Objectives
The overall purpose of this work is to investigate and improve the numerical models that

are suitable for modelling cavitation inception and development on a hydrofoil. The work
is performed within the OpenFOAM C++ library [53]. The objectives of this thesis are
therefore

• to evaluate the accuracy of the VOF model implemented in OpenFOAM,

• to investigate the behaviour of the predicted cavitation on a hydrofoil, using the VOF
and Sauer and Schnerr mass transfer model in OpenFOAM,

• to implement and evaluate an improvement of the Sauer and Schnerr mass transfer
model, taking into account a non-uniform nuclei distribution,

• to implement and investigate the behaviour of the Rayleigh-Plesset equation for bubble
dynamics,

• to implement the DBM model, with four-way coupling and the Rayleigh-Plesset equa-
tion for bubble dynamics, and evaluate it under academic and realistic conditions,

• to implement an interaction between the VOF and DBM methodologies, and evaluate
it in academic and realistic conditions.
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1.2 Achievements
An overview of the main achievements of this work is given below.

• The Volume-Of-Fluid (VOF) method is assessed under non-cavitating conditions.
Simulations are performed for deformable air bubbles in a water channel and for the
breakup of a liquid jet. The results obtained with OpenFOAM are compared to ex-
perimental data and numerical results from an in-house code.

• The Discrete Bubble Model (DBM) approach is implemented and used under
non-cavitating conditions to study the nuclei distribution at a hydrofoil.

• The non-uniform nuclei distribution is included in the mass transfer model of Sauer
and Schnerr [62] in order to highlight its effects on the cavity shape and behaviour.

• The Rayleigh-Plesset equation is implemented to model the bubble dynamics. It
is used to study the influence of the various model parameters on the results.

• The Discrete Bubble Model and the Rayleigh-Plesset equation are coupled into a cav-
itation bubble model. This model is used under cavitating condition in the case of
nuclei travelling above a rectangular cylinder. The results include the trajectory of the
bubbles, the evolution of their radius and the pressure wave emitted at collapse.

• A method is developed to couple the VOF model and the Discrete Bubble
model under non-cavitating condition. It is based on the detection of the small bubbles
and their conversion from the VOF description to the DBM approach. This model is
implemented and used for modelling the breakup of large vapour bubbles by a liquid
jet and the formation of small Lagrangian bubbles.

• A multi-scale cavitation model is developed and implemented. It uses

– the VOF model with the mass transfer model of Sauer and Schnerr [62] to predict
the large vapour structures,

– the cavitation bubble model (the Discrete Bubble Model with the Rayleigh-Plesset
equation) to predict the small spherical bubbles,

– the model for the detection of the small bubbles and the conversion from the VOF
description to the DBM approach,

– a model for the conversion from the DBM approach to the VOF description.

This model is used in the case of a cavitating hydrofoil.
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Chapter 2

Cavitation description

Cavitation involves many complex phenomena. Here some of them are discussed, such
as the initiation (inception), the effect on efficiency, and the development which includes the
forms commonly taken, the transition from sheet and cloud cavitation, and the dynamics of
the smallest bubbles.

2.1 Cavitation inception
Cavitation inception can be described as the transition of a liquid into vapour due to

a local reduction in static pressure. It requires the presence of nuclei in the fluid. Nuclei
are small bubbles containing gas and vapour with diameters in the range of 10−3 to 10−1

mm. They are present in most technical systems where liquids are transported. If a nucleus
enters a zone of low static pressure its radius grows. This may yield cavitation, which can
take different forms, depending on the flow conditions.

During the process, only nuclei over a certain size are stimulated into growth. Indeed the
behaviour of a single nucleus influences the flow, and therefore it also influences the behaviour
and the stability of the nuclei nearby. Masato [42] studied the interaction between nuclei
and concluded that when the largest nuclei affects the flow, the smaller ones do not grow
anymore or do not even become unstable. Other authors, such as Arora et al. [2] , Brennen
[8] and Morch [49] point out the nuclei content and size as crucial factors for cavitation
inception.

Apart from the free stream nuclei mentioned above, nuclei can also exist on the surface.
They are small attached cavities which develop on the roughness of the surface. Therefore
the type of surface influences cavitation inception and development.

Another important parameter for cavitation inception is the turbulence because tur-
bulence mixing may enhance the presence of nuclei in the turbulent boundary layer, and
affect the form of the cavitation at inception. Franc [16] considered three different con-
figurations to show that the type of the boundary layer affects the influence of the nuclei
content and distribution on cavitation inception. In the case described in Figure 2.1(a), the
laminar boundary layer separates from the wall and instabilities develop in the shear layer
downstream separation. In that case, cavitation inception occurs in the core of the vortices,
where the nuclei are trapped. In the case described in Figure 2.1(b), the separation of the
laminar boundary layer is followed by the transition to turbulence and the reattachment of
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the turbulent boundary layer to the wall. In that case, cavitation inception occurs in this
small recirculation region, where the nuclei are trapped. In the case of an attached turbulent
boundary layer, cavitation inception occurs as isolated bubbles, originating from the nuclei
attached to the wall or transported by the fluid.

(a) (b)

Figure 2.1: (a) The nuclei are trapped in the core of the vortices, downstream the laminar
separation. (b) The nuclei are trapped in the small recirculation region, between the laminar
separation and the reattachment of the turbulent boundary layer to the wall.

2.2 Cavitation effect on efficiency
Different types of cavitation can be visualised in experimental tests on a blade profile by

varying the angle of attack and the cavitation number σ,

σ =
p∞ − pv

1
2
ρU2∞

.

where ρ is the fluid density, pv is the vapour pressure, p∞ and U∞ are the pressure and the
velocity at the inlet of the test section, far upstream from the blade.

Cavitation tests on hydraulic turbine models are performed to determine the values of
a critical cavitation number in relation to the operating regime. Figure 2.2 shows a typical
result obtained from a cavitation test. One can observe that when the cavitation number σ
decreases, it doesn’t have any influence on the efficiency until a critical value σc is reached.
For a cavitation number in the range [σc, σp], cavitation may appear but the turbine can
sustain a certain amount of cavitation without consequences on the efficiency. Under the
critical value however, a performance drop is observed. This is due to the strong instabilities
generated by the large cavitating structures, as illustrated in Figure 2.3.

η

σ

-η0

|
σc

|
σp

Figure 2.2: Turbine efficiency as a function of cavitation number.
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(a) (b)

Figure 2.3: Large cavitating structures in a Kaplan turbine, at a cavitation number lower
than the critical value σc. (a) Attached cavitation on the runner and the blade. (b) Hub
vortex cavitation. (These personal photos are from a cavitation test which was conducted
on the model of a Kaplan turbine at Vattenfall Research and Development, Älvkarleby.)

2.3 Cavitation development
Cavitation in a water turbine can take different forms as it develops from inception, e.g.

bubble, sheet, cloud, tip vortex, hub vortex and tip clearance cavitation [16].
The different types of cavitation are briefly described below and illustrated in the pictures

of Figure 2.4.

1. Bubble cavitation corresponds to bubbly structures convected by the flow. They
appear in the region of low pressure as a result of a rapid growth of nuclei.

2. Sheet cavitation corresponds to an attached structure which covers a part of the
blade. It is smooth and transparent. The closure region of the sheet cavity can be
cloudy and turbulent.

3. Cloud cavitation corresponds to a foamy and unsteady structure. The cloud contains
a large amount of bubbles which may collapse when they are advected by the flow.

4. Tip and hub vortex cavitation corresponds to a vaporisation of the vortex core.

5. Tip clearance cavitation takes place in the gap between the runner blades and the
machine casing in the case of a Kaplan turbine. This type of cavitation is driven by
the flow shear layer in this gap [26].

Transition from sheet to cloud cavitation

The attached sheet may develop into a cavitating cloud. Experimental and numerical
studies highlight the following features [16].

• An adverse flow is initiated from the rear part of the cavity. It acts as a re-entrant
jet that impacts and splits the cavity interface.

6



(a) (b)

(c) (d)

(e)

Figure 2.4: Different types of cavitation: (a) bubble cavitation; (b) sheet cavitation; (c)
cloud cavitation; (d) tip and hub cavitation; (e) tip clearance cavitation. (Photo (a), courtesy
of Applied Fluid Engineering Laboratory at The University of Tokyo, www.fluidlab.sys.t.u-
tokyo.ac.jp. Photos (b), (c) and (d) are from experiments performed at MIT’s Variable Pres-
sure Water Tunnel, courtesy of Dr. S. Kinnas. The personal photo (e) is from a cavitation
test conducted on the model of a Kaplan turbine at Vattenfall Research and Development,
Älvkarleby.)
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• The upstream part, still attached to the blade, grows into a new sheet cavity.

• The downstream part turns into a cloud of small bubbles advected by the flow. The
small bubbles collapse when they reach a region with higher pressure.

Bubble collapse and erosion

Depending on their properties and the pressure applied on them, the small bubbles may
stay in equilibrium, collapse, or grow into macroscopic bubbles. Studies in the context of
cavitation erosion focus on the bubble collapses and their damaging effects. Rayleigh [59]
originally explained that a single collapsing spherical bubble emits a large pressure peak
which can be directly responsible for surface damages. The shock wave radiated in the
liquid may however also influence the collapse of the surrounding bubbles and cause a focus
of energy [22]. Thus, erosion is in reality a result of a complex interaction within a cloud of
bubbles. The shock waves emitted by collapsing bubbles affect bubbles close to walls, causing
them to collapse and damage the surface [44]. Near a solid surface, a bubble is deformed
and the acoustic wave emitted by the collapse of an asymmetrical bubble is weaker than the
one issued from an unbounded collapse [73]. The erosion process is therefore explained by
the co-existence of a shock wave and a strong liquid jet which penetrates through the bubble
and impacts the surface upon collapse [5, 9, 58]. The damaging effect of the liquid jet is
related to the tremendous velocity and temperature involved. The relative contribution from
the shock wave and the liquid jet, on surface damage, depends on the shape of the bubble
and its distance from the surface [55, 67]. Furthermore, the presence of a vapour jet induced
by gravity may be observed, and yields asymmetric rebounds [70]. These observations and
theories still don’t fully explain the mechanism of erosion because of the diversity of factors
that influence the way bubbles approach the solid surface and the way they collapse [4].
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Chapter 3

Modelling of multiphase flow

Cavitation is a multiphase phenomenon. A brief survey of the available approaches to
model multiphase flow is given here, followed by specific descriptions of those used in the
present work, in section 3.1 and 3.2.

A multiphase flow involves at least two phases with different properties and their inter-
action. For sake of simplicity, only two phases are considered here. There are three different
modelling approaches, depending on the properties of the flow.

1. The phases are interpenetrating, i.e. both phases occupy the same macroscopic
space. This is modelled using two sets of mass and momentum equations, one for each
phase, and they are coupled by the void fraction and by additional source terms in the
momentum equations. This method is the Euler-Euler approach.

2. There is a continuous phase and a dilute/disperse phase where the dispersed
phase occupies a low volume fraction. This is modelled by treating the continuous
phase (typically a fluid) as a continuum while the dispersed phase is considered as
particles/bubbles that are tracked individually. This method is the Euler-Lagrange
approach. The mass and momentum equations are solved for the continuous phase
while the dispersed phase is solved by tracking the particles/bubbles through the cal-
culated flow field. The approach is called Lagrangian Particle Tracking (LPT) in the
case of solid particles, and Discrete Bubble Model (DBM) in the case of bubbles. The
dispersed phase exchanges momentum, mass and energy with the fluid phase. The
trajectory of the particles/bubbles are calculated individually at specified intervals
during the fluid phase calculations. The mathematical approach is presented in detail
in section 3.2 and illustrated in Figure 3.1(b).

3. The phases are not interpenetrating, i.e. there is only one phase in each macroscopic
position, and there is an interface between the phases. This is modelled by a single
set of momentum and continuity equations that are shared by the two phases. The
equation properties in each position is determined by which phase is present in that
position. There is a sharp spatial switch (interface) between the phases that must
be tracked. In numerical algorithms for interface tracking, the interfaces are updated
using fixed or moving grid.

(a) When using a fixed (Eulerian) grid, an implicit description of the interface
must be used. The interface arbitrarily cuts and moves through the computational
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cells. The interface is tracked by surface methods (distance function (Level-set
method)) or volume methods (cell marker (MAC method) or volume fraction
(VOF method)).

i. In the Level-set methods the interface is represented by a distance function
and a scalar convection equation is solved for this function. The function is
commonly defined as the signed distance of the cell center to the interface,
being positive in one phase and negative in the other phase. Based on the
representation of the level-set function, no reconstruction of the interface is
necessary and the curvature and normal vectors can be computed with high
accuracy. However, limitations arise when merging or breakup of interface
occurs, and mass conservation is not necessarily fulfilled.

ii. In the method of marked particles, MAC, a cell without marker particles
is considered empty, a cell with marker particles and adjacent to an empty
cell is considered as a part of the interface, and other cells are considered
filled with fluid. This method gives a smeared interface but can treat com-
plex phenomena. The computing effort is significantly increased because the
equations of motion for a large number of particles need to be solved.

iii. In the VOF method, a scalar volume fraction is used to distinguish between
the two fluids. A general mass conservative transport equation is solved for
the volume fraction. The VOF method can handle severe topological changes
of the interface since it requires no a priori assumptions on the nature of the
interface. Its disadvantage is the difficulty of preserving a sharp interface,
and that the curvature and orientation of the interface are not determined
accurately. The mathematical approach of the VOF method is presented in
section 3.1 and illustrated in Figure 3.1(a).

(b) A moving grid treats the interface explicitly. With an adaptive grid method, the
grid moves with the interface so that pre-defined cell faces follow the interface. It
gives a sharp interface but only small interface deformations can be considered,
and modelling breakup and merging is very difficult.

1

1

1

0.5

0.9

1

0

0.1

0.85

(a) (b)

Figure 3.1: Different approaches to treat two-phase flow. (a) The Volume-Of-Fluid (VOF)
method is designed to track the interface between two fluids. (b) The Discrete Bubble Model
(DBM) consists of tracking bubbles smaller than the cell size.
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3.1 The Volume-Of-Fluid (VOF) method
The Volume-Of-Fluid (VOF) method, introduced by Hirt and Nichols [28], is a numerical

technique for tracking the sharp interface between two or more fluid phases. This method is
suitable for modelling structures larger than the grid size. For sake of simplicity, only two
phases are considered here. In VOF, the liquid volume fraction α takes values between 0 to
1 within a computational cell. The interface is defined to exist in the cells with intermediate
values. The mixture density ρ and viscosity μ are calculated using the liquid volume fraction
α, as

ρ = αρl + (1 − α)ρv, (3.1.1)

μ = αμl + (1 − α)μv,

where subscripts l and v stand for liquid and vapour.
The transport equation for the volume fraction α reads

∂α

∂t
+ ∇ · (αU) = 0, (3.1.2)

where U is the velocity of the mixture. Extreme care should be taken in advecting the
volume fraction so as to preserve the interface sharpness. The treatment of the advection
term is discussed in section 3.1.1.

Within the context of the VOF method, the mass and momentum equations read

∂ρ

∂t
+ ∇ · (ρU) = 0, (3.1.3)

∂ρU

∂t
+ ∇ · (ρU ⊗ U) = −∇p + ∇ · [μ(∇U + ∇UT )] + ρg − Sst, (3.1.4)

where p is the pressure of the mixture. The additional source term Sst in the momentum
equation models the effect of surface tension. This term is described in section 3.1.2.

3.1.1 Treatment of the advection term

Over the years a number of advection schemes have been developed for solving equation
(3.1.2). The two possible approaches are Interface Tracking methods and Interface Capturing
methods.

Interface Tracking methods

The interface is explicitly reconstructed and used in the evaluation of the advection
scheme. In other words, the advected fluxes depend explicitly on the position of the interface
within the cell. With this method, the performance of the advection scheme depends mainly
on the accuracy of the reconstructed interface. The representation of the interface can be
done by different methods, as shown in Figure 3.2. In the SLIC algorithm of Noh [52],
the interface is represented by a piecewise constant line either vertically or horizontally (see
Figure 3.2(b)). Youngs [74] introduced an improved model with a piecewise linear method
PLIC, using information from the neighbour cells to determine the orientation of the line
(see Figure 3.2(c)).
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(a) original interface (b) SLIC (Vertical) (c) PLIC

Figure 3.2: Interface reconstruction for Interface Tracking methods.

The main drawback of these methods is the complexity of reconstructing the interface
in a continuous manner across the whole domain and the extension to three dimensional
problems.

Interface Capturing methods

The volume fraction at a face is formulated algebraically without reconstructing the
interface and a suitable scheme is used to avoid smearing of the interface and loss of curvature.
The choice of the suitable scheme has to account for the following characteristics.

• An upwind scheme is stable and diffusive. It will smear the interface.

• A downwind scheme is unstable and sharpen the interface. However the interface may
be over-compressed with a downwind scheme, leading to stepping and distortion of the
interface whenever the flow is not aligned with the computational grid [12].

A blending strategy is used in order to address the shortcoming of each scheme: it switches
between a compressive and a non-compressive scheme depending on some criterion. This
criterion can be based on the angle θ formed between the interface normal direction and
the grid orientation (Figure 3.3). For an interface aligned with the cell face (θ = 0) the
compressive scheme is used (Figure 3.4(a)). For an interface perpendicular to the cell face,
the diffusive scheme is used (Figure 3.4(b)). Hence the value at the interface is obtained
from the relation

α̃f = α̃f
compressivef(θ) + α̃f

diffusive(1 − f(θ)),

where f(θ) varies between 0 and 1, and α̃f is the normalised value of αf ,

α̃f =
αf − αU

αD − αU

,

where U and D refer to the upwind and downwind cell center neighbour of the cell with
center C. In order to avoid unphysical oscillations in the solution, αf and αC should be
locally bounded between αU and αD. For the normalized variable, this corresponds to the
coloured zone in the NVD diagram of Figure 3.5(a). It is seen in this figure that the only
scheme that satisfies the boundedness criterion is the upwind scheme.

Hirt and Nichols [28] introduced a blending of first order upwind and downwind fluxes
with their donor-acceptor scheme. This approach has also been followed in the derivation
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of the High Resolution Interface Capturing (HRIC) scheme [51]. Figure 3.5(b) displays the
normalized function of the bounded downwind scheme of the HRIC model, the Gamma [33]
and the Inter-Gamma [32] differencing scheme. The InterGamma scheme is similar to the
HRIC scheme but it introduces a smooth change from upwind to downwind differencing. In
the Gamma differencing scheme, the smooth change is done with central differencing.

In Rusche’s model [61], the compression of the surface is achieved by introducing an extra
artificial compression term active only in the interface region ∇ · (α(1− α)Ur), where Ur is
the relative velocity between the two fluids.

The main concern with these schemes is the deterioration in performance observed for
high Courant numbers. Indeed in that case, they become more and more diffusive because
the normalized variable function reverts to the upwind scheme.

n

θ

Figure 3.3: Angle between interface and cell face.

U C D
f f f

(a)

U C D

(b)

U C D

(c)

Figure 3.4: Blending strategy for Interface Capturing schemes. (a) Only the fluid at the
downstream cell should be convected through the cell face f. A compressive scheme should be
used. (b) The convected fluid is expected to be of the same composition as the upwind cell.
An upwind scheme should be used. (c) Blending of the compressive and diffusive scheme.

3.1.2 Treatment of the surface tension

In the CSF (continuum surface force) method of Brackbill [7], the surface tension forces
are reformulated into an equivalent volume force. In this way, the discontinuous interfacial
jump condition is modelled as smooth: instead of considering the interface as a sharp discon-
tinuity, it is considered to have a finite thickness which is a smooth transition from one fluid
to the other. The dispersion of the surface tension across the transition region is obtained
with the gradient of the volume fraction ∇α. The source term in the momentum equation
reads

Sst = σstκδn,
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α̃c
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HRIC-
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(b)

Figure 3.5: (a) The boundedness criterion is represented in the NVD diagram. It cor-
responds to the following conditions. For 0 ≤ α̃c ≤ 1, α̃c is bounded below by α̃f = α̃c,
and above by α̃f = 1 (colored region). For α̃c < 0 or α̃c > 1, α̃f = α̃c. The upwind UD,
downwind DD and central CD are shown in the diagram. (b) The HRIC, InterGamma and
Gamma differencing schemes are shown in the NVD diagram. The smooth change in the
Gamma and InterGamma schemes is obtained with α̃f = −2α̃2

c + 3α̃c.

where σst is the surface tension coefficient, δ is the function that ensures that the force is
only applied at the interface (δ = |∇α|), n is the normal vector of the interface (n = ∇α

|∇α|)
and κ is the curvature at the interface (κ = −∇ · n).

The original form of the CSF method may lead to formation of vortex-like flow in the
neighbourhood of the interface. These perturbations called spurious currents may cause
instabilities and destroy the interface if the surface tension is dominant. In an effort to reduce
these effects, different approaches have been introduced such as improving the curvature
calculation with an estimator function [45], or height function [54]. Brackbill [7] suggested
to simply add a density scaling factor 2ρ

ρl+ρv
to the force.

3.2 The Discrete Bubble Model (DBM)
The discrete bubble modelling consist of tracking individual bubbles in a fluid flow. This

method is relevant for bubbles smaller than the grid size. The DBM approach includes the
description of the motion of the bubbles, their influence on the flow, their interaction with
the solid surface and with other bubbles. These models are exposed here.

3.2.1 Bubble equations of motion

A bubble B is considered as a point source when modelling its transport in the surround-
ing fluid, while the bubble finite volume is accounted for when modelling its interaction with
other bubbles or with the solid surface. A bubble B is defined by the position of its center,
xB, its diameter, D = 2R, its velocity, UB and its density, ρB. Its volume is VB = 4

3
π
(

D
2

)3

and its mass is mB = ρBVB. The surrounding liquid has a density ρl, a velocity Ul and a
pressure pl. In a Lagrangian frame, each bubble position vector xB is calculated from the
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equation
dxB

dt
= UB, (3.2.5)

and the motion of each bubble is governed by Newton’s second law

mB
dUB

dt
= Fa + Fp + Fbuoy + Fdrag + Fvol + Flift. (3.2.6)

The forces acting on the bubble are the added mass force, the pressure gradient force, the
buoyancy force, the drag force, the force due to volume variation of the bubble and the lift
force.

Fa = 1
2
ρl

mB

ρB

(
DUl

Dt
− dUB

dt

)
,

Fp = −mB

ρB
∇pl,

Fbuoy = mB(1 − ρl

ρB
)g,

Fdrag = Cdragρl
mB

ρB

3
8R

(Ul − UB)|Ul − UB|,

Fvol = 1
2
ρl

dVB

dt
(Ul − UB) = ρl

mB

ρB

3Ṙ
2R

(Ul − UB),

Flift = Cliftρl
mB

ρB
(Ul − UB) × ωl.

Empirical relations of drag, lift and added mass effect for spherical non-rotating particles
are considered in this model and

• DUl

Dt
is the total acceleration of the fluid as seen by the bubble (DUl

Dt
= dUl

dt
+Ul · ∇Ul)

evaluated at the bubble position,

• g is the gravitational acceleration,

• Clift is the lift coefficient, assumed to take the value 0.5 according to Auton [3],

• ωl is the vorticity of the fluid, ωl = ∇×Ul = (∂w
∂y

− ∂v
∂z

)nx +(∂u
∂z

− ∂w
∂x

)ny +( ∂v
∂x

− ∂u
∂y

)nz,

• Cdrag is the drag coefficient, and it depends on the bubble Reynolds number

ReB =
2ρlR|Ul − UB|

μl

.

The experimental study of Haberman and Morton [25] indicates that the drag coeffi-
cient of a bubble is equal to the drag of a rigid sphere for ReB<40. The discrepancy at
higher Reynolds number is due to the internal circulatory motion and the deformation
of the bubble. This range is out of the scope of this study because strictly spherical
bubbles are considered. For very small Reynolds number (≤ 0.1), the Stokes law is
valid and the drag coefficient is Cdrag = 24

ReB
. For larger Reynolds number, an empirical

law [64] is used:

Cdrag =
24

ReB

(
1 + 0.15Re0.687

B

)
for 0.1 < Re ≤ 1000,

= 0.44 for Re > 1000.
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Equation (3.2.6) was introduced in the context of solid particles by Stokes [69] and modified
by Boussinesq [6] and Maxey and Riley [43] among others. Besides rotation, the present
model also neglects the Basset history force, as well as the Faxen correction on the drag
force that accounts for non uniform flow effects. In order to account for the specificity of
a bubble compare to a solid particle, Johnson and Hsieh [34] introduced a force due to the
variation of the volume. They assumed that this force was negligible except at the time
of collapse. Hence this force was not included in their numerical computations of bubble
trajectories. This force was accounted for by Giannadakis et al. [19], Hsiao et al. [29]
and Shams and Apte [66], among others, without further comments. However, the analysis
performed in Paper II shows that this force has an erroneously large contribution at collapse.
It is therefore advised to neglect the force Fvol when bubble dynamics is included.

The fluid velocity Ul, acceleration DUl

Dt
, pressure pl and vorticity ωl, calculated in the

Eulerian reference frame, are needed for the calculation of the forces in the Lagrangian frame.
Therefore they have to be interpolated to the position of the bubble from the neighbouring
cells. These terms evaluated at the bubble position are denoted with the subscript @B.

After rearranging terms, equation (3.2.6) becomes

dUB

dt
=

1
ρB

ρl
+ 1

2

[1

2

DUl@B

Dt
− 1

ρl

∇pl@B + (
ρB

ρl

− 1)g

+
(3Cdrag|Ul@B − UB|

8R
+

3Ṙ

2R

)
(Ul@B − UB) + Clift(Ul@B − UB) × ωl@B

]
.

(3.2.7)

Finally the discrete bubble model consists in solving the system of 6 first-order ODEs given
by equations (3.2.5) and (3.2.7) with a time integration method, such as a Runge-Kutta
method. During the Eulerian time step dt, each bubble is tracked by solving these equations
at least once and at most as many times as the times the bubble trajectory crosses a cell.
A Lagrangian time step is defined as the time it takes for the particle to leave the cell
it occupied. Therefore, there is a specific distribution of the Lagrangian time steps Δtk,i,
k = 1..Ki within an Eulerian time step dt for each bubble Bi such that dt =

∑Ki

k=1 Δtk,i for
any Bi .

3.2.2 Influence from the bubbles on the flow

The fluid phase is governed by the incompressible Navier-Stokes equations

∇ · Ul = 0, (3.2.8)

ρl
∂Ul

∂t
+ ρl(Ul · ∇)Ul = −∇pl + μl∇2Ul + ρlg − SB. (3.2.9)

The additional source term SB in the momentum equation (3.2.9) is due to the influence
of the bubbles on the flow. According to the Lagrangian theory, a momentum source contri-
bution is generated by a Lagrangian bubble in each cell visited along its path. Each bubble
Bi which is in a cell cell0k of volume V 0

k generates a contribution during a time specific to
this bubble, Δtk,i. Thus, the contribution of all bubbles Bi, i = 1 : I, crossing the cell cell0k
is commonly written as

SB[cell0k] =
−1

V 0
k

I∑
i=1

mBi

ΔUBi

Δtk,i

. (3.2.10)
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If the volume of the bubble is smaller than the cell cell0k that hosts the bubble centroid,
then equation (3.2.10) is accurate. However, if the volume of the bubble is larger than
cell0k, then the point-particle theory is violated. This shortcoming is a common issue when
modelling Lagrangian bubbles in a turbulent flow because both approaches imply conflicting
assumption on the grid size. The point-particle theory requires that the cells are much larger
than the bubbles while the turbulent modelling requires very small cells. In order to account
for the fact that the bubble is not a point-particle but has a finite volume, the contribution
SB is also distributed in the neighbouring cells of cell0k, {celljk, j = 1 : J}, yielding

SB[celljk] =
−1

V j
k

I∑
i=1

mBi

ΔUBi

Δtk,i

H(xB − xj
k) for j = 0 : J (3.2.11)

where xj
k is the center of cell celljk and the function H is a Gaussian function centred in xB

with variance R,

H(xB − xj
k) =

1

(R
√

2π)3
exp

(
− 1

2

[ |xj
k − xB|

R

]2)
. (3.2.12)

This method is illustrated in Figure 3.6. If the contribution is applied to the cells that fulfil
|xB − xj

k| < 3R, then 99.9% of the source term is distributed with this approach.

(a)

×× ×
×× ×

×× ×

×× ×× ××

Centroid xB

Cell cell0k

Circle (xB,3R)

× Centre xj
k of the cells

{celljk, j = 0 : J} that

fulfill |xB − xj
k| < 3R(b)

Figure 3.6: (a) A Lagrangian bubble larger than the host cell. (b) The circle with center
xB and radius 3R shows the zone of influence of the function H(xB −xj

k) for |xB −xj
k| < 3R,

in 2D.

Depending on the particle concentration, Elghobashi [14] defined different flow regimes
in particle-laden flow. It is assumed that these results can be extended to the case of
bubbles. In the case of a dilute suspension (which means that |xBi

− xBj
| > 10D) with

a volume fraction of bubbles lower than 10−6, their effects on the flow and turbulence are
negligible. This is usually denoted one-way coupling, i.e. the flow affects the bubbles but the
bubbles don’t affect the flow. In that case, the additional source term SB in the momentum
equation is neglected. As a consequence of the very low volume fraction of bubbles, inter-
bubble collisions are also neglected. For a higher volume fraction (in the range [10−6, 10−3]),
the bubbles enhance production or dissipation of turbulence. In that case the source term is
included in equation (3.2.9) and this is a two-way coupling approach. For a dense suspension
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(|xBi
− xBj

| < 10D) the bubble-bubble interactions must also be taken into account with a
model for collision. Models for collision detection and outcome are presented in section 3.2.4

3.2.3 Bubble-wall collisions

A bubble colliding with a wall either bounces, sticks or slides depending whether inertia
or dissipation dominates the process. Experiments show the presence of a liquid film between
the bubble and the wall at collision [57]. Zenit [77] showed that the behaviour of a bubble
colliding with a wall is different from that of a solid sphere, due to the liquid film and
the bubble deformation. It was found that the coefficient of restitution εw depends on the
capillary number Ca = μlU

0n

σst
and the modified Stokes number St∗ =

(ρB+ 1
2
ρl)DU0n

9μl
, it reads

εw = e−30
√

Ca/St∗ .

In practice, an impact with a wall is modelled when the bubble trajectory crosses a face fw

of the wall boundary. Neglecting the actual flattening of the bubble when it approaches a
surface boundary, it is assumed that a collision occurs when the distance from the spherical
bubble center to the center of the face is equal to the bubble radius. Denoting the normal
and tangential unit vectors of fw as nw and tw, respectively, the bubble velocity before the
impact is written as

U0
B = U0n

B nw + U0t
B tw.

The normal component of the bubble velocity after the impact is evaluated as Un
B = −εwU0n

B

and the tangential component is unchanged as friction is neglected.

3.2.4 Bubble interactions

A deterministic model for collision detection and its outcome are described here.

Collision detection

Consider a bubble pair with respective radius R1 and R2, respective initial velocities U0
B1

and U0
B2, and at a distance |x0

B1 − x0
B2| = d0

12 > (R1 + R2) from each other. Figure 3.7
shows that the angle θ is the angle between the line (1,2) joining the bubble centres and the
relative velocity U0

B12 = U0
B1 − U0

B2. The distance d is the projection on line (1,2) of the
distance travelled during the time step dt,

d = |U0
B12| cos θdt.

A collision occurs within the time dt if θ < θc and d ≥ dc, where the critical angle and
distance are given by

θc = arctan

(
R1 + R2√

(d0
12)

2 − (R1 + R2)2

)
,

dc =

d0
12 −

√
(d0

12)
2 − (1 + tan θ2)

(
(d0

12)
2 − (R1 + R2)2

)
(1 + tan θ2)

.
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Figure 3.7: The distance d is the projection on the line (1,2) of the distance travelled by
the bubble 1 with respect to the bubble 2.

Collision outcome

The outcome of a collision between a bubble pair is either bouncing or coalescence de-
pending on two parameters, the size of the bubbles and the collision speed. Experimental
results [13] suggest that coalescence is enhanced when both parameters have a small value.
This corresponds to a small Weber number. The Weber number based on the equivalent
diameter, Deq = 4R1R2

R1+R2
, is given by

Weeq =
ρl|Un

B2 − Un
B1|2Deq

2σst

, (3.2.13)

where the collision speed is |Un
B2 −Un

B1|, and U0n
Bi is the normal component of the velocities

before impact, as shown in Figure 3.8.

UB1

UB2

Un
B1

Un
B2

Ut
B1

Ut
B2

Figure 3.8: Decomposition of the velocities into normal and tangential components.

The theoretical models that have been developed to predict the coalescence efficiency
(i.e. the probability that a collision results in coalescence) are based on the observation that
a liquid film is trapped between the bubbles at impact [10, 68]. The bubbles coalesce if
the liquid film has time to drain during the time the bubble pair interacts. The outcome
of collision is therefore assumed to be a function of two time-scales, the interaction time ti
and the drainage time td. The resulting coalescence probability for a head-on collision is
theoretically Pc = 0 if ti < td and Pc = 1 if ti ≥ td. In order to account for the the fact
that the collision may not be frontal, a smooth semi-empirical function is used [10], and the
coalescence probability is expressed as Pc = e−td/ti . If a uniform random number in the range
[0,1] becomes smaller than the coalescence probability then coalescence occurs, otherwise
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bouncing happens. According to Chester [11], the time-scales are given by ti =
(

ρlD
3
eq

16σst

) 1
2

and td =
ρl|Un

B2−Un
B1|D2

eq

8σst
. Thus, the probability is given by

Pc = e−
q

Weeq
2 . (3.2.14)

Bouncing

In the case of bouncing, the momentum and trajectory of both bubbles are altered. It is
assumed that bubble deformation and friction are neglected in the present work. Using the
notations of Figure 3.8, the unit normal vector is given by

n12 =
x0

B2 − x0
B1

|x0
B2 − x0

B1|
,

and the velocity normal components are expressed as

U0n
Bi = (U0

Bi&n12) · n12.

The normal component of the velocities after impact changes according to

Un
Bi =

mBiU
0n
Bi + mBjU

0n
Bj − mBjε(U

0n
Bi − U0n

Bj)

mBi + mBj

, (3.2.15)

where ε is the coefficient of restitution, and the tangential component is unchanged after
collision because friction is neglected.

Coalescence

In the case of coalescence of two bubbles, 1 and 2, a new bubble is formed with properties
R, xB and UB. Conservation of mass, momentum and energy yields

R =
(
R3

1 + R3
2

) 1
3 ,

xB =
mB1xB1 + mB2xB2

mB1 + mB2

,

UB =
mB1UB1 + mB2UB2

mB1 + mB2

.
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Chapter 4

Cavitation modelling

4.1 Cavitation models
There are various computational approaches to predict cavitation with different levels of

complexity. A short review of the methods used for cavitation prediction and simulation is
given here.

Empirical methods: These methods consist of empirical correlations. It is used to de-
termine the allowable suction head for a turbine and the critical cavitation coefficient.
This simple method is still indispensable for design.

Boundary methods: These methods are applicable to steady sheet cavitation. The shape
of an attached cavity is determined iteratively from an initial guess until the pressure
in the cavity is equal to the vapour pressure. The initial form is determined by vapour
pressure isosurface or by the envelope of a travelling bubble. The computational time
is short but it can not predict accurately the pressure distribution. Improvement and
modifications have been implemented to increase the accuracy of the method [27].

Bubble model: This model is used for bubble cavitation [37]. It is based on the Rayleigh-
Plesset equation, which describes the dynamics of the bubble. This model is presented
in section 4.3.

Multiphase methods: These models are based on the classical modelling of multiphase
flow as presented in section 3. They use continuity and momentum equations and are
suitable for turbulent flow. Therefore they are intensively used for the modelling of
sheet, cloud and vortex cavitation.

Euler-Euler model: The mathematical model is based on the two-fluid model where
a separate set of mass and momentum conservation equations are solved for each
phase. The interfacial mass and momentum transfer require modelling. The mass
transfer is given by a simplified Rayleigh equation. This method can account for
compressibility of both phases. It is used by Kunz et al. [40] and Saurel and
Lemetayer [63].

Mixture model: This model is based on the concept of phase averaging and consider
an homogeneous mixture of vapour and liquid. This approach handles the two-
phase mixture as a single fluid with variable fluid properties and solve the mass
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and momentum conservation equations for the mixture. The pressure and density
are connected explicitly or implicitly:

1. An explicit way to relate pressure and density is an equation of states
ρ = f(p), as done by Wallis [75] for instance. Reboud and Delannoy [60]
use a barotropic equation of state ∂ρ

∂p
= 1

a2 , where a is the speed of sound
in the mixture. Such models are mainly used for cavitation in nozzles and
give poor results for cavitation on hydrofoils. This method models the cavity
attached to the hydrofoil and fails to capture the dynamics of the cavity with
the re-entrant jet and the cloud shedding [21].

2. A transport equation for the volume fraction is used with appropriate
source terms to regulate the mass transfer between the vapour and liquid
phases. Thus, the pressure and density are connected implicitly via the source
term in the volume fraction transport equation. Among the various modelling
approaches, the cavitation models based on a transport equation have received
growing interests and they will be described further in the next section.

Apart from the multiphase approach chosen to model production, destruction and trans-
port of cavitation structures, one should also pay attention to the turbulence model. Running
two dimensional RANS simulations is fast but it leads to unrealistic results because the ac-
tual interactions between the non-isotropic turbulent vortex and the cavitation structures
are not considered. Therefore three dimensional LES simulations are more suitable in the
context of cavitation modelling.

4.2 Mass transfer models
The mass transfer models account for the mass transfer between liquid and vapour. These

models are based on the transport equation of the liquid volume fraction α and use the same
principles as the VOF method described in section 3.1.

The transport equation for the liquid volume fraction reads

∂α

∂t
+ ∇ · (αU) = Sα, (4.2.1)

where the source term Sα = − ṁ
ρl

accounts for evaporation and condensation, and ṁ is
the mass transfer rate between the liquid and the vapour phase. Summing the transport
equations for liquid volume fraction α and the vapour volume fraction (1 − α), yields the
non divergence free continuity equation,

∇ · U = (
1

ρv

− 1

ρl

)ṁ. (4.2.2)

The difficulty lies in the modelling of the mass transfer ṁ. Several models have been
proposed, based on this concept of mass transfer with differences in the source terms. The
evaporation and condensation terms are function of the pressure and the volume fraction
in the model proposed by Merkle et al. [47] and Kunz et al. [38]. Senocak and Shyy
[65] also account for the interfacial velocity. In the model of Kunz et al. [39], the non-
condensable gas volume fraction αg is also considered such that the mixture density is given
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by ρ = αvρv + αlρl + αgρg, and αl is replaced by (αl − αg) in the evaporation term. It is
important to take into account the non-condensable gas because these bubbles persist longer
in the downstream flow compare to the water vapour that condense quickly when it reaches
the higher pressure region [1]. This feature has been included by Lu [41] in a new formulation
of the Sauer and Schnerr model.

4.2.1 The model of Sauer and Schnerr [62]

In order to derive the mass transfer rate, ṁ, Sauer and Schnerr [62] stated that the
inception of cavitation is due to the presence and growth of nuclei in the liquid. The nuclei
are assumed to be spherical micro-bubbles filled solely with water vapour. These micro-
bubbles are assumed to be uniformly distributed in the liquid and to have the same radius,
Rnuc. The number of micro-bubbles per unit volume is denoted nnuc and the vapour volume
fraction is therefore expressed as

(1 − α) =
4
3
πR3

nucnnuc

1 + 4
3
πR3

nucnnuc

. (4.2.3)

Furthermore, Sauer and Schnerr [62] assumed that the dynamics of each micro-bubble is
governed by a simplified Rayleigh-Plesset equation, obtained by neglecting the second-order
derivative, the viscosity and the surface tension. The pressure inside the nuclei is the satu-
rated vapour pressure, pv, and the liquid pressure at the micro-bubble position is set to the
local mixture pressure, p. Thus the nuclei growth rate is given by

Ṙnuc = sign(pv − p)

√
2

3

|pv − p|
ρl

.

In order to formulate the mass transfer rate as a function of α and Ṙnuc, equation (4.2.2) is
written as

ṁ =
ρlρv

ρv − ρl

∇ · U. (4.2.4)

The mass conservation equation (3.1.3) yields

∇ · U = −1

ρ

dρ

dt
. (4.2.5)

The mixture density ρ in equation (3.1.1) depends on α, and its time derivative is expressed
as

dρ

dt
= (ρl − ρv)

dα

dt
. (4.2.6)

Using the definition of (1-α) in equation (4.2.3), it is possible to write its time derivative as
a function of α and Ṙnuc, as

−dα

dt
=

4πR2
nucṘnucnnuc

(1 + 4
3
πR3

nucnnuc)2

= α
4πR2

nucṘnucnnuc

1 + 4
3
πR3

nucnnuc

= (1 − α)α
3Ṙnuc

Rnuc

. (4.2.7)
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Combining equations (4.2.4), (4.2.5), (4.2.6) and (4.2.7) yields a mass transfer rate of

ṁ =
ρlρv

ρ
(1 − α)α

3Ṙnuc

Rnuc

. (4.2.8)

These models agree well with experimental observations of cavitation on hydrofoils. With
an appropriate model for the turbulence, they predict the mechanism of the inception, the
development into a sheet cavity, the re-entrant jet breaking the cavity and the cloud shedding.
However, they do not model the collapse of bubbles and its consequences (pressure wave,
pitting on the surface, etc). The vapour cloud shrinks when it comes to the region with
higher pressure, but since the cloud is treated as a volume fraction of vapour, the collapse
of individual bubbles is not represented. To take account for this, the model should include
the presence and the dynamic of the bubbles contained in the cloud of vapour.

4.3 The cavitation bubble model
Rayleigh and Plesset [56, 59] analysed the dynamics of a single spherical bubble in a

stagnant fluid. First, this analysis is described. Next, the approach is extended for modelling
bubble dynamics in the context of the cavitation bubble model.

4.3.1 Dynamics of a still bubble in an unbounded domain

The bubble is defined by a radius R(t), a rate of growth Ṙ = dR
dt

, a density ρB and a
constant internal pressure pB. The surrounding liquid has a density ρl, a velocity Ul(r, t) and
a pressure pl(r, t) at a distance r from the bubble. Far from the bubble the liquid pressure is
pl(∞, t). It is the sum of a constant reference pressure p0 and a time varying pressure p(t).
The bubble is initially in equilibrium at liquid pressure p0, in a stagnant fluid. Thus, the
initial conditions are

pl(r, 0) = pl(∞, 0) = p0 ∀r
Ul(r, 0) = 0 ∀r
R(0) = R0

Ṙ(0) = 0

Any variation of the pressure p(t) acts as a disturbance on the bubble stability. Therefore
the radius of the bubble R(t) evolves and it induces a velocity Ul 
= 0 in the surrounding
liquid, as shown in Figure 4.1. In order to express the radius R and the rate of growth Ṙ
as a function of time, the analysis of the bubble dynamics is performed under the following
assumptions:

• the bubble remains spherical,

• the bubble is composed of vapour only,

• the internal pressure is uniform, pB = pv,

• the liquid density is large (ρl � ρB),

• the liquid is assumed incompressible,
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• the surface tension σst and the liquid viscosity νl are accounted for.

The assumption of strict sphericity implies that the bubble surface moves only in the radial
direction. Therefore the motion induced in the liquid is strictly radial:

Ul,r(r, t) 
= 0, Ul,θ = Ul,φ = 0.

Furthermore, the velocity in the bubble is denoted uB, in order to distinguish it from the
velocity of the bubble centroid, UB, introduced in section 3.2.

pl(∞, t) = p0 + p(t)

liquid
ρl, pl(r, t)

Ul(r, t)

R(t)
vapour

ρB, pB(t)

r

nl = n

nB

Ul(R, t)uB(R, t)

Figure 4.1: Schematic diagram of a bubble with radius R(t) in an initially stagnant liquid

The analysis of the bubble dynamics consists in first writing the mass balance across the
bubble interface in order to express the liquid velocity at the interface r = R. Then the
continuity equation yields the liquid velocity at a distance r > R from the bubble. Finally,
the momentum equation gives a relation between the radius R, the rate of growth Ṙ, and the
liquid pressure at the interface. This pressure is related to the pressure inside the bubble by
writing the stress balance at the interface. This analysis yields the Raleigh-Plesset equation
and is presented in detail here.

The mass balance across the bubble interface

The radial velocity of the bubble interface is Ṙ, and the radial velocity at the bubble
interface in the bubble and in the liquid are uB,r(R, t) and Ul,r(R, t), respectively (see Figure
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4.1). When the bubble size evolves, mass is transferred across the interface by evaporation
or condensation. The vapour and liquid mass flow rate through the interface are denoted
ṁv and ṁl , and are expressed as

ṁv = ρB

(
uB,r(R, t) − Ṙ

)
, (4.3.9)

ṁl = ρl

(
Ul,r(R, t) − Ṙ

)
. (4.3.10)

Mass conservation gives
ṁv = ṁl. (4.3.11)

Combining equations (4.3.9)-(4.3.11) yields the liquid velocity at the interface,

Ul,r(R, t) =
ρB

ρl

uB,r(R, t) +

(
1 − ρB

ρl

)
Ṙ(t) (4.3.12)

According to the assumption ρB

ρl
� 1, a good approximation for the liquid radial velocity at

the interface is
Ul,r(R, t) = Ṙ(t) (4.3.13)

The continuity equation

The spherically symmetric form of the continuity equation is

∂[r2Ul,r(r, t)]

∂r
= 0. (4.3.14)

Thus, by definition, the function [r2Ul,r(r, t)] does not depend on r. Therefore, it is only a
function of time, denoted C(t). In particular, at r = R, it is C(t) = R2Ul,r(R, t). Using
equation (4.3.13) yields

C(t) = R2(t)Ṙ(t). (4.3.15)

Therefore, the liquid velocity at a distance r > R from the bubble is

Ul,r(r, t) =
R(t)2

r2
Ṙ(t). (4.3.16)

The momentum equation

The spherically symmetric form of the momentum equation is

∂Ul(r, t)

∂t
+Ul(r, t)

∂Ul(r, t)

∂r
= − 1

ρl

∂pl

∂r
+νl

[
∂2Ul(r, t)

∂r2
+

2

r

∂Ul(r, t)

∂r
− 2Ul(r, t)

r2

]
. (4.3.17)

Substituting the liquid velocity by C(t)/r2 in the radial component of (4.3.17) gives

1

r2

∂C(t)

∂t
− 2C2(t)

r5
= − 1

ρl

∂pl

∂r
. (4.3.18)

Integrating with respect to r from R to ∞ yields

1

R

∂C(t)

∂t
− C2(t)

2R4
=

1

ρl

[pl(R, t) − pl(∞, t)]. (4.3.19)
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Combining equations (4.3.15) and (4.3.19) gives a relation between the radius R, the rate of
growth Ṙ, and the liquid pressure at the interface, as

R(t)R̈(t) +
3

2
Ṙ2(t) =

1

ρl

[pl(R, t) − pl(∞, t)] . (4.3.20)

Stress balance at the interface

In equation (4.3.20), the liquid pressure pl(R, t) is not known. The relationship between
the pressure at the bubble surface in the liquid, pl(R, t), and inside the bubble, pB(t), is
determined from the normal stress balance at the bubble interface. It reads

nl · τl + nB · τB = σstκnl −∇tσst + ṁlUl · nl + ṁvuB · nB, (4.3.21)
where nl and nB are the unit normal vector at the interface pointing outward and inward
the bubble, respectively (see Figure 4.1). τl and τB are the stress tensor in the liquid and
the bubble, respectively.

τl = −pl(R, t)I + μl

(∇Ul + ∇UT
l

) ∣∣∣
r=R

. (4.3.22)

τB = −pB(t)I. (4.3.23)

The curvature of the interface, κ, is

κ = ∇ · nl = ∇ · r
∣∣∣
r=R

=
( 1

r2

∂r2

∂r

)∣∣∣
r=R

=
2

R
. (4.3.24)

The 4th term in equation (4.3.21) is the tangential stress associated with gradients in surface
tension, and t is the unit tangent vector at the interface. The 5th and 6th terms are the
temporal mass fluxes across the interface. Using the notations n = nl = −nB and ṁ =
ṁv = ṁl, equation (4.3.21) becomes

n · τl − n · τB =
2σst

R
n −∇tσst + ṁ(Ul − uB) · n. (4.3.25)

The scalar product of equation (4.3.25) with the interfacial normal vector n gives

−pl(R, t) + 2μl
∂Ul,r(r, t)

∂r

∣∣∣
r=R

+ pB(t) =
2σst

R
+ ṁ (Ul,r(R, t) − uB,r(r, t)) . (4.3.26)

The second term is determined from equation (4.3.16), as
∂Ul,r

∂r

∣∣∣
r=R

= − 2

R(t)
Ṙ(t),

and the velocities that appear in the last term are rewritten with help of equations (4.3.9)
and (4.3.10), as

Ul,r(R, t) =
ṁ

ρl

+ Ṙ(t),

uB,r(R, t) =
ṁ

ρB

+ Ṙ(t).

Therefore the liquid pressure at the bubble surface is

pl(R, t) = −4μl
Ṙ(t)

R(t)
+ pB(t) − 2σst

R(t)
− ṁ2

(
1

ρl

− 1

ρB

)
. (4.3.27)
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The final form of the Rayleigh-Plesset equation

Combining equations (4.3.20) and (4.3.27) yields the Rayleigh-Plesset equation,

R(t)R̈(t) +
3

2
Ṙ2(t) =

pB(t) − pl(∞, t)

ρl

− 4νl
Ṙ(t)

R(t)
− 2σst

ρlR(t)
− ṁ2 1

ρl

(
1

ρl

− 1

ρB

)
, (4.3.28)

where pl(∞, t) = p0 + p(t).

4.3.2 Bubble dynamics in the cavitation bubble model

When modelling bubble dynamics with the cavitation bubble model, the bubbles evolve
in space in a finite domain. Their trajectory is solved with the Discrete Bubble Model
(section 3.2) and their dynamics is solved with a modified version of equation (4.3.28). In
this equation, the mass flow rate through the interface is neglected, and the varying pressure
far from the bubble, p(t), is replaced by the liquid pressure at the bubble position, pl(xB, t)
because it is more representative of the pressure variations seen by the bubble along its
trajectory. Therefore, the modified equation is given as

R(t)R̈(t) +
3

2
Ṙ2(t) =

pB(t) − p0 − pl(xB, t)

ρl

− 4νl
Ṙ(t)

R(t)
− 2σst

ρlR(t)
. (4.3.29)

The presence of non-condensable gas

Moreover, the bubble contains water vapour and a non-condensable gas of which the
mass is assumed constant during the evolution of the bubble size. The presence of the gas
ensures that a collapsing bubble cannot disappear, i.e. R(t) > 0. The collapse phase ends
when the compression stops, and is followed by a rebound of the bubble. The pressure
inside the bubble, pB(t), is the sum of the saturated vapour pressure pv and the gas pressure
pg(t). The gas pressure is related to the equilibrium state gas pressure pg0, at (R0, p0), as

pg(t) = pg0

(
R0

R(t)

)3γ

. Moss [50] suggested to use different values for the polytropic coefficient
γ during the process of growth and collapse. The bubble growth phase preceding a collapse
is sufficiently slow to be assumed isothermal and during this process, when R ≥ R0, γ is
unity. On the other hand, the collapse occurs within an extremely short time, therefore the
compression of gas is assumed adiabatic during this phase, and γ takes the value of the ratio
of the heat capacities of the gas, γ = 1.4, when R < R0.

Equations (4.3.29) at the equilibrium state, (R0, p0), gives the gas pressure pg0 as

pg0 = p0 +
2σst

R0

− pv. (4.3.30)

The initial equilibrium radius

In practice, the known parameters to solve equation (4.3.29) are the initial radius R, the
initial liquid pressure interpolated at the location xB and the reference pressure p0. It is
important to make sure that the bubble is initially in equilibrium in order to avoid unphysical
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oscillations at the beginning of the bubble lifetime. It is therefore necessary to determine the
equilibrium radius R0 corresponding to the reference pressure p0 which satisfies the condition

R3γ
0 +

2σst

p0 − pv

R3γ−1
0 +

R3γ

p0 − pv

(
pv − 2σst

R
− pl(xB, t)

)
= 0. (4.3.31)

The pressure wave

The collapse and rebound intensity may be estimated with the value of the pressure of
the acoustic wave radiated by the bubble. It is estimated by Mettin et al. [44] as

pa(r) =
ρl

r
(R2R̈ + 2RṘ2), (4.3.32)

where r ≥ R is the distance from the center of the bubble.
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Chapter 5

The new multi-scale model

The VOF method, presented in section 3.1, is suitable for modelling large resolvable
vapour structures, such as sheet cavitation. The drawback of this method is that it can not
describe structures that are smaller than the cell size. A significantly higher mesh resolution
is required to capture the small cavitation bubbles that are present in the case of cloud
cavitation. If also the bubble dynamics at the collapse phase is to be resolved by VOF (and in
that case also including compressibility effects), the required mesh resolution would rapidly
grow out of reach. That is the reason why results are not sufficiently accurate regarding
the breakup process when bubble clouds are formed and advected with the VOF method.
Therefore, the VOF method with the mass transfer model of Sauer and Schnerr, presented in
section 4.2.1, is improved to give a more realistic prediction of the whole range of bubble sizes.
Small bubbles are identified from the VOF representation, and transferred to a Lagrangian
frame. The small bubbles are treated with the cavitation bubble model, i.e. they are tracked
individually with the DBM approach (section 3.2) and the bubble dynamics is resolved by
the Rayleigh-Plesset equation (4.3.29), in order to model the collapse of individual bubbles.
The interaction between the bubbles is accounted for and the flow is affected by the presence
of the bubbles. Furthermore, the bubbles may also be transferred back from the Lagrangian
to the Eulerian frame, based on the size of the Lagrangian bubbles or on their distance to
the interface of the VOF structures.

The difference with the bubble cavitation model presented in section 4.3.2, is that the
fluid properties (ρl, νl, Ul and pl) are replaced by the properties of the mixture (ρ, ν, U and
p), and the fluid phase equations (3.2.8) and (3.2.9) are replaced by equations (3.1.3) and
(3.1.4).

The new multi-scale approach uses the strength of the VOF method to model the large
structures and the strength of the DBM approach to model the small structures. The bubbles
are modelled in a Lagrangian framework, and the VOF representation is also referred to as
the Eulerian framework. The new approach is schematically shown in Figure 5.1 and 5.2,
and the methods used for the transition between these frameworks are presented in detail
here.
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Figure 5.1: Schematic view of the cavitation development on a hydrofoil, with the attached
cavity, the re-entrant jet, the shedding cloud and the small Lagrangian bubbles (coloured in
blue) that break off the large-scale structures (coloured in green).

LARGE SCALE STRUCTURES
• attached cavity

• cloud shedding

EULERIAN FRAME

• VOF method

• Mass transfer model

SMALL SPHERICAL BUBBLES

• bubble trajectory

• collapse location and intensity

LAGRANGIAN FRAME

• DBM

• Rayleigh-Plesset bubble
dynamics

• 4-way coupling

Figure 5.2: Schematic representation of the multi-scale approach.
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5.1 Transition from the Eulerian to the Lagrangian frame
Vapour structures that are too small for the VOF resolution requirements, are trans-

formed to Lagrangian bubbles. The strategy used to identify the bubbles is inspired from
the technique used by Tomar et al. [71] to identify small droplets created during the breakup
of a turbulent liquid jet in gas. At each time step, the droplets are identified with a so-called
connected components technique. It consists in associating the adjacent cells for which the
liquid volume fraction meets a given criterion. The size of the coherent liquid structure can
be estimated, and small structures are transformed into droplets. In the case of breakup of
vapour structures, the condition used for the connected components technique is that the
the cell contains some vapour, i.e. the liquid volume fraction is below a threshold value,
αlim < 1. The adjacent cells that fulfill this condition are stored together with the number
of the coherent structure (bubbleID) they belong to. The algorithm efficiency is optimised
by using a hash table, which is a table with two parameters, a key and an associated value.
Here the key is the cell label and the value is its bubbleID. In this way, it is easy and fast to
retrieve data (cell label) because the search algorithm does not use time consuming loops.
Once the bubble identification is completed, the bubbles that are too small to be resolved
by VOF are converted to Lagrangian bubbles.

A given minimum numbers of connected cells are required to represent the smallest vapour
structure. This threshold value is denoted NE−L, and it is thus assumed that any vapour
structure described in the Eulerian frame by less than NE−L cells is a candidate for being
handled in the Lagrangian frame.

The position, size and velocity of the identified bubbles are deduced from the Eulerian
data and the vapour volume fraction is removed from the VOF representation. These bubbles
are small enough to be considered as spherical due to the surface tension. Therefore, their
diameter is derived from the equivalent volume of a sphere.

5.1.1 Algorithm

The algorithm of the coupling method implemented in the OpenFOAM C++ library is
here presented in detail.

• Create a list (L) of cells that contains vapour. i.e. with α < αlim.

• Identify coherent structures:

1. Initialise bubbleID counter (maxID=0).

2. Create a hash-table HT that will contain the couples (cell label, bubbleID).

3. For all celli ∈ (L), create a list (Ln) of neighbours.

(a) If none element of (Ln) is a key of HT,
i. Add celli label as a new key in HT, with value bubbleID= maxID,
ii. Increment maxID.

(b) If only one element of (Ln), (cellk), is a key of HT,
i. Get the value bubbleIDk associated to the key cellk,
ii. Add celli label as a new key in HT, with value bubbleID= bubbleIDk.
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(c) If several elements of (Ln), (cellk, k=1:K; K>1), are keys in HT
i. Get the values {bubbleIDk, k=1:K} associated to the keys {cellk, k=1:K},
ii. Find the minimum value minID=min(bubbleIDk, k=1:K),
iii. Add celli label as a new key in HT, with value bubbleID= minID.
iv. For all elements of (Ln) with associated value (bubbleIDk> minID) in HT,

change the value to minID in HT (i.e. celli connects coherent structures
together)

• For each coherent structure identified, get its properties:

1. Create a list (LB) of cell labels {cellj, j=1:J}, associated to the same bubbleID in
HT.

2. If J < NE−L (i.e. the structure is too small to be described by the Eulerian
approach),

3. Evaluate the bubble volume, VB =
∑

j(1 − α[cellj])V [cellj].

4. Evaluate the bubble centroid position, xB = 1
VB

∑
j x[cellj](1 − α[cellj])V [cellj] .

5. Evaluate the bubble velocity, UB = 1
VB

∑
j U[cellj](1 − α[cellj])V [cellj] .

6. Evaluate the bubble radius, R =
(

3VB

4π

) 1
3 .

7. Add the bubble in the Lagrangian cloud.

8. Delete the corresponding structure from the VOF simulation, α[cellj] = 1, j=1:J.

5.2 Transition from the Lagrangian to the Eulerian frame
A bubble described in the Lagrangian frame may become very large. It can happen after

coalescence or due to an explosive growth when the bubble is subjected to a pressure lower
than its critical pressure.

Bubbles that are too large for the DBM requirements, or large enough to be tracked by
VOF, should be moved to the Eulerian framework. The criterion for this is that the bubble
has a volume larger than a group of NL−E neighbouring Eulerian cells, where the innermost
cell hosts the bubble centroid. The threshold value NL−E is a model parameter that is chosen
larger than NE−L. Thus, the Lagrangian bubbles can grow, and it is possible to capture the
collapse and rebounds following the growth phase.

The transition from Lagrangian to Eulerian also happens when a bubble comes close
enough to the Eulerian isosurface where α = 0.5. The method to determine if a bubble is
close to an Eulerian isosurface consists in estimating the location of the Lagrangian bubble
surface at the six points with coordinates (xB ± R, yB ± R, zB ± R). If α ≤ 0.5 in any of
those points, the Lagrangian bubble is in contact with a resolved vapour structure, and is
converted to the Eulerian representation.

The method for the conversion from the Lagrangian to the Eulerian framework consists
in filling with vapour the cell hosting the centroid xB and its closest neighbours. The number
of cells concerned depends on the volume VB and also on the volume available in these cells
that can be converted into vapour.
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Chapter 6

Unpublished results

This chapter presents results that are not included in the appended papers.

6.1 Liquid jet breakup
Numerical simulations of the breakup of a liquid jet were performed to assess the perfor-

mance of the VOF method and the requirements in term of order of discretization schemes
and grid size. A liquid jet that is injected into a chamber interacts, due to friction forces,
with the surrounding gas. Vortical structures are formed in the gas which again interact with
the jet. Instabilities caused by aerodynamic forces wrinkle the jet on the surface and lead
it to disintegrate at some point downstream. This yields the formation of relatively large
irregular liquid structures which break up further downstream into smaller more spherically
shaped droplets. This process of forming a spray from a liquid jet is of industrial interest,
for instance for Diesel fuel injection, injection in gas turbines or for spray drying.

The geometrical set-up is shown in Figure 6.1. The inlet diameter is D = 10−4 m, the
inlet velocity Uin = 500 m/s, the density and viscosity liquid/gas ratio are ρl/ρg = 10 and
μl/μg = 3.419, respectively. It yields a Reynolds number Re = 14964 and a Weber number
We = 10000.

The breakup of the liquid jet has been simulated with LES for the turbulence, and the
VOF method to handle the two phases of the flow. Simulations performed with OpenFOAM
are compared to simulations performed with an in-house code, which uses high order finite
differences. The in-house simulations and the analysis of the results were performed by
H. Grosshans [23, 24]. The order of discretization used in the computations are listed in
Table 6.1 and the simulations are performed for different grid resolutions : 10, 20 and 40
cells/D. Figure 6.2 shows the instantaneous picture of the jet at the non-dimensional time
t� = tUin/D = 14.2, for the high order cases and the different grid resolutions. The in-house
code creates a larger amount of small liquid structures. The length of the liquid penetration,
in Figure 6.3, shows that the results for the low order case in the in-house code is similar
to the OpenFOAM cases. They predict a linear liquid penetration and no breakup in the
domain, while the high order cases in the in-house code suggest that the jet breaks-up and
the penetration length converges to 24D. Differences in the results of both simulations lead
back to the different numerical implementations. It highlights that the OpenFOAM 2nd order
discretization schemes create high numerical diffusion and dampen instabilities. However,
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the major instabilities that cause the jet breakup are captured with OpenFOAM with a
higher grid resolution.

Figure 6.1: Geometrical set-up.

OpenFOAM in-house
High order 2 nd order schemes convective term, 3rd order,

pressure and diffusive term 4h order,
time derivatives 2nd order

Low order 1 nd order schemes convective term, 1rd order,
pressure and diffusive term 2h order,
time derivatives 1nd order

Table 6.1: Discretization schemes used for both solvers.
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Figure 6.2: Iso-surface α = 0.5 of the liquid volume fraction. (left) Results from Open-
FOAM for different resolutions: 10 (top), 20 (middle) and 40 (bottom) cells/ D. (right)
Results from the in-house code for different resolutions: 10 (top) and 20 (middle) cells/ D.
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Figure 6.3: Penetration distance of the liquid for different cases.
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6.2 Nuclei distribution and its effects on the cavity shape
In paper III, simulations were performed on a two-dimensional NACA profile in order to

study the nuclei distribution. The model accounted only for drag and buoyancy forces. A
similar simulation is performed with a model that accounts for all the forces described in
equation (3.2.6). Nin=500 bubbles with properties (ρB = 1 kg/m3, D = 50μm), are injected
per time step at a distance 1.5c0 in front of the hydrofoil, where c0 is the chord length.
The averaged nuclei distribution is sampled on the vertical line that goes through the lowest
pressure region. Figure 6.4 shows the average nuclei distribution when accounting for all
the forces in equation (3.2.6) compared to the case where only drag and gravity forces are
included. The results suggest that the nuclei distribution is strongly influenced by forces
other than drag and buoyancy.
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Figure 6.4: Sensitivity to forces in the equation of motion.

In paper III, simulations were performed on a two dimensional NACA profile in order to
study the effects of a non-uniform nuclei distribution in the mass transfer model of Sauer and
Schnerr [62]. The simulations performed on a 3D geometry are presented here. The set-up
consists of the 2D case extruded in z-direction, such that the span-wise width is c0, and
the mesh in this direction consists of 50 points uniformly distributed. Symmetry boundary
conditions are applied to the front and back of the domain. In Figures 6.5- 6.7, the cavitating
case with a uniform distribution of nuclei (N = 108) is compared with a case where the nuclei
concentration is more dense near the hydrofoil (N = 108 in a layer of thickness δN = 2 mm,
and N = 102 everywhere else). The total volume of vapour and the drag and lift coefficients
are similar for both cases until t=0.03 s. The discrepancies observed later show that the
cavity development is affected by the nuclei distribution. In the uniform case (Figure 6.6),
the rear part of the attached cavity is smooth. After the break-off, one roll-up is transported
downstream while a new cavity, which has also a smooth rear part, grows. In the non-uniform
case (Figure 6.7), the rear part of the attached cavity is irregular. Several small structures
are detached and rapidly shrink because of the low content of nuclei in this region (Figure
6.7 (g)-(i)). This explain the lower volume of vapour displayed in Figure 6.5 after t=0.04 s.

These results show that a non-uniform nuclei distribution leads to the formation of sev-
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eral small structures instead of a large coherent structure transported downstream. The lack
of nuclei in the downstream region makes these small structures disappear rapidly. These
features emphasise the importance of the nuclei distribution when modelling cavitation in-
ception and development with the mass transfer model of Sauer and Schnerr.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

20

40

60

80

100

120

140

 Time [s] 

 T
ot

al
 v

ol
um

e 
of

 v
ap

ou
r [

cm
3 ]

uniform
non−uniform

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 Time [s] 

 D
ra

g 
an

d 
lif

t c
oe

ffi
ci

en
ts

 [−
]

Cdrag, uniform
 Cdrag, non−uniform
Clift, uniform
 Clift, non−uniform

(a) (b)

Figure 6.5: (a) Total volume of vapour for cavitating flow with different nuclei distribution.
(b) Drag and lift coefficients for cavitating flow with different nuclei distribution.
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(a) t=0.006 s (b) t= 0.013 s (c) t= 0.021 s

(e) t=0.028 s (f) t= 0.034 s (g) t= 0.041 s

(h) t=0.047 s (i) t= 0.052 s (j) t= 0.058 s

(k) t=0.061 s (l) t= 0.064 s (m) t= 0.067 s

(n) t=0.07 s

Figure 6.6: Vapour volume fraction α for an uniform nuclei distribution
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(a) t=0.006 s (b) t= 0.013 s (c) t= 0.021 s

(e) t=0.028 s (f) t= 0.034 s (g) t= 0.041 s

(h) t=0.047 s (i) t= 0.052 s (j) t= 0.058 s

(k) t=0.061 s (l) t= 0.064 s (m) t= 0.067 s

(n) t=0.07 s

Figure 6.7: Vapour volume fraction α for a non uniform nuclei distribution.
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Chapter 7

Summary of appended papers

This thesis is based on the following papers.

1. Numerical and experimental comparisons for rising air bubbles
Aurélia Vallier and Johan Revstedt.

Deforming ellipsoidal air bubbles in water are studied numerically using the Volume-
Of-Fluid (VOF) method. The numerical results are compared for different length of
the channel and against experimental data. The air volume flow rate and the size of the
flow domain are set so that the bubbles are close enough to interact without coalescing.
The air bubbles have an equivalent diameter large enough for them to deform without
breaking up.

The bubble behaviour is investigated, in terms of aspect ratio, rise velocity and bubble
path. This study shows that the choice of a short channel is valid only for the first
10 bubbles. For the following bubbles, the presence of a closer free surface affects the
results. The perturbations of the flow and the detachment are no longer similar and
influence the trajectory and the shape of the bubbles.

Two different methods of obtaining the centroid position are investigated. The error
induced by using data from two-dimensional projections is emphasised by comparing
with numerical three-dimensional data. It shows that the method used in the experi-
ments is limited to bubbles that are not tilted or deformed from the ellipsoid shape.

The present work assesses the performance of the numerical solver and illustrates the
limitations of the Volume-Of-Fluid method implemented in OpenFOAM which pre-
dicted an unphysical volume loss in the wake of the bubbles. The modification of the
surface tension force reduces the volume loss but it affects the shape and the velocity
of the bubbles.

Contribution The candidate performed the simulations with OpenFOAM, the post-
processing of the numerical results and their analysis.

2. Modelling of bubble dynamics related to cavitation
Aurélia Vallier, Johan Revstedt and Håkan Nilsson.
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Modelling bubble dynamics is numerically challenging because the collapse occurs in
a very short time and involves large variations of the growth rate and radius. In this
work, the Rayleigh-Plesset equation is implemented and solved with an appropriate
time adaptive integration method, the embedded Rosebrock method. The importance
of the critical equilibrium state for modelling bubble dynamics is illustrated with ex-
amples of bubbles growing without limit. The accuracy of the method requires a
correct equilibrium state (R0, p0) of the bubble. Therefore, a method for estimating
the equilibrium radius R0 at release location is derived and validated in order to avoid
bubble size oscillations at the beginning of the computations. The performance of the
present model is assessed by considering results from previous studies. The agreement
between numerical and experimental data depends on the set of parameters chosen to
resolve the Rayleigh-Plesset equation. In particular the value of the liquid viscosity
influences the bubble size at rebound Rreb. According to the classical approach used to
estimate the intensity of the collapse, the dissipated energy depends on the value Rreb.
While this approach is valid with experimental data, it is not reliable in the context of
numerical calculations because the results obtained depend on the model parameters.

The bubble dynamics model is included in an algorithm modelling the bubble transport
in the flow using a Discrete Bubble Model. A study is performed to analyse the effects
of the force Fvol which accounts for the volume variation of the bubbles in the transport
equation. This force yields unphysical deviations of the trajectory of collapsing bubbles.
Therefore its contribution should not be included in the computations of the transport
of collapsing bubbles.

The overall model is implemented in OpenFOAM in order to simulate the trajectory of
small bubbles and capture their expansion and collapse near the surfaces. The present
work emphasises the influence of the ambient pressure, the initial size of the bubbles,
their release position, as well as the flow features. The results provide information
about the regions that are most exposed to successive collapses as well as the collapse
intensities.

Contribution The candidate implemented all the models described in the paper in
a new solver in OpenFOAM. The candidate performed the simulations, the post-
processing of the numerical results and their analysis.

3. Mass transfer cavitation model with variable density of nuclei
Aurélia Vallier, Johan Revstedt and Håkan Nilsson.
7th International Conference on Multiphase Flow, ICMF 2010, Tampa, Florida, 2010

The Sauer and Schnerr mass transfer model assumes a uniform nuclei distribution de-
spite measurements of the non-homogeneous nucleus population. First, computations
are performed to study the nuclei distribution over a NACA0015 hydrofoil. The nuclei
in the liquid phase are modelled with a Lagrangian Particle Tracking method. It is
shown that the nuclei accumulate at the leading edge close to the low pressure region.
However the nuclei are not present on average in the boundary layer.

The Sauer and Schnerr model is modified to take into account the observed non-uniform
nuclei density. It does not yield attached cavitation. It means that the transported
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nuclei influence is not as important as the one of the surface nuclei for cavitation in-
ception, at least when using the present mass transfer model. Then, the performance
of the modified model is investigated with a higher nuclei concentration near the sur-
face. The attached cavity is shorter, the re-entrant jet is faster and thinner, and the
cloud is stretched. A thin layer of vapour links the attached cavity and the cloud
of vapour. The shape of the sheet cavity and the volume of vapour are affected by
the nuclei content. These features emphasise the importance of the nuclei distribution
when modelling cavitation inception and development with this mass transfer model.

Contribution The candidate implemented the model described in the paper in a new
solver in OpenFOAM. The candidate performed the simulations, the post-processing
of the numerical results and their analysis.

4. Numerical procedure for simulating the break-up of cavitation sheet
Aurélia Vallier, Johan Revstedt and Håkan Nilsson.
4th International meeting on Cavitation and Dynamic Problems in Hydraulic Machin-
ery and Systems, Belgrade, Serbia, 2011.

Mass transfer cavitation models based on the Volume-Of-Fluid method (VOF) have
a limitation of the resolution due to the grid size. Bubbles smaller than the control
volumes can not be resolved. A new multi-scale approach is developed in the present
work, which can model the presence of bubbles smaller than the grid size. The principle
is to couple the VOF method with a two-way coupled Discrete Bubble Model. This
multi-scale approach switches from an Eulerian to a Lagrangian frame in order to
account for the small bubbles that a pure VOF method cannot simulate. An algorithm
for identifying small bubbles is developed and tested on two simple cases of an air
bubble breaking up under the impact of a water jet. The results show that the model
successfully captures the formation of small bubbles and gives a better description of
the liquid/vapour mixture.

Contribution The candidate implemented the model described in the paper in a new
solver in OpenFOAM. The candidate performed the simulations, the post-processing
of the numerical results and their analysis.

5. A new multi-scale approach for modelling cavitation on hydrofoils
Aurélia Vallier, Johan Revstedt and Håkan Nilsson.

A model based on a VOF method can not describe structures that are smaller than
the cell size. Therefore, it can not model the small cavitation bubbles without invest-
ing an enormous computational effort. These bubbles are present in the case of cloud
cavitation and influence the global dynamic of the flow. For this type of cavitation,
tracking individual bubbles is more relevant. In order to improve the existing mass
transfer cavitation model based on VOF method, a new multi-scale method is devel-
oped. This multi-scale approach switches from an Eulerian to a Lagrangian frame in
order to account for the small bubbles that a pure VOF method can not simulate.
An algorithm for identifying the small Lagrangian bubbles is presented. The collision
events are described by a deterministic model, the bubble dynamics is resolved with
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a Rayleigh-Plesset equation, the bubbles affect the flow, and the transition from the
Lagrangian to the Eulerian frame is also included.

The multi-scale model is applied to a cavitating hydrofoil and describes the re-entrant
jet that breaks up the attached cavity and yields the formation of Lagrangian bubbles.
The importance of the bubble interactions and their influence on the flow are high-
lighted by comparing the bubble distribution for different cases. The bubble locations
at first collapse, the bubble trajectories and the pressure waves emitted during the col-
lapses and rebounds, are studied in this work. They are crucial features for predicting
erosion damages on the hydrofoil surface. However, these features are computationally
expensive to post-process. A more efficient approach consists in studying the residence
time of the bubbles, it gives a good estimation of the regions exposed to successive
collapses and rebounds. The multi-scale approach is an improvement to the modelling
of the transition from sheet to cloud cavitation.

Contribution The candidate implemented the model described in the paper in a new
solver in OpenFOAM. The candidate performed the simulations, the post-processing
of the numerical results and their analysis.
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Chapter 8

Conclusions and future work

Conclusions This work is aimed to improve the numerical models for cavitation inception
and development on a hydrofoil. The focus lies on numerical methodologies that include the
broad range of cavity sizes, using appropriate models for each specific phenomenon

For the large structures, the VOF method has been studied for two cases of non-cavitating
flow, large bubbles rising in a water channel (paper I) and a liquid jet in a gas chamber
(section 6.1). These studies highlighted the limitations of the VOF method implemented
in OpenFOAM. It requires a high grid resolution to obtain accurate results. In the case of
the rising bubbles, unphysical volume loss has been observed in the wake of the bubbles,
and the error could be decreased with a finer mesh or with a modification of the surface
tension force. In the case of the liquid jet, the 2nd order discretization schemes created high
numerical diffusion and dampen instabilities, such that the method predicted erroneously
a linear liquid penetration and no breakup in the domain. However the major instabilities
that cause the jet breakup are captured with OpenFOAM with a high grid resolution.

The behaviour of the predicted cavitation on a hydrofoil has been investigated, using the
VOF and Sauer and Schnerr mass transfer model in OpenFOAM (paper III). The impor-
tance of the nuclei distribution has been emphasised, when modelling cavitation inception
and development. A non-uniform nuclei distribution lead to the formation of several small
structures instead of a large coherent structure transported downstream. The lack of nuclei
in the downstream region made these small structures disappear rapidly.

For the small spherical bubbles, the Rayleigh-Plesset bubble dynamics model has been
investigated under academic and realistic conditions, in paper II. It has been shown that the
accuracy of the method requires a correct equilibrium state (R0, p0) of the bubble. Therefore,
a method for estimating the equilibrium radius R0 at release location was derived and vali-
dated in order to avoid bubble size oscillations at the beginning of the computations. This
study showed also that the agreement between numerical and experimental data depends on
the set of parameters chosen to resolve the Rayleigh-Plesset equation. In particular the value
of the liquid viscosity influences the bubble size at rebound Rreb. According to the classical
approach used to estimate the intensity of the collapse, the dissipated energy depends on
the value Rreb. While this approach is valid with experimental data, it is not reliable in
the context of numerical calculations because the results obtained depend on the model pa-
rameters. Furthermore, the simulations successfully described the collapse and the following
rebounds, but it appeared that the value of the growth rate at collapse may become larger
than the speed of sound. In this case, the assumption of incompressibility is theoretically
not applicable anymore.
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For the small spherical bubbles, the DBM model has been used to study the distribution
of nuclei over a NACA0015 hydrofoil (paper III and section 6.2). The results suggested
that the nuclei distribution is strongly influenced by forces other than drag and buoyancy.
The DBM model has also been used together with the bubble dynamics model in paper
II. It showed that the force Fvol which accounts for the volume variation of the bubbles in
the transport equation, yields unphysical deviations of the trajectory of collapsing bubbles.
Therefore its contribution should not be included in the computations of the transport of
collapsing bubbles.

In order to improve the existing mass transfer cavitation model based on the VOF
method, a new multi-scale method has been developed. This multi-scale approach switches
from an Eulerian to a Lagrangian frame in order to account for the small bubbles that a pure
VOF method can not simulate. An algorithm for identifying Lagrangian bubbles have been
implemented in OpenFOAM. This interaction between the VOF and DBM methodologies
has been first evaluated in the non-cavitating case of a large bubble that breaks up under
a liquid jet (paper IV). Then, in paper V, the approach is completed with other features:
the bubble dynamics is resolved using the Rayleigh-Plesset equation, the collision events are
described by a deterministic model, the bubbles affect the flow, and the transition from the
Lagrangian to the Eulerian frame is included. The multi-scale approach is applied to a cav-
itating hydrofoil and describes the re-entrant jet that breaks the attached cavity and yields
the formation of Lagrangian bubbles. The importance of the bubble influence on the flow
and the bubble interactions are highlighted by comparing the bubble distributions and the
cavity shape for different cases. The locally dense concentration of bubbles was observed and
justify the use of a 4-way coupling approach. However, the conversion of the small bubbles
back to the Eulerian frame, was shown to have a negligible effect on the results. The bub-
ble locations at their first collapse, the bubble trajectories, and the pressure wave emitted
during the collapses and rebounds are crucial features for predicting erosion damages on the
hydrofoil surface. However, these features are computationally expensive to post-process. A
more efficient approach consists in studying the residence time of the bubbles, which gives a
good estimation of the regions exposed to successive collapses and rebounds. The multi-scale
approach is therefore an improvement to the modelling of the transition from sheet to cloud
cavitation and the modelling of cavitation erosion risk.

Future work The following features are suggested to be considered in future work in order
to improve further the modelling of cavitation.

• The performance of the VOF method could be further investigated. Higher discretiza-
tion schemes could be used in order to reduce numerical diffusion and interface smear-
ing. Beside the choice of robust and accurate schemes, it would be interesting to use
the recent developments performed in this field by the OpenFOAM community. For
instance, the Coupled-Level-Set-Vof method of [46] has been implemented, and using
this approach would give a more accurate representation of the interface.

• The compressibility effect could be included in the Rayleigh-Plesset equation, by us-
ing the equation proposed by Keller and Miksis [36]. It would give a more realistic
description of the dynamic behaviour at collapse, and it would account for radiation
damping.
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• The new multi-scale model depends on several parameters, and their effects on the
results need further investigations. The choice of the criterion αlim, NL−E and NL−E

affect the bubble distribution, and consequently the flow and the shape of the large-
scale structures. The sensitivity of the size of the Lagrangian and Eulerian cells is also
important.

• The collapse and rebounds of the bubbles when they reach a region of higher pressure
generate pressure waves that influence the collapse of the surrounding bubbles, causing
a chain reaction that amplifies the erosive process. These interactions are important
features that should be included as a source term (the secondary Bjerknes force) in the
Rayleigh-Plesset equation. This would improve the prediction of erosion damages.

• It would be interesting to apply the multi-scale model to a complex geometry, such
as a water turbine, in order to model accurately the cavitating flow and predict the
effects of the bubble collapses in a real application.
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Abstract

Deforming ellipsoidal air bubbles in water are studied numerically using a Volume-Of-Fluid (VOF)

method as well as experimentally using a shadowgraph technique. The air volume flow rate and the

size of the flow domain are set so that the bubbles are close enough to interact without coalescing. The

air bubbles have an equivalent diameter large enough for them to deform without breaking up. The

aim of this work is to assess the performance of the numerical solver and also to investigate the bubble

behaviour in terms of aspect ratio, rise velocity and bubble path. Two different methods to obtain the

centroid position are investigated. The error induced by using data from two-dimensional projections is

emphasized by comparing with numerical three-dimensional data.

1 Introduction

The transport of bubbles plays a significant role in many industrial processes such as in chemical, phar-

maceutical, environmental and hydro-power applications. Bubbles induce both positive and negative features

in industrial processes. A positive feature is that bubbles improve mixing, mass and heat transfer. A nega-

tive feature of bubbles is found when cavitation occurs in water turbines in hydro-power plants. Cavitation

causes damage on the turbine blade, shroud or hub. Furthermore, it is dependent of many parameters such

as water quality, pressure, temperature, turbulence levels and surface roughness. Being able to predict more

accurately where bubbles cavitation occurs, increases the performance of water turbines and its efficiency.

Hence, modification of the water turbine design allows for the bubble cavitation to occur in regions fur-

ther away from the turbine. Clearer insight into cavitation is created by a better comprehension of bubble

transport and bubble-bubble interaction. Hence, in order to control the performance of bubbly industrial

processes which induce both positive and negative effects, a fundamental understanding of the behaviour of

individual bubbles in liquid will increase the comprehension of the phenomena mentioned above.

The behaviour of individual air bubbles in water has been studied extensively over the years using mainly

experimental techniques. Grace et al. [4] presented a graphical correlation for terminal velocity and shape
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of rising bubbles, using experimental results from other researchers. Three distinct bubble shape regions

were observed; spherical, ellipsoidal and spherical-cap. Furthermore, Saffman [1] studied the bubble path of

a wide range of bubbles. Three characteristic motions were observed, dependent on the diameter Deq: the

rectilinear (Deq < 1.4 mm), zig-zag (Deq ∈ [1.4, 2] mm) and helical (Deq > 2 mm) motion. Special attention

has been paid to the wake of a single rising air bubble. Saffman [1] proposed that the observed zig-zagging

bubbles are dependent on its wake. The motion is caused by an interaction between the oscillating wake

and a instability in front of the oblate bubble. Lunde and Perkins [5] suggested that a possible reason for

shape oscillations is induced by the roughly constant vortex shedding behind the bubble. Brücker [6] used

Particle Image Velocimetry (PIV) and de Vries et al. [7] used Schlieren optics technique to observe the

wake structure of a single air bubble. The results showed that for zigzagging bubbles the wake structure

consisted of a couple of counter-rotating hairpin-like vortices. These vortices are continuously generated and

discharged creating a lateral movement. For helical bubbles, the two vortices were twisted and attached at

an asymmetrical position, inducing both lateral and circular movement.

Apart from experimental approaches to the study of individual bubbles, numerical two-phase models

have been used. The experimental results can be used for validating the two-phase numerical models. The

numerical models are less expensive when comparing to experimental equipment and can provide information

which is impossible to obtain from experiments, such as three dimensional features. The behaviour of bubbles

in the range of 4 < Deq < 20 mm was observed by Krishna and van Baten [8], using a two-dimensional VOF

method. However, their terminal rise velocity did not provide quantitative agreement with experimental

results. van Wachem and Schouten [9] utilized a three-dimensional Lagrangian interface VOF approach.

Both the rise velocity and shape of the simulated bubbles are in agreement with experimental results. van

Sint Annaland et al. [10] compared the bubble shape and terminal rise velocity with the Grace diagram,

using a three-dimensional VOF model, achieving good agreement. The presence of the hairpin-type vortex

has been observed by Mougin and Magnaudet [11] using a numerical approach.

Deforming ellipsoidal air bubbles in water are investigated in the present work, comparing the VOF

implementations in OpenFOAM with available results from experiments. The aim is to assess the accuracy

of the numerical solver and also to investigate the bubble behaviour in terms of aspect ratio, rise velocity

and bubble path.

2 Problem set-up

The geometrical set-up of the experiments shown in Figure 1 consists of a square channel of dimensions

(x, y, z) = (3D, 3D, 20D) where D = 4 mm. The channel is filled with distilled water. The free surface is

positioned at z = 17.5D. At the bottom of the channel pressurized air is injected through a pipe of diameter
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D. The bubbles are detached by the so-called pinch-off method where the detachment is occurring naturally

due to buoyancy. The air volume flow rate and the size of the flow domain are set so that the bubbles

are close enough to interact without coalescing. The air bubbles have an equivalent diameter large enough

for them to deform without breaking up. The fluid properties and the governing dimensionless parameters

concerning the experiment is given in Table 1. The bubbles were captured using a high-speed CMOS-camera

with a 500 mm macro lens obtaining a pixel resolution of 640x580. In each pixel a digital signal was recorded.

The temporal and spatial resolution are 500 Hz and 0.119 mm2/pixel2, respectively. The two-dimensional

projections, in xz- and yz-plane, were simultaneous captured using a mirror. The images were recorded

using background illumination, implying that bubbles are dark areas of significantly lower signal level than

the surrounding fluid. The post-processing of the interface of the projected bubble is done using a contour-

detecting algorithm. The error of the contour-detecting algorithm was estimated to less than 1%, using 200

bubbles of various shapes and sizes. The maximum positioning error of the bubble was estimated to be

smaller than 1%. Statistics of the experimental data is based on 170 bubbles traveling through the channel.

The limitations of the experimental approach is that only two-dimensional projections can be used in

calculating features such as equivalent diameter, aspect ratio, rise velocity and bubble path. However, from

the numerical simulations, three-dimensional data are available to calculate these parameters.

Two different geometrical set-up are used for the simulations. One is similar to the experimental set-up.

Simulations are also performed with a shorter domain of dimensions (x, y, z) = (3D, 3D, 9D) in order to save

computational time. The numerical results obtained with the longer channel are compared with experiments.

The error introduced when using a shorter channel is evaluated. In order to model air injected through a

circular hole at the centre of the bottom wall of the square channel, a fully developed parabolic laminar

velocity profile is set at the inlet

Uinlet = U0

(
1 −

( r
R

)2
)
, (2.1)

where the maximum axial velocity, U0, was chosen to provide a volume flow of Q = 2 · 10−6m3/s similar to

the experimental conditions. An interface is placed at z = 6D for the short channel and at z = 17.5D for

the long channel, to resemble the experimental conditions. Neumann boundary conditions are applied for

the velocity at the outlet. Additionally, Dirichlet boundary condition of zero pressure is used at the outlet.

No-slip boundary conditions are used for the velocity at the side walls and Neumann condition is applied for

pressure. For the phase fraction α, Neumann boundary condition accounting for the contact angle with the

wall was used.
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3 Numerical approach

The governing equations are the incompressible and isothermal conservation of mass (3.2) and momentum

(3.3), where ρ, ui, p, μ, gi, σ and α are the density, velocity, pressure, dynamic viscosity, gravitation, surface

tension and liquid volume fraction. The function δ = ∂α
∂xi

ensures that the force is only applied at the

interface. The normal direction of the interface, ni, is given by equation (3.4) and the interface curvature,

κ, is given by equation (3.5).
∂ui

∂xi
= 0, (3.2)

ρ(
∂ui

∂t
+ uj

∂ui

∂xj
) = − ∂p

∂xi
+

∂

∂xj
(μ(

∂ui

∂xj
+
∂uj

∂xi
)) + ρgi + σκδni, (3.3)

ni =
∂α
∂xi

| ∂α
∂xi

| , (3.4)

κ =
∂

∂xi
ni. (3.5)

The liquid volume fraction α is propagated using the mass conservative transport equation (3.6).

∂α

∂t
+
∂ujα

∂xj
= 0. (3.6)

The density and the viscosity are given by

ρ = ρlα+ ρg(1 − α), (3.7)

μ = μlα+ μg(1 − α). (3.8)

where the subscripts l and g denote the liquid and gas phases. The advantages of the VOF method is that

detailed bubble dynamics are obtained by solving equations (3.2)-(3.6). Both the liquid and the gas phase are

obtained with high spatial and temporal resolution. Furthermore, the deformation of the interface, bubble-

bubble interaction, bubble break-up and coalescence are included automatically without extra modelling. The

drawback with high resolution both in time and space is that the simulations are limited by the computer

resources available. Furthermore, difficulties in estimating the interface curvature and obtaining numerical

convergence at high density ratio is still an issue. In equation (3.3), the surface tension forces are reformulated

into an equivalent volume force Fi = σκδni. This approach may lead to the formation of vortex-like flow

in the neighborhood of the interface. These perturbations called spurious currents may cause instabilities

and destroy the interface if the surface tension is dominant. In an effort to reduce these effects, different

approaches have been introduced such as improving the curvature calculation with a estimator function [16],
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or height function [17]. Brackbill [13] suggested to add a density scaling factor, 2ρ
ρl+ρg

, to the force Fi. This

approach is applied in section 4.5. The equations (3.2)-(3.3) are discretized in space using second order

differencing scheme for all terms except for the convective. For the convective term, a blend of central and

upwind difference is applied. The discretization in time is first order Euler scheme. For the pressure-velocity

coupling the PISO algorithm is used.

4 Characterization of bubbles deformation

4.1 Three-dimensional features

The aspect ratio E3D of a three-dimensional bubble is a function of the volume V and surface area A of

the bubble and it is defined as

E3D =
1

6
√
π

A3/2

V
, (4.9)

V =
∫

Ω

(1 − α) dΩ, (4.10)

A =
∫

Ω

∣∣∣∣ ∂α∂xi

∣∣∣∣ dΩ. (4.11)

The choice of the volume of integration Ω is discussed in section 4.5. The bubble’s centroid position, C3D,

is calculated by integrating around the whole volume Ω. The x-component C3D
x is defined as

C3D
x =

∫
Ω

(1 − α)xdΩ∫
Ω

(1 − α) dΩ
. (4.12)

The other components, C3D
y and C3D

z , are calculated in a similar way. The rise velocity is calculated as the

ratio between the bubbles propagation in z-direction, (C3D
z,t2 − C3D

z,t1), and the time difference, (t2 − t1), to

propagate that distance:

Urise =
C3D

z,t2 − C3D
z,t1

t2 − t1
. (4.13)

4.2 Two-dimensional projected features

The two-dimensional aspect ratio, can be calculated as

E2D =
dmi

dma
, (4.14)

where dma is the major axis and dmi is the minor axis. When experimental data are post-processed, the

major axis is approximated by using the available extrema of the bubble contour in each plane. For instance,

xmax and xmin in yz-plane are illustrated in Figure 2. Thus, the position of a two-dimensional projected
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bubble centroid C2D,1
x is obtained as the centre of the approximated major axis

C2D,1
x =

xmax− xmin

2
. (4.15)

The centroid position can also be obtained by integration of α over the projected surface Γ.

C2D,2
x =

∫
Γ
(1 − α)xdΓ∫
Γ
(1 − α)dΓ

. (4.16)

As long as the bubble is a rotationally symmetric ellipsoid C2D,1
x and C2D,2

x are equal. However, for a

deformed bubble, these definitions give different results since the geometrical centre no longer coincides with

the centre of mass.

4.3 Grid dependency

The grid dependency study is performed for the first detached bubble for grid resolution D/h=8 (coarse),

16 (medium) and 24 (fine), where h is the cell size. In Figure 3(a), the iso-contours are compared for each

grid. On the coarser grids, the VOF method is less sharp than on a fine mesh, therefore the interface is

represented by a larger transition region. Figure 3(b) displays the velocity rise. The medium and fine grids

produce similar results while there are small discrepancies with the coarse grid: the bubble velocity is almost

constant for t ∈ [0.11, 0.12] s while an acceleration is observed with the two other grids. In Figure 3(c)-(d)

the temporal evolution of the bubble volume and aspect ratio show that the results are under-predicted with

the coarser grid. For all cases, the bubble volume decreases as the bubble rises. The volume with the coarser

mesh is 3.8 to 13.7% smaller than the volume predicted by the finest grid at detachment and at t=0.15 s

respectively. The error for the medium grid is in the range 0,7 to 1.7 %. The volume loss is 1.1% (resp.

3.4%) at t=0.15 s for the fine (resp. medium) grid. The aspect ratio obtained with the two finer grids follow

the same oscillations even if it grows less with the medium grid than with the finer grid. Based on the fact

that the results for D/h = 16 and D/h = 24 are quite similar, a grid resolution of D/h = 16 was used

throughout this study in order to save computational time.

4.4 Detachment

Figure 4 illustrates the first bubble detachment and the bubble shape oscillations. The bubble is spherical

(a), skirted (b) and then spherical cap (c). Afterwards, the shape oscillates from an ellipsoid with a flatten

trailing surface (d) to an ellipsoid with a flatten leading surface (e). Then it becomes an oblate ellipsoid,

with a larger aspect ratio (f). The ellipsoid shape is in agreement with the diagram of Grace for the present

values of Re and Eo. Figure 5(a) shows that symmetry is observed for the bubble shape and the velocity
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vectors, in the case of the first bubble detachment. However the following bubbles in the long channel are

asymmetric because they are released in a flow field disturb by the previous bubbles. These perturbations

are shown in Figure 5(b).

4.5 Mass conservation

In order to investigate the volume loss observed in Figure 3(c), the method used for evaluating the three

dimensional data is discussed. In equation (4.10), the volume fraction α is integrated over a volume Ω that

contains the bubble. The size of this volume can have a misleading influence on the post-processed results.

For the results presented above, Ω is a box surrounding the bubble. Its size is obtained by adding 1 mm

further the extrema of the bubble iso-surface α = 0.5, in each direction. The evaluation of the bubble

volume is also performed with a larger box Ω, obtained by adding 5 mm further the extrema of the bubble

interface. The results are presented in Figure 6 (a). Until t = 0.095 s, the results with the larger domain

of integration are erroneous because they correspond to the volume of the bubble studied plus the top part

of the following bubble. After t = 0.095 s, the volume corresponds solely to the bubble studied and it is

constant. However, the volume obtained with a narrow box of integration implies that the volume of the

bubble is actually decreasing. From these results, it appears that a loss of the bubble volume occurs in the

wake of the bubble within a few millimeters. Therefore the effect of the correction for spurious current in

the momentum equation (3.3) is investigated. With the density correction in the surface tension force Fi,

the volume is lower but constant even whith a volume of integartion close to the bubble interface. It means

that the amount of vapor detached from the bubble is strongly reduced with this approach. However this

modification influences the shape and the rise velocity of the bubble as shown in Figures 6(b)-(d).

4.6 Sensitivity to the channel length and the number of bubbles

Figure 7 shows the average volume of the bubbles obtained for both channel lengths. With the longer

channel, the volume is slightly reduced. Considering the centroid position of the first 10 bubbles in Figure

8(a), there is only a minor difference between the results for different length of the channel. The average

bubble path is almost rectilinear in both cases. The bubble to bubble variation (represented by the standard

deviation) around this average is increasing with increasing height in the column. The variation is larger

for the short channel because the free surface moves and influences the bubble trajectory whereas the free

surface is located much higher in the long channel and doesn’t influence the bubble path at this height.

Statistics with a larger number of bubbles suggest a different behavior for the long channel (Figure 8(b)). A

fairly straight mean path is still obtain with 20 bubbles in the short channel while with the long channel, a

drift toward the negative x direction is observed. This behavior is caused by the asymmetry of the bubbles
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at detachment and the perturbation in the flow field due to previous bubbles wake. These results stress that

the closer position of the free surface in the shorter channel has a damping effect on these perturbations. In

the long channel, once one bubble has started to drift in a direction it induces a motion in the liquid phase

that promotes the tendency for the following bubble to take a similar path. However after a sufficiently long

time, the path oscillations are such that the other direction can also become a favorite direction due to the

vicinity of the channel walls. Indeed in the long channel, it is observed that the first drift is followed by a

drift toward the positive x direction. Furthermore, with 30 bubbles, the first drift is damped and the second

one is accentuated (Figure 9).

The aspect ratio shown in Figure 10(a) exhibits a monotonic increase until z=9 mm for both channel

lengths. Afterwards, the aspect ratio is constant for the shorter channel while it decreases with the longer

channel. In the upper part of the long channel, the aspect ratio oscillates between 1.17 and 1.3 (Figure

10(b)). The amplitude of the oscillations is reduced for a larger number of bubbles.

The discrepancies observed here emphasize the need of using a long channel and a large number of bubbles

in order to obtain reasonable statistics.

4.7 Comparisons 2D and 3D results

In Figure 11(a), the bubble path of the bubble centroid positions is shown using the two methods

presented in equations (4.15) and (4.16). The bubble centroid position C2D,2
x is smoother as compared to

C2D,1
x . Indeed with the first method, only the maximum and minimum lateral positions are influencing the

centroid position, while for the second method, the whole area of the bubble is accounted. Both centroid

methods follow the same path in xz-plane until z=28 mm. However, in the yz-plane (not shown here),

there is a difference in the range z > 16 mm, which implies that the bubbles are tilted and the error of

the experimental method increases. Figure 11(b) shows that C2D,2 is in good agreement with C3D in the

xz-plane while a loss of accuracy is emphasized in the yz-plane (not shown here) with the 2D approach.

These results stress that the bubble shape is not symmetrical and the 2D results are not sufficient to describe

the bubbles.

Figure 12 shows the numerical and experimental results for the centroid position C2D,1
x . The experiments

predict a drift toward the positive direction in each plane with a large bubble to bubble variation. The

tendency of the numerical results is similar and a higher number of sample might increase this resemblance.

The fluctuations of the experimental results are larger than in the numerical results. A reason is the large

number of bubbles passings which induce a stronger motion in the liquid phase and increase the lateral

motion of the bubbles

The aspect ratio is displayed in Figure 13. The numerical results show that the difference between
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xz- and yz-plane is marginal for 2D aspect ratio, indicating erroneously symmetrical bubbles. These values

suggest that the bubbles experience no shape oscillations in the region 10 < z < 15 mm, and then deforms into

ellipsoidal bubbles with an aspect ratio of 0.35. This behaviour is not in agreement with the three dimensional

results in Figure 10 which reveal shape oscillations for z>15mm. In both planes, the experimental data show

a shape oscillation of the bubble after detachment and up to z=14 mm (resp. 17 mm) and thereafter a

continuous increase of the aspect ratio. These discrepancies are attributed to the errors induced by the

approach used for evaluating the 2D aspect ratio which is not representative in the case of deformed bubbles.

5 Conclusions

The present work illustrated the limitations of the volume of fluid method implemented in OpenFOAM

which predicted an unphysical volume loss in the wake of the bubbles. The volume loss is decreased when

using a finer mesh. The modification of the surface tension force also reduces the volume loss in the wake.

However, it affects the shape and the velocity of the bubbles. The first bubble rises faster and undergoes

stronger shape oscillations, when this modification is included.

This study showed that the choice of a short channel was valid only for the first 10 bubbles. For the

following bubbles, the presence of a closer free surface affects the results. The perturbations of the flow and

the detachment are no longer similar and influence the trajectory and the shape of the bubbles.

Furthermore, comparisons between 2D and 3D evaluation of the results were performed. The 2D method

to estimate the aspect ratio inherently will predict symmetrical bubbles with a ellipsoidal shape. However,

using the 3D method the results clearly showed shape oscillations. These discrepancies indicate that the

method used in the experiments is limited to bubbles which are not tilted or deformed from the ellipsoid

shape.
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(d) t=0.092 s (e) t=0.1 s (f) t=0.137 s

Figure 4: First bubble detachment and shape oscillations.
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Figure 5: The bubble shape and the velocity vectors at detachment, (a) t=0.069 s, (b) t=1.401 s.
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Figure 8: The bubble path in xz-plane from 3D calculations for (a) 10 and (b) 20 bubbles (short and long
channel).
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Figure 11: (a )The bubble path in the xz-plane with two methods for calculating the centroid. (b) The
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Property Nomenclature Air Water
Temperature T [◦ C] 20 ± 0.5 20 ± 0.5

Density ρl,g [kg/m3] 1.20 ± 0.00 998 ± 0.10
Dynamic viscosity μl,g [kg/(ms)] 1.81 ± 0.00 · 10−5 1.00 ± 0.01 · 10−3

Surface tension σst [N/m] 0.0728
Volume flow Q [m3/s] 2.0 ± 0.5 · 10−6

Reynolds number Re = ρlVbubbleDeq

μl
[−] 400 < Re < 2200

Eötvos number Eo = g(ρl−ρg)D2
eq

σst
[−] 4.4 < Eo < 7.6

Morton number Mo = g(ρl−ρg)μ4
l

ρ2
l σ3

st
[−] 2.5 · 10−11

Table 1: The physical properties and governing dimensionless parameters from the experimental set-up.
Subscripts l and g denotes liquid and gas, respectively.
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1. Introduction

Cavitation is the formation of vapor cavities in an initially homogeneous
liquid. The cavities range from large coherent irregular structures, to clouds
of tiny spherical bubbles. The large-scale cavity structures cause a modifi-
cation of the flow path, which affects the efficiency of hydraulic machinery.
They may also cause vibrations due to cavity instabilities, similar to vortex
shedding. Large-scale cavitation inception and break-up are strongly related
to the range of smaller structures and the tiny spherical bubbles. The tiny
spherical bubbles act as disturbances in the homogeneity of the liquid and
act as sources for the generation of larger structures in regions where the
static pressure is reduced. As the large-scale structures break up, clouds of
bubbles of different scales are generated. Travelling to regions of higher static
pressure, the bubbles implode, causing noise and a risk of material erosion.
Small gas bubbles play therefore an important role, both in cavitation in-
ception and in the erosion process. A better understanding of the bubble
dynamics is thus essential to control where cavitation inception and damages
occur. To minimize cavitation damages it is important to reduce the energy
of the bubble collapses, or to make sure that the collapses occur far away
from the surfaces.

The presence of gas bubbles is a primordial factor to initiate cavitation.
These small bubbles may follow the flow or can be trapped in surface rugosi-
ties, and they grow when the surrounding pressure is reduced. Depending
on the bubble properties and the pressure applied on them, they may stay in
equilibrium, collapse, or grow into macroscopic bubbles. Studies in the con-
text of cavitation erosion focus on the bubble collapses and their damaging
effects. Rayleigh (1917) originally explained that a single collapsing spheri-
cal bubble emits a large pressure peak which can be directly responsible for
surface damages. The shock wave radiated in the liquid may also influence
the collapse of the surrounding bubbles and cause a focus of energy. Thus,
erosion is in reality a result of a complex interaction within a cloud of bub-
bles. The shock waves emitted by collapsing bubbles affect bubbles close to
walls which, in turn, collapse and damage the surface (see e.g. Mettin et al.
(1997)). Near a solid boundary, a bubble is deformed and the acoustic wave
emitted by the collapse of an asymmetrical bubble is weaker than the one
issued from an unbounded collapse (see e.g. Vogel and Lauterborn (1988)).
The erosion process is therefore explained by the co-existence of a shock wave
and a strong liquid jet which penetrates through the bubble and impacts the
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wall upon collapse in the vicinity of the surface boundary (see e.g. Blake and
Gibson (1987), Brujan et al. (2005) and Popinet and Zaleski (2002)). The
damaging effect of the liquid jet is related to the tremendous velocity and
temperature involved. The predominance of the contribution of the shock
wave or the liquid jet on surface damages depends on the shape of the bubble
and its distance from the surface (see e.g. Philipp and Lauterborn (1998)
and Shima (1997)). These theories still don’t fully explain the mechanism
of erosion because of the diversity of factors that influence the way bubbles
approach the solid surface and the way they collapse (see e.g. Benjamin and
Ellis (1996)). Nevertheless, the intensity and the location of the collapses are
crucial parameters to predict the risk of erosion on the surfaces.

While the bubble growth and collapses are difficult to measure experimen-
tally, due to the small time scales involved, they can be estimated from nu-
merical simulations with appropriate models. In order to get a better insight
on the bubble dynamics and its effects, a numerical model is implemented
and the sensitivity of different parameters on the results is emphasized. In
the present work, the Rayleigh-Plesset model for the dynamics of spherical
bubbles is implemented and validated for several cases of collapsing bubbles.
The results are compared with previous numerical and empirical studies. A
method for estimating the equilibrium radius at the release location is derived
and validated in order to avoid bubble size oscillations at the beginning of the
computations. The variations of different kinds of energy during a collapse is
studied in order to estimate the intensity of the collapse. The results are used
for evaluating the total energy loss and the energy dissipated in the shock
wave. The accuracy of these approaches is discussed. Once the accuracy of
the bubble dynamics model is assessed, it is included in a discrete bubble
tracking algorithm. The forces affecting the bubble are described. A study
is performed to clarify the contribution of the force introduced by Johnson
and Hsieh (1966) which accounts for the volume variation of the bubbles. A
model for turbulence dispersion is implemented to describe the deviation of
the bubble trajectory from the streamlines of the mean flow. The algorithm
is applied to small bubbles travelling and collapsing around a rectangular
cylinder. The intensity and location of the collapses are investigated in order
to emphasize the influence of the ambient pressure, the size of the bubbles,
their release position, as well as the flow features.
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2. Bubble dynamics and initial equilibrium radius

A small cavitation bubble is here approximated as a spherical bubble with
a radius R(t) and a rate of growth Ṙ = dR(t)

dt
. The acceleration of the bubble

surface is given by R̈ = d2R(t)
dt2

. The bubble density, ρB, and internal pressure,
pB(t), are assumed to be uniform. The surrounding liquid has a density ρL

and a pressure pL(xB, t) at the bubble location xB. The surrounding liquid
pressure is the sum of a constant reference pressure p0 and a time varying
pressure p(t). The bubble is assumed to be in equilibrium at liquid pressure
p0, with radius R0 and Ṙ = R̈ = 0. Any variation of the liquid pressure,
p(t), acts as a disturbance on the bubble stability and influences the radius
of the bubble, R(t).

The bubble contains water vapour and a non-condensable gas of which
the mass is assumed constant during the evolution of the bubble size. The
presence of the gas ensures that a collapsing bubble cannot disappear, i.e.
R(t) > 0. The collapse phase ends when the compression stops and it is fol-
lowed by a rebound of the bubble. In order to express the radius and the rate
of growth as a function of time, Rayleigh (1917) and Plesset and Prosperetti
(1977) derived the equations of the bubble dynamics under the assumptions
that the bubble stays spherical and that the liquid is incompressible. When
the surface tension σst and the liquid viscosity μL are accounted for, the
Rayleigh-Plesset equation is given by

RR̈ +
3

2
Ṙ2 =

1

ρL

[
pB(t) − 4μL

Ṙ

R
− 2σst

R
− pL(xB, t)

]
, (1)

where the pressure inside the bubble, pB(t), is the sum of the saturated
vapour pressure pv and the gas pressure pg(t). The gas pressure is related

to the equilibrium state gas pressure pg0, at (R0, p0), as pg(t) = pg0

(
R0

R(t)

)3γ

.
Moss et al. (2000) suggested to use different values for the polytropic coeffi-
cient γ during the process of growth and collapse. The bubble growth phase
preceding a collapse is sufficiently slow to be assumed isothermal and during
this process, when R ≥ R0, γ is unity. On the other hand, the collapse occurs
within an extremely short time, therefore the compression of gas is assumed
adiabatic during this phase and γ takes the value of the ratio of the heat
capacities of the gas, γ = 1.4, when R < R0. Equation (1) at the equilibrium
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state, (R0, p0), gives the gas pressure pg0 as

pg0 = p0 +
2σst

R0

− pv. (2)

If the bubble reaches a new equilibrium state at t = te, the radius is
denoted R(te) = Re and the equilibrium condition implies Ṙ(te) = R̈(te) = 0.
Thus, equation (1) reduces to

0 =

(
p0 +

2σst

R0

− pv

) (
R0

Re

)3γ

+ pv − 2σst

Re

− pL(xB, te). (3)

The equilibrium relation between the liquid pressure and the equilibrium
radius Re is thus given by

pL(xB, te) = pg0R
3γ
0 R−3γ

e − 2σstR
−1
e + pv. (4)

The minimum of the equilibrium relation (4) is the critical equilibrium pres-
sure, pc, reached at Re = Rc, which has the analytical expression

Rc = R0

(
3γpg0R0

2σst

) 1
3γ−1

,

pc = pv − 2σst

Rc

(
3γ−1
3γ

)
.

The critical pressure is less than the vapor pressure and the difference pv −pc

is larger for smaller bubbles. The critical pressure becomes negative when the
bubble size is sufficiently small. Following the explanations of Franc (2006),
a bubble initially at equilibrium which is subjected to a small reduction of
the liquid pressure will converge to a new equilibrium state provided that
pL(xB, te) > pc. When pL(xB, te) > pv, there exists a single equilibrium
radius which is stable. If pc < pL(xB, te) < pv, the equilibrium is either
stable (for Re < Rc) or unstable (for Re > Rc). It is known (see e.g. Chahine
and Shen (1986)) that for pL(xB, te) < pc, or for an unstable equilibrium, a
decrease of the pressure leads to a growth without limit. In this case, the
growth rate increases until an asymptotic value Ṙlim. Franc (2006) derived
an approximation of Ṙlim by integrating equation (1) using the assumptions
of constant liquid pressure pL(xB, te) < pv, R → ∞ and that the viscous
effect and surface tension are negligible for large bubbles, yielding

Ṙlim ∼
√

2

3

pv − pL(xB, t)

ρL

. (5)
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In practice, the known parameters in equation (1) are the initial radius,
the initial pressure and the reference pressure. It is important to make
sure that the bubble is initially in equilibrium in order to avoid unphysi-
cal oscillations at the beginning of the computation. If t = te at the in-
stant the computation starts, the initial radius is R(te) = Re and the liquid
pressure pL(xB, te). If the initial pressure is the reference liquid pressure,
pL(xB, te) = p0, the choice R0 = Re yields a bubble in equilibrium. However,
if the initial pressure differs from p0, i.e. pL(xB, te) = p0+p(te), it is necessary
to determine the equilibrium radius R0 corresponding to the reference liquid
pressure p0 on the equilibrium curve of (Re, pL(xB, te)). After re-arranging
terms in equation (3), it is deduced that the equilibrium radius R0 satisfies
the condition

R3γ
0 + aR3γ−1

0 + b = 0, (6)

with {
a = 2σst

p0−pv
,

b = R3γ
e

p0−pv

(
pv − 2σst

Re
− pL(xB, te)

)
.

If this proper value is not chosen for R0, the bubble oscillates around the
equilibrium and the frequency of oscillation, f0, is estimated by Franc (2006)
by linearizing equation (1) and neglecting the liquid viscosity. The bubble
resonance frequency is given by

f0 =
1

2πR0

√
1

ρ

(
3γpg0 − 2σst

R0

)
. (7)

2.1. Energy dissipation and shock wave energy
Cavitation damage is assumed to be proportional to the energy acting on

the surface. Therefore the energies involved in the collapse are considered
here. The total bubble energy is the sum of the potential, kinetic and internal
energy, EB = Epot + Ekin + U . According to Best (2002), the kinetic energy
is

Ekin = 2πρLṘ2R3. (8)

The potential energy is the work done in expanding from zero radius to radius
R against the hydrostatic pressure, i.e.

Epot =

∫ R

0

4πr2Δp dr =
4

3
πΔpR3. (9)
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The pressure Δp is the difference between the static liquid pressure and the
pressure of the condensable vapor inside the bubble, i.e Δp = p0 − pv. The
internal energy is the work done in compressing adiabatically the gas from
zero pressure (i.e. infinite volume) to the volume of the bubble VB,

U = −
∫ VB

∞
p dV =

4π

3(γ − 1)
pgR

3. (10)

It is several orders of magnitude smaller that the other energies and is there-
fore neglected. During the collapse, a portion of the bubble energy is dissi-
pated by various effects such as thermal radiation, production of the pressure
wave, and surface deformation. When the bubble reaches the maximum size
R(t1) = Rmax before the collapse, Ṙ(t1) = 0 and the kinetic energy is can-
celed. This is also true after the collapse, when the rebound bubble reaches
the maximum size R(t2) = Rreb. The energy dissipated during the collapse
is therefore estimated as

Ediss = EB(t1) − EB(t2) =
4

3
πΔp(R3

max − R3
reb). (11)

The energy of a spherical shock wave produced by a bubble collapse is esti-
mated by Cole (1948) as

ESW =
4πr2

ρLcL

∫ t2

t1

pa(r)
2dt, (12)

where r ≥ R is the distance from the center of the bubble, cL is the sound
speed in the liquid and pa is the pressure of the acoustic wave radiated by
the bubble collapse which is estimated by Mettin et al. (1997) as

pa(r) =
ρL

r
(R2R̈ + 2RṘ2). (13)

Combining equations (1), (12) and (13) gives

ESW =
4π

ρLcL

∫ t2

t1

(ρL

2
RṘ2 + (pB − pL)R − 4μLṘ − 2σst

)2
dt. (14)

2.2. Numerical solution and initial condition
The Rayleigh-Plesset equation (1) is a non-linear 2nd order ODE which is

considered stiff due to the significant variation of its coefficients with time.
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If the bubble undergoes a collapse, its growth rate Ṙ becomes highly non-
linear and its radius R can rapidly decrease several orders of magnitude. As
the collapse occurs on a much shorter timescale than the growth phase, it is
necessary to use a solver which adapts the step size to the variation of the
coefficients. Equation (1) can be written as two first-order ODEs, yielding{

dR
dt

= Ṙ,
dṘ
dt

= −3
2

Ṙ2

R
+ pB−pL

ρL

1
R
− 4νL

Ṙ
R2 − 2σst

ρL

1
R2 .

In matrix form, it reads [X]′ = [F ], where the matrices are

X =

[
R

Ṙ

]
, F =

[
Ṙ

−3
2

Ṙ2

R
+ pB−pL

ρL

1
R
− 4νL

Ṙ
R2 − 2σst

ρL

1
R2

]
.

Within each time step, the system of ODEs can be integrated with a
Runge-Kutta method and different strategies are suggested for time step op-
timization (see e.g. Alehossein and Qin (2007) and Shams and Apte (2009)).
However, the method can be inherently optimized with an automatic step
size adjustment provided by a so-called embedded method. Given an initial
estimated time step hRK , it consists in computing two estimates of the un-
known, the real one [X] and a low order estimate [X̂]. The truncation error
err = [X] − [X̂] is used to control the step size according to an user-defined
error criteria εRK .

In the present work, the time integration method used is the embedded
Rosenbrock method presented by Kaps and Rentrop (1979) with the set of
parameters proposed by Shampine Shampine (1982). It seeks a solution of
the form [X(t0 + hRK)] = [X0] +

∑s
i=1 ciki, and ci are replaced by ĉi to

evaluate [X̂]. The coefficients ci and ĉi are fixed constants. The corrections
ki are found by solving s linear equations which require the Jacobian matrix,
as shown by Press et al. (1992). The coefficients of the Jacobian matrix are
obtained by the analytical differentiation of the right hand side of the system
of ODEs, yielding

[J ] =
∂[F ]

∂[X]
=

[
0 1

3Ṙ2

2R2 − pB−pL

ρLR2 + 8νLṘ
R3 + 4σst

ρLR3 −3Ṙ
R

− 4νL

R2

]
.

The step size control is based on the following criterion,
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• if err ≤ εRK , the next time step is evaluated as

min(0.9hRKerr−1/4, 1.5hRK),

• if err > εRK , the time step is reduced to

max(0.9hRKerr−1/3, 0.5hRK).

Using s = 4 for calculating [X] and s = 3 for calculating [X̂] leads to a
fourth order accurate method. The initial estimated time step hRK is set to
10−10s for all the calculations in this work since the collapse is not resolved
for higher values of hRK . The error criteria is set to 10−4 as it was found
that the accuracy was not improved for smaller values.

The equilibrium radius R0 is calculated by solving equation (6) with the
leap-frog Newton’s method, presented by Kasturiarachi (2002). The equation
is written as f(x) = 0 where the function f and its derivative f ′ are defined
as

f(x) = x3γ + ax3γ−1 + b,
f ′(x) = 3γx3γ−1 + a(3γ − 1)x3γ−2.

The initial guess is the initial radius in equilibrium at pressure pL(xB, te),
given by x0 = Re. The iteration formula is

xn+1 = xn − f(xn)2

f ′(xn) (f(xn) − f(xn))
,

where
xn = xn − f(xn)

f ′(xn)
.

3. Validation

The implementation of the Rayleigh-Plesset model is validated for the
critical equilibrium state, the initial equilibrium radius, the energy dissipa-
tion and the radius evolution.

3.1. The critical equilibrium state
In section 2, the conditions for infinite growth were presented. It occurs

for pL(xB, t) < pc or R ≥ Re,u. These two theoretical cases are illustrated in
the case of a bubble which has the equilibrium state R0=1 μm, p0=100 kPa.
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Figure 1: The bubble initial equilibrium state is (R(0)=1.4 μm, pL(xB, 0) =
−42.9 kPa).(a) The temporal evolution of the liquid pressure (dashed line)
and the resulting bubble radius calculated with equation (1) (solid line). (b)
The same temporal evolution of the bubble size (solid line) on the equilibrium
curve (dashed-dotted line). The radius calculated with equation (1) follows
the equilibrium curve when pL(xB, t) < pc. Once the pressure is below the
critical value pc, the radius grows indefinitely.

3.1.1. Response to a pressure drop
First, the response to a pressure drop is investigated. The bubble radius is

initially R(0)=1.4 μm. According to the equilibrium relation (4) the bubble is
equilibrated at liquid pressure pL(xB, 0) = −42.9 kPa. The Rayleigh-Plesset
equation is solved for a liquid pressure pL(xB, t) decreasing linearly. Figure
1(a) shows the slow growth of the radius when the pressure decreases until
it reaches the critical value pc. After this time, an equilibrium cannot be
reached anymore when the pressure is decreased below pc and the bubble
size grows two orders of magnitude within 20 μs. In Figure 1(b) the bubble
size evolution is shown on the equilibrium curve. It illustrates that there is
no radius on the curve which corresponds to this pressure and ensures a state
of equilibrium. Therefore, the infinite growth is observed from the threshold
value pL(xB, t) < pc.
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3.1.2. Sensitivity to the initial size
The pressure is kept constant pL(xB, t) = pL(xB, 0) = −42.9 kPa. The

initial radius R(0) is set to a value lower than the equilibrated radius Re=1.4
μm at this pressure. The simulations are performed for different values of
the initial radius (from R(0)= 0.55Re to R(0)= 0.9Re). The initial values are
shown in Figure 2(a) together with the equilibrium curve for (Re, pL(xB, 0)).
Figure 2(b) shows the radius as a function of time. In the case of a bubble
with a radius close to the stable equilibrium radius, the size oscillates and
converges to the stable equilibrium radius. The amplitude and the period of
the oscillations are larger for the smaller radius ratio R(0)/Re. For the case
R(0) = 0.55Re the radius increases enough to reach the value of the unstable
equilibrium radius Re,u=3.0687 μm. Afterwards the radius grows unbounded
as predicted. In order to explain this behavior, the growth rate is shown in
Figure 2(c) for the cases R(0) = 0.6Re and R(0) = 0.55Re. At the beginning
of the computations, the growth rate increases in order to set the bubble
in equilibrium Re. Once the value Re is reached, the growth rate starts to
decrease. It implies that the radius continues to grow, but more slowly. In
the case of R(0) = 0.6Re, the growth rate becomes negative which yields the
decreasing of the radius. Then the radius reaches again the value Re which
implies that the growth rate starts to increase and that the radius shrinks
more slowly. In the case R(0) = 0.55Re, the radius reaches the unstable
radius value Re,u while the growth rate is decreasing and still positive and
the radius is growing slowly. Afterwards the bubble cannot converge to a
stable state. The growth rate keeps increasing until the asymptotic value
Ṙlim = 6.2 m/s and the radius grows therefore indefinitely. This value is
similar to the theoretical approximation Ṙlim = 5.54 m/s, given by equation
(5).

3.2. The initial equilibrium radius
A method was described in section 2 in order to prevent unphysical oscil-

lations. It consists in solving equation (6) to evaluate the equilibrium radius
R0. In order to validate the implementation of this method, it is applied
to a bubble of radius R(te)= 50 μm under the ambient pressure p0 = 101
kPa and for different values of p(te) (0, 10 and 20 kPa). For p(te) = 0, the
condition R0 = 50 μm yields a constant radius because the stable bubble
is not subjected to any disturbance. Figure 3(a) shows that the radius os-
cillates (dotted and dashed-dotted lines) to adjust to a new equilibrium for

11



0.5 1 1.5 2 2.5 3 3.5 4
x 10−6

−6

−4

−2

0

2

4

6

8

10

x 104

Radius [m] 

P
re

ss
ur

e 
[P

a]

Equilibrium curve, equation (2.4)
pL(xB,t)=pL(xB,te)
(R0, p0)
(Re, pL(xB,te))
(Re,u, pL(xB,te))
(0.55Re, pL(xB,te))
(0.6Re, pL(xB,te))
(0.75Re, pL(xB,te))
(0.9Re, pL(xB,te))

(a)

0 1 2 3 4 5
x 10−6

0

1

2

3

4

5

6

7
x 10−6

Time [s] 

R
ad

iu
s 

[m
]

R(0)=0.55Re
R(0)=0.6Re
R(0)=0.75Re
R(0)=0.9Re
Re,u

0 1 2 3 4 5
x 10−6

−4

−2

0

2

4

6

8

10

12

G
ro

w
th

 ra
te

 [m
/s

] 

Time [s]

R(0)=0.55Re
R(0)=0.6Re

(b) (c)

Figure 2: (a) The equilibrium curve corresponds to equation (4) for a bubble
with the equilibrium state (Re=1.4 μm, pL(xB, te) = −42.9 kPa), symbol �.
The pressure is kept constant and the initial values of the bubble radius
R(0) differ from Re (symbols ∗, ◦, � and 	). (b) Temporal evolution of the
bubble radius calculated with equation (1) for different values for the initial
radius R(0). The oscillations converge rapidly to Re, except for the case
R(0) = 0.55Re, where the radius grows indefinitely once the unstable radius
Re,u is reached. (c) Temporal evolution of the growth rate for a case of radius
oscillations and the case of infinite growth.
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the cases p(te) 
= 0 and R0 = 50 μm. For the fourth and fifth lines, R0 is
calculated with equation (6) to yield equilibrium, therefore the radii obtained
with equation (1) are constant in these cases, R(t) = R(0). It emphasizes
that for each value of the pressure p(te) the method successfully evaluates an
equilibrium radius R0 corresponding to p0 that prevents oscillations of R(t).

The values of R0 calculated with equation (6) are shown on their re-
spective equilibrium curve, equation (4), in Figure 3(b). R0 is 51.1454 μm
(symbol �) and 52.2165 μm (symbol �) for p(te)=10 and 20 kPa respectively.
In this figure, the initial value of the radius is depicted with the symbols ◦,
� and � for the different cases. The equilibrium curve (e0) corresponds
to a bubble with the equilibrium state (pL(xB, t) = p0 =101 kPa, R0 = 50
μm). When R0 (symbol �) is calculated with equation (6), the radius follows
the equilibrium curve (e10) such that the initial radius R(0)=50 μm corre-
sponds to the equilibrium radius (symbol �) on this curve for a pressure
pL(xB, 0) = p0 + 10 kPa. Similarly, with the calculated radius R0 (symbol
�), the radius follows the equilibrium curve (e20) such that the initial radius
R(0)=50 μm corresponds to the equilibrium radius (symbol �) on this curve
for a driving pressure pL(xB, 0) = p0 + 20 kPa.

In the case of a liquid pressure pL(xB, t) = p0 + 10 kPa, and an initial
radius R(0) = R0 = 50 μm, the radius tends to reach the equilibrium value
Re corresponding to this pressure, it is denoted with the symbol � in Figure
3(b). Therefore the radius R(t) shown in Figure 3(a) oscillates around this
value Re = 48.88 μm. In the case of a pressure pL(xB, te) = p0 + 20 kPa, the
same explanation applies and the radius oscillates around the equilibrium
radius Re = 47.879 μm denoted with the symbol �. The amplitude of the
first oscillations is in the range of |Re − R(0)| and is therefore larger in this
case. For both cases producing size oscillations, the dissipation between
two periods is hardly discernible and it takes around 8 ms for the radii
to converge to their equilibrium values. The weak damping is due to the
negligible effect of the viscosity and surface tension for large bubbles. This
feature is illustrated with the results obtained for a smaller bubble under
similar pressure conditions, and R0 = R(0) = 1.4 μm. The evolution of the
radii in Figure 4 show that the equilibrium values are reached within less than
8 μs. The amplitude of the oscillations decreases faster due to the stronger
effect of viscosity and surface tension for smaller bubbles through the term
4μL

Ṙ
R

and 2σst

R
in equation (1). For each case of size oscillations, the period

of the oscillations is evaluated from the results R(t) shown in Figures 3(a)
and 4. These results, indicated in Table 1, are in perfect agreement with the
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Simulations [s] T=1/f0 [s]
p(te)=10kPa, R0 = R(0) = 50 μm 1.4285 · 10−5 1.4276 · 10−5

p(te)=20kPa, R0 = R(0) = 50 μm 1.341 · 10−5 1.3387 · 10−5

p(te)=10kPa, R0 = R(0) = 1.4 μm 3.065 · 10−7 3.06496 · 10−7

p(te)=20kPa, R0 = R(0) = 1.4 μm 3.205 · 10−7 3.20074 · 10−7

Table 1: Periods of the oscillation obtained from the resolution of equation
(1) and estimated with equation (7).

theoretical approximations obtained from the bubble resonance frequency,
equation (7).

3.3. Energy dissipation
The variation of the different kinds of energy during the collapse is stud-

ied for a bubble initially expanded from its equilibrium state (R0, p0). The
initial radius is R(0) = 20R0 = 5 μm and the liquid pressure is constant
pL(xB, t) = p0 = 70 kPa. Figure 5(a) shows that the bubble radius con-
verges to the equilibrium radius R0 within less than 1 μs. Figure 5(b) il-
lustrates the temporal evolution of the various energies when the bubble
undergoes collapse and rebounds. Figure 5(c) shows the peak pressure emit-
ted by the collapsing bubble. Denoting EB0 the initial bubble energy, the
energy dissipated during the first collapse is estimated with equation (11) as
Ediss = 92%EB0 while the energy of the shock wave calculated with equation
(12) is ESW = 10%EB0. These results are in the range of experimental data.
Kling and Hammit (1972) suggested that 50 to 70% of the bubble energy
is dissipated by thermal radiation, production of the pressure wave and for-
mation of permanent gas. Vogel and Lauterborn (1988) predicted that the
average energy loss of the cavitation bubble during their first collapse is 84%.
They also show that the fraction of the energy loss converted in acoustic en-
ergy range from 10 to 90 % while Brujan et al. (2005) reported that around
30 % of the bubble energy was converted into acoustic energy.
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Figure 3: The initial radius is R(0) = 50 μm and the liquid pressure is
constant pL(xB, t) = p0 + p(te). (a) The temporal evolution of the bubble
radius calculated with equation (1) for different values of p(te) (0, 10 and 20
kPa) and R0 (50 μm or calculated with equation (6)). The first, fourth and
fifth lines are overlapping each other. The dotted and dashed-dotted lines
show that oscillations occur when the bubble is not initially in equilibrium.
(b) The equilibrium curve (e0) corresponds to equation (4) for a bubble with
the equilibrium state (p0=101 kPa, R0 = 50 μm), symbol ◦. The equilibrium
curve (e10) corresponds to equation (4) for a bubble with the equilibrium
state (p0=101 kPa, R0 = 51.1454 μm), symbol �. The equilibrium curve
(e20) corresponds to equation (4) for a bubble with the equilibrium state
(p0=101 kPa, R0 = 52.2165 μm), symbol �. The radius oscillations shown
in Figure (a) vary about the mean values depicted with symbols � and � in
Figure (b)
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Figure 5: (a) The temporal evolution of the bubble radius. (b) Temporal
evolution of the bubble energy. (c) Pressure pa(R(0)) emitted at the distance
R(0) from the center of the bubble.
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3.4. The radius evolution
The implementation of the Rayleigh-Plesset model is validated by in-

vestigating the dynamic behaviour of various bubbles subjected to different
pressure variations. The numerical results are compared with previous nu-
merical studies and with experimental data.

Alehossein and Qin (2007) investigated the influence of the amplitude of
a step pressure drop. For a small drop in pressure (13 kPa), different inte-
gration methods (Euler and Runge-Kutta) using fixed time step produced
similar results. A larger pressure drop (130 kPa) was more challenging nu-
merically and an adaptive time step method was required to resolve the
collapse phase. The pressure profile is shown in Figure 6(a). In Figure 6(b),
the results from the present study are compared with the work of Alehossein
and Qin (2007). They differ in several aspects. The amplitude and the pe-
riod of the oscillations are different. The noteworthy discrepancy is that the
radius in the present simulation is strictly increasing at the beginning while
Alehossein and Qin (2007) predict a decrease of the radius at the beginning
under the decrease of the pressure. This is only possible if the initial state of
the bubble is actually not at equilibrium as explained previously. Either the
initial pressure or the initial radius used in their computations has a value
which differs from the equilibrium state and leads to oscillations. In order to
confirm this, simulations were performed with a lower equilibrium pressure
(p0 = 12 kPa) or a lower equilibrium radius (R0=7 μm) instead of the equi-
librium values (p0 = 120 kPa, R0=10 μm). The results obtain with these
parameter are good agreement with Alehossein and Qin (2007). However the
results obtain in the present work with a bubble initially equilibrated give a
more realistic description of the bubble size evolution. These results empha-
size the importance of the choice of the parameter p0 and R0 in equation (1).

Another case of bubble collapse is simulated and the results are com-
pared with the experimental measurement of Tomita and Shima (1986) and
the numerical results of Alehossein and Qin (2007). The simulation is started
from the maximum bubble size (Ṙ(0)=0, R(0)=0.75 mm) and describes the
collapse under a constant liquid pressure. Figure 7 shows the results ob-
tained with the assumption R0=0.3 μm. The result obtained in the present
work is in good agreement but over predicts slightly (9 %) the collapse time.
The simulation successfully describes the collapse and the following rebound
despite the extremely high velocity of the bubble interface shown in Figure
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Figure 6: (a) The temporal evolution of the pressure and (b) the resulting
bubble radius for different values of the equilibrium state. The oscillations at
the beginning of the computations are removed when the bubble is initially
equilibrated.

7(b). The value of the growth rate at collapse shows that the assumption of
incompressibility is theoretically not applicable anymore in this case.

Lauterborn et al. (2007) presented numerical calculations which matched
the data from photographic observations of a bubble collapsing in a water-
glycerin mixture. The same experimental data are used by Ohl et al. (1999)
and the numerical results are based on different parameters listed in Ta-
ble 2. The liquid pressure is pL(xB, t) = p0 + sin(2πf0t) with p0=100 kPa
and f0=21.4 kHz. Figure 8(a) shows the results obtained with the present
implementation using the set of parameters suggested by Lauterborn et al.
(2007) and Ohl et al. (1999). The phase of growth is similar while the re-
bounds are damped for a higher value of the viscosity. In order to fit the
experimental data, the parameters used by Ohl et al. (1999) are modified
in order to enhance the damping and the value μ = 0.015 kg/m s gives a
very good agreement (Figure 8(b)). The strong influence of the viscosity
on the bubble size Rreb at rebound is noteworthy. Following the energy ap-
proach described in section 2.1, it appears that the energy dissipated during
the collapse relies on this value Rreb in equation (11). The predicted energy
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Figure 7: The temporal evolution of the (a) bubble radius and (b) growth
rate

R0 pv σst μ κ
Lauterborn et al. (2007) 8.1e−6 0 0.0725 0.0018 1.2
Ohl et al. (1999) 8e−6 2500 0.07 0.006 1.33

Table 2: Parameters used in Lauterborn et al. (2007) and Ohl et al. (1999)
for the numerical calculations of a bubble collapsing in a water-glycerin mix-
ture.

loss during the collapse shown in Figure 8(a) varies from 47% to 72% of the
maximal bubble energy EB0 depending on the alleged value set for the liquid
viscosity in the numerical calculations. According to the experimental data,
Ediss = 95%EB0. This highlights the uncertainty of this energy approach in
the context of numerical simulations. For any particular case of collapsing
bubble, there exists appropriate parameters such that equation (1) produces
a temporal evolution of the radius which overlaps the experimental data.
However in a general case of numerical calculations of random bubbles, there
is no specific set of parameters which leads to reliable values of Rreb and
consequently of the energy dissipated during the collapses.
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Figure 8: The temporal evolution of the bubble radius (a) for the parame-
ters given by Lauterborn et al. (2007) and Ohl et al. Ohl et al. (1999), (b)
with the parameters given by Ohl et al. (1999) and a higher viscosity to fit
their experimental data.

4. Bubble transport

In the discrete bubble model, a bubble is represented as a particle tracked
with a Lagrangian particle tracking method. The bubble is considered as a
point source when modelling the interaction with the surrounding fluid and
it is modeled as a hard sphere particle when modelling the interaction with
solid surfaces. A bubble of radius R is defined by the position of its center,
xB and its velocity, UB. The volume of the bubble is VB = 4

3
πR3 and its

mass is mB = ρBVB. In a Lagrangian frame, each bubble position vector xB

is calculated from the equation

dxB

dt
= UB, (15)

and the motion of each bubble is governed by Newton’s second law

mB
dUB

dt
= Fa + Fp + Fbuoy + Fdrag + Fvol + Flift. (16)

The forces acting on the bubble are the added mass force, the pressure gradi-
ent force, the buoyancy force, the drag force, the force due to volume variation
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of the bubble and the lift force.

Fa = 1
2
ρL

mB

ρB

(
DUL

Dt
− dUB

dt

)
,

Fp = −mB

ρB
∇pL,

Fbuoy = mB(1 − ρL

ρB
)g,

Fdrag = CdragρL
mB

ρB

3
8R

(UL − UB)|UL − UB|,

Fvol = 1
2
ρL

dVB

dt
(UL − UB) = ρL

mB

ρB

3Ṙ
2R

(UL − UB),

Flift = CliftρL
mB

ρB
(UL − UB) × ωL.

Empirical relations of drag, lift and added mass effect for spherical non-
rotating particles are considered in this model and

• DUL

Dt
is the total acceleration of the fluid as seen by the particle (DUL

Dt
=

dUL

dt
+ UL · ∇UL) evaluated at the particle position,

• g is the gravitational acceleration,

• Clift is the lift coefficient, assumed to take the value 0.5 according to
Auton (1987),

• ωL is the vorticity of the fluid, ωL = ∇ × UL = (∂w
∂y

− ∂v
∂z

)nx + (∂u
∂z

−
∂w
∂x

)ny + ( ∂v
∂x

− ∂u
∂y

)nz,

• Cdrag is the drag coefficient which depends on the bubble Reynolds
number

ReB =
2ρLR|UL − UB|

μL

.

The experimental study of Haberman and Morton (1953) indicates that
the drag coefficient of a bubble is equal to the drag of a rigid sphere
for ReB<40. The discrepancy at higher Reynolds number is due to the
internal circulatory motion and the deformation of the bubble. This
range is out of the scope of this study because strictly spherical bubbles
are considered. For very small Reynolds number (≤ 0.1), the Stokes
law is valid and the drag coefficient is Cdrag = 24

ReB
. For larger Reynolds
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number, an empirical law, proposed by Schiller and Nauman (1935) is
used:

Cdrag =
24

ReB

(
1 + 0.15Re0.687

B

)
.

Equation (16) was introduced in the context of solid particles by Stokes
(1850) and modified by Boussinesq (1903) and Maxey and Riley (1983)
among other. Besides particle rotation, the present model also neglects the
Basset history force due to the viscous stress on the particle surface, as well
as the Faxen correction on the drag force that accounts for non uniform flow
effects. In order to account for the specificity of a bubble compare to a solid
particle, Johnson and Hsieh (1966) introduced a force due to the variation of
the volume. They assumed that this force was negligible except at the time of
collapse. Hence this force was not included in their numerical computations
of bubble trajectories. This force was accounted for by Giannadakis et al.
(2008), Hsiao et al. (2005) and Shams and Apte (2009), among others, with-
out further comments. However the analysis performed in section 5.2 shows
that this force has an erroneously large contribution at collapse. Therefore
the force Fvol is neglected in the present work except when its influence is
discussed in section 5.2.

After rearranging terms, equation (16) becomes

dUB

dt
=

1
ρB

ρL
+ 1

2

(
1

2

DUL

Dt
− 1

ρL

∇pL + (
ρB

ρL

− 1)g

+
(3Cdrag|UL − UB|

8R
+

3Ṙ

2R

)
(UL − UB) + Clift(UL − UB) × ωL),

(17)

where the term 3Ṙ
2R

is only accounted for when the contribution of the force
Fvol is studied. Finally the discrete bubble model consists in solving the
system of 6 first-order ODEs given by equations (15) and (17) with the
Rosenbrock integration method. The matrix formulation and the coefficients
of the Jacobian matrix needed by the time integration method are derived
in Appendix A. During the Eulerian time step dt, each bubble is tracked by
solving the equations (15) and (17) at least once and at most as many times
as the times the bubble trajectory crosses a cell. Therefore there is a specific
distribution of the Lagrangian time steps dtjL, j = 1..Ni within an Eulerian
time step dt for each bubble Bi such that dt =

∑Ni

j=1 dtjL for any Bi .
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4.1. Flow turbulence
A steady state simulation of the flow field is initially performed using a

RANS model for the turbulence and the bubbles are tracked in the resulting
converged mean flow field. With this approach, the turbulent fluctuations
are not included because the fluid velocity interpolated at the bubble posi-
tion, UL, does not contain a fluctuating component due to the turbulence.
Therefore the bubbles trajectories follow the streamlines of the mean flow.
However, the effect of turbulent dispersion of the bubbles can be artificially
added with a random walk model at each Lagrangian time step (see e.g.
Gosman and Ioannides (1983)). The principle is that eddies are created ran-
domly and affect the bubble trajectory to mimic the fact that small bubbles
are trapped in eddies for a certain period of time. In practice, a local fluctu-
ating component is added to the fluid velocity at the position of the bubble,
i.e. UL becomes ŨL = UL + Ufluct

L in equation (17). The local fluctuating
velocity is estimated by

Ufluct
L = ψ

√
2

3
k,

where
√

2
3
k is the local RMS fluid velocity fluctuations for isotropic turbu-

lence and ψ is a random number generated from a Gaussian distribution of
zero mean and variance one. The eddy life time (teddy) and the time needed
by the bubble to traverse the eddy (transit time ttr) are calculated as

teddy =
C0.63

μ
k1.5

ε

|Ufluct
L | ,

ttr = −τBln(1 − le

τB|ŨL − UB|
),

where τB is the relaxation time of the bubble, i.e the time it takes for a
bubble to respond to changes in the local flow velocity. It is expressed as

τB =
8

3

ρBR

ρLCdrag|ŨL − UB|
.

The random walk algorithm consists in evaluating Ufluct
L with a random

number ψ, calculating the characteristic times teddy and ttr and keeping Ufluct
L

constant during the interaction time dtturb = min(teddy, ttr) in order to eval-
uate UB according to equation (17) during this interaction time. In practice
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the time step dtjL used to solve equation (17) with the modified velocity can
be shorter than the interaction time if the bubble trajectory crosses a cell be-
fore its completion. Therefore the time step used is actually min(dtjL, dtturb).
In the present work, the random-walk model is used for the computations
of bubbles released randomly in the domain in order to account for the tur-
bulence effect in the statistical results (section 5.3). However the random
walk model is not included in the context of parameter studies (section 5.2).
Indeed for these cases, the bubbles injected at a given position must follow
exactly the same trajectory and be submitted to the same pressure pL such
that the discrepancy of the results are only attributed to the variation of the
concerned parameter (reference pressure, release location or initial size).

4.2. Wall treatment
The influence of the impact of a bubble with a wall boundary on the bub-

ble behaviour is difficult to model. Experimental studies consider either the
trajectory of non-cavitating bubbles colliding on a wall or cavitating bubble
collapsing near a wall without approach velocity. In the case of cavitation
in water turbines both the motion and the dynamics are involved which in-
creases the complexity of the phenomenon. In the case of a still bubble
released and collapsing near a wall, it is known that the bubble undergoes
deformations due to the wall. Experiments show that this deformation gives
rise to a liquid jet separating the bubble and impacting the wall which is
supposed to be responsible for erosion pits when the bubble is accelerated
toward the boundary during the collapse phase (see e.g Brujan (2004) and
Plesset and Chapman (1971)). The risk of damage increases for bubbles in
contact with the wall because the liquid jet impacts directly the wall without
dissipation through the liquid film between the bubble and the wall. Fur-
thermore a bubble close to the wall may undergo collapse under the influence
of the shock waves emitted by bubbles collapsing further away from the solid
surface. The deformation of the bubble, the liquid jet and the possible bub-
ble breakup are not resolved in the present study as the bubbles are assumed
spherical at all time as a first approximation. In order to account for the ef-
fect of the impact with the wall on the bubble expansion, the bubble growth
is not evaluated at the instant the bubble impacts a wall. After the collision,
the bubble dynamics is solved with a growth rate set to zero, as suggested
by Giannadakis et al. (2008).

In practice, an impact with a wall is modeled when the bubble trajectory
crosses a face fw of the wall boundary. Neglecting the actual flattening of the
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bubble when it approaches a surface boundary, it is assumed that a collision
occurs when the distance from the spherical bubble center to the center of
the face is equal to the bubble radius. Denoting nw and tw the normal and
tangential unit vectors of fw, the bubble velocity before the impact is written
as

U0
B = U0n

B nw + U0t
B tw.

Non-cavitating bubbles colliding against a wall either bounce, stick or slide
depending whether inertia or dissipation dominates the process and exper-
iments show the presence of a liquid film between the bubble and the wall
at collision, as shown by Podvin et al. (2008). Zenit and Legendre (2009)
showed that the behaviour of a bubble colliding with a wall was different
from a solid sphere due to the liquid film and the bubble deformation. They
found that the coefficient of restitution εw depends on the capillary number
Ca = μLU0n

σst
and the modified Stokes number St∗ =

(ρB+ 1
2
ρL)2RU0n

9μL
, it reads

εw = e−30
√

Ca/St∗ .

The normal component of the bubble velocity after the impact is evaluated
as Un

B = −εwU0n
B and the tangential component is unchanged as friction is

neglected.

5. Results

5.1. Problem set-up
The overall model is applied to the simulation of small bubbles travelling

in the low pressure region above a rectangular cylinder of dimension [10h,
2h, 7h] with h = 6 mm (Figure 9). The origin of the domain is located on
the leading edge and at the centerline of the cylinder. In the plane z=0, the
cylinder is attached to an infinite wall. The inlet and the outlet are located
in the plane x=-40h and x=60h respectively. Symmetry boundary conditions
are applied to the remaining boundaries of the computational domain (planes
y=30h, y=-30h and z=11h ).

The fluid flow is first obtained from RANS simulations with the kωSST
model for the turbulence. The inlet velocity is UL = 15 m/s. The reference
pressure, p0, is the liquid pressure of the undisturbed flow, i.e. the value
imposed at the outlet boundary. Next, bubbles of different sizes are injected
in front of the cylinder and tracked with the discrete bubble model.
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Figure 9: Plane z=4h of the computational domain. Pressure contours and
velocity vectors are shown in the bottom half. A stream line passing the
location of a bubble (symbol •) released at xB0 = (−5h, 0.4h, 4h) is shown
in the upper half.

The mesh used to compute the fluid flow is referred as the Eulerian mesh
and is chosen fine enough to capture the flow details such as the recirculation
zone over the obstacle. It is refined in the vicinity of the wall in order to
resolve the boundary layer. The tracking of the bubbles is done on a coarser
and uniform mesh to ensure that the bubble size is always smaller than the
cell size, even when the initially small bubbles grow up to several orders
of magnitudes. The choice of this Lagrangian mesh is motivated by two
distinct reasons. First, it is advantageous to use a uniform mesh because
it reduces the number of Lagrangian sub-time-steps dtjL when the bubbles
evolve close to the wall compared with the use of the refined Eulerian mesh.
The Eulerian time step used for modelling the bubble transport is small
enough (dt = 1e−5) such that the accuracy of the results is not altered by the
size of the Lagrangian cells. Secondly, the size of the bubble must be smaller
than the cell due to the implementation of the model for bubble collision
with a wall. The approach allows collision only for bubbles with centroid
located in a cell connected to the wall surface. This limitation implies that
the bubble radius has to be smaller than the edges of the host cell which
are connected to the wall face fw. Therefore, a coarser mesh is necessary to
resolve properly the wall collision events.

A bubble injected in the free stream would be initially equilibrated at
the liquid pressure p0. However, in order to save computational time, the
bubble is initially released close to the obstacle, at a distance x = −5h from
the leading edge. Thus the initial pressure is not p0 at this location. It is
therefore necessary to compute the equilibrium radius R0 with equation (6)
in order to avoid the effect of the release location on the bubble dynamics.
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When solving for the bubble dynamics, the pressure pL(xB, t) is the liquid
pressure interpolated at the centroid position if the bubble is smaller than
the Eulerian host cell. As the bubble grows, it may become larger than the
host cell in the Eulerian grid and the driving pressure is calculated as the
average of the liquid pressures interpolated at the cells containing the bubble
volume. This yields a more realistic approximation of the forces over the
bubble surface.

5.2. Parameter study
Bubbles with different initial radius (R(0)=10 and 50 μm) are injected

at the same positions xB0 = (−5h, 0.2h, 4h) in front of the obstacle and
the evolution of their size is solved with the Rayleigh-Plesset equation while
they are travelling downstream. The random walk model is not included in
this parameter study, as mentioned in section 4.1. Hence bubbles released
at the same position follow exactly the same streamline and are subjected
to the same liquid pressure. This parameter study focuses on the collapse
features, therefore the calculation of the bubble behaviour is stopped when
the maximal rebound radius is reached.

Sensitivity to the reference pressure p0, Figure 10 and 11. The computa-
tions are performed for p0 = 50, 70 and 100 kPa to examine the sensitivity to
the reference pressure. Figure 10(a) shows the temporal evolution of the bub-
ble sizes for the largest reference pressure. When a bubble arrives in the low
pressure region, its radius increases. It then reaches a region with a higher
pressure where it almost recovers its initial size. These bubbles don’t undergo
collapse under this pressure distribution because the pressure is above the
critical value and the bubble stays therefore in equilibrium. With a lower
reference pressure, the bubble growth is enhanced and the bubbles collapse,
as depicted in Figure 10(b). The discontinuity observed during the bubble
growth is due to the implementation of the algorithm for the collision with
the obstacle wall. The growth rate is set to zero when the bubble hits the
wall as explained in section 4.2. Figure 11 shows the interpolated liquid pres-
sure along the bubble trajectory as well as the rate of growth (dashed line).
When the pressure is below the critical value pc, the rate of growth increases
such that the bubble radius becomes two orders of magnitudes larger. When
the bubble is transported downstream, the increase of the pressure above pc

yields the decrease of the rate of the growth. However the radius continues
to grow as long as the growth rate is positive. When the rate of growth
becomes negative, the bubble collapses.
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When the reference pressure is further decreased (p0 = 50 kPa), the
pressure is kept below the critical values pc long enough for the bubbles to
grow into macroscopic bubbles (Figure 10(c)). In this case the large bubbles
leave the computational domain without collapsing. In the following, the
ambient pressure is set to 70 kPa as it produces the most relevant results in
the context of erosion due to the presence of collapsing bubbles.

Sensitivity to the release height y0, Figure 12. The evolution of the bubble
size depends also on the release location. A bubble that follows a streamline
closer to the obstacle is subject to a lower pressure and its growth is therefore
enhanced as shown in Figure 12(a). The bubble injected at y=0.4h reaches
a maximum radius Rmax ∼ 10R(0) and collapses at a distance δ = 4 · 10−3 m
from the wall. A bubble released at a lower location (y=0.2h) grows faster
such that its surface hits the wall during the growth phase and the bubble
collapse occurs further away from the wall (δ = 10 · 10−3 m).

Sensitivity to the initial size R(0), Figures 10(b), 13 and 14 . The bubble
initially at 50 μm grows until Rmax ∼ 110R(0) and its collapse gives rise to
a large pressure peak as shown in Figure 13(a). Even if the initially smaller
bubble reaches a lower value Rmax, its collapse is stronger because the bubble
grows up to 350R(0) and is accordingly compressed until a smaller size upon
collapse. Therefore the pressure peak emitted at the bubble surfaces is larger.
The pressure peak radiated to the obstacle, pa(δ), is shown in Figure 13(c).
It emphasizes that the smaller bubble (symbol �) has a stronger impact on
the wall. The symbol � shows the result for the previous case of a larger
bubble which collapses closer to the wall, without previous wall collision.
In this case the peak pressure at the bubble surface is lower (Figure 13(b))
and its effect on the wall is negligible. Is is explained by the shorter growth
phase which leads to a weaker collapse. The dissipated energies depicted in
Figure14(a) stress that the total energy loss is not proportional to the energy
dissipated in the shock wave. The bubble which lost the largest percentage
of its energy during collapse corresponds to the case of the lowest energy
dissipated in the shock wave. This is due to the size of the bubble which is
much smaller compared to the two other collapsing bubbles studied. Indeed
for a smaller bubble, the surface tension and the viscosity play a major role
on the damping process. However the total amount of energy loss is larger for
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Figure 10: The temporal evolution of the radius for bubbles of different
initial sizes, released at the same position xB0 = (−5h, 0.2h, 4h) and trav-
elling near the leading edge for different values of the reference pressure p0.
(a) p0 = 50 kPa (b) p0 = 70 kPa (c) p0 = 100 kPa.
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xB0 = (−5h, 0.2h, 4h) and travelling near the leading edge for different values
of the reference pressure p0. (a) The temporal evolution of the liquid pressure
interpolated at the bubble centroid position. (b) The temporal evolution of
the bubble growth rate.
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Figure 14: (a) The percentage of energy due to the shock wave (open sym-
bols) and the percentage of energy dissipated during collapse (filled symbols).
(b) The total amount of energy dissipated as a function of the distance to
the wall.

the bubbles which undergoes a stronger collapse as shown in Figure 14(b).
Sensitivity to the force Fvol, Figures 12(a), 15 and 16. For a bubble

injected at xB0 = (−5h, 0.4h, 4h) with an initial radius R(0)=50 μm, the
temporal evolution of the radius is shown in Figure 12(a) (solid line) when
the force Fvol is neglected in equation (17). The behaviour of a bubble with
the same properties is presented in Figure 15(a) (dashed line) when the force
Fvol is accounted for. Without Fvol, the radius becomes smaller than R0

when the bubble collapses and the calculations for this bubble are stopped
after the first rebound, accordingly to the implemented algorithm. When the
force Fvol is included in the transport equation, the bubble radius grows less
and the collapse is weaker such that the radius is above R0 even at collapse.
Therefore this event is not considered as a collapse by the algorithm and the
computations are pursued after the first rebound. The lower value of the
radius before the collapse is explained by the distinct trajectories shown in
Figure 15(b). During the growth phase, the contribution of the force Fvol is
larger and opposite to the drag force (Figure 15(c)). It affects the bubble
velocity through equation (17) and the trajectory through equation (15).
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Hence during the growth phase, the bubble is transported at a higher position
where the liquid pressure pL is larger and the radius grows less. When the
successive collapses occur, the variation of Ṙ yields small oscillations of the
bubble trajectory. Another bubble of radius R(0)=50 μm is released at a
lower position xB0 = (−5h, 0.2h, 4h). As previously, when Fvol is added, the
radius grows less (Figure 15(a) compared with Figure 12(a), dashed lines)
because the bubble is transported slightly higher during the growth phase.
Due to these small changes of the size and the position, the bubble does
not hit the wall. The crucial modification observed in the trajectory is the
jump upward at collapse. While the presence of the force Fvol generated
insignificant oscillations observed in Figure 15(b) during a weak collapse, it
produces an unrealistic behaviour when the collapse is stronger. Here the
strength of the collapse is related to the value of the growth rate which
is Ṙ ∼ 2 m/s in Figure 15(a) and Ṙ ∼ 40 m/s in Figure 16(a). In the
case of a stronger collapse, the force Fvol offsets the other forces at collapse
(Figure 16(c)) and all the components of the velocity UB show a sudden large
deviation which is not physical. From these observations, it is concluded that
the force Fvol should not be included in the computations of the transport of
collapsing bubbles.

5.3. Sensitivity to the flow features
A large number of bubbles (10 000) of different sizes (ranging from 1 to

50 μm) are released at a random position in a narrow band in front of the
cylinder xB0 = (−5h, [0, h], [z − 0.025h, z + 0.025h]). Different values of z
are used in separate computations in order to study the influence of the flow
pattern on the collapses. The difference of the flow field in these planes is
the shape of the recirculation zone. Its length is given by the reattachment
point in Figure 17(a). In the plane z=6h, the recirculation zone is shorter
than in the center of the obstacle (plane z=4h).

As in the previous simulations, the discrete bubble model is used to con-
vect the small bubbles in the flow with equations (15) and (17) and the evo-
lution of the bubble size is described by the Rayleigh-Plesset equation (1). In
the present computations, the effect of the fluid turbulence is included with
the random-walk model (section 4.1)

The position of each bubble is sampled during its first collapse when the
radius reached its smallest value. The resulting probability density functions
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Figure 15: The influence of the force Fvol on (a) the temporal evolution
of the radius and growth rate (b) the trajectory of the bubble. (c) The
contribution of this force compare to the drag force.
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Figure 16: The influence of the force Fvol on (a) the temporal evolution of
the radius and growth rate , and on (b) the trajectory of the bubble. (c) The
contribution of this force compare to the drag force.
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in Figure 17(b) and (c) indicate the location where the collapses are more
likely to happen in the plane z=4h and z=6h. The expected location of the
successive collapses is shifted toward the leading edge of the obstacle (plane
x=0) when the recirculation zone is shorter. In Figure 18, the values of the
peak-pressure radiated to the wall, pa(δ), give an estimation of the intensity
of the collapses and the risks of damage on the obstacle surface. They are
stronger in the plane with a longer recirculation zone. Indeed the growth
phase is longer in this case and the following collapse yields a larger peak
pressure.

6. Conclusion

The Rayleigh-Plesset equation was implemented and solved with an em-
bedded Rosebrock method. The importance of the critical equilibrium state
for modelling bubble dynamics was illustrated with examples of bubbles
growing without limit. The accuracy of the method requires a correct equi-
librium state (R0, p0) of the bubble. Therefore a method for estimating the
equilibrium radius R0 at release location was derived and validated in or-
der to avoid bubble size oscillations at the beginning of the computations.
The performance of the present model was assessed by considering results
from previous studies. The agreement between numerical and experimental
data depends on the set of parameters chosen to resolve the Rayleigh-Plesset
equation. In particular the value of the liquid viscosity influences the bubble
size at rebound Rreb. According to the classical approach used to estimate
the intensity of the collapse, the dissipated energy depends on the value Rreb.
While this approach is valid with experimental data, it is not reliable in the
context of numerical calculations because the results obtained depend on the
model parameters.

The bubble dynamics model was included in an algorithm modelling the
bubble transport in the flow using a discrete bubble model. A study is
performed to analyse the effects of the force Fvol which accounts for the
volume variation of the bubbles in the transport equation. This force yields
unphysical deviations of the trajectory of collapsing bubbles. Therefore its
contribution should not be included in the computations of the transport of
collapsing bubbles.

The overall model is implemented in OpenFOAM in order to simulate the
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Figure 17: a) x-component of the liquid velocity UL sampled above the
obstacle (y=6.5 mm) and length of the recirculation zone in two different
planes. (b) and (c) Pdf of the position at collapse vs distance from the
leading edge in the plane (a) z=4h and (b) z=6h.
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Figure 18: Peak of pressure radiated on the wall due to the shock wave in
the plane (a) z=4h and (b) z=6h.

trajectory of small bubbles and capture their expansion and collapse near the
surfaces. This model can be applied to a more complex geometry such as
a turbine and provide information about the location of expected erosion
damages due to the successive bubble collapses.
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A. The transport equations

We search a numerical solution of the transport equations which are a
system of 6 first order ODEs.

dxB

dt
= UB

dUB

dt
=

1
ρB

ρL
+ 1

2

[1

2

DU

Dt
− 1

ρL

∇pL + (
ρB

ρL

− 1)g

+

(
3Cdrag|UL − UB|

8R
+

3Ṙ

2R

)
(UL − UB) + Clift(UL − UB) × ωL

]

These equations are written in matrix form as

[X]′ = [F ]

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

xB

yB

zB

uB

vB

wB

⎤
⎥⎥⎥⎥⎥⎥⎦

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

f1

f2

f3

f4

f5

f6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

uB

vB

wB

f4(uB, vB, wB)
f5(uB, vB, wB)
f6(uB, vB, wB)

⎤
⎥⎥⎥⎥⎥⎥⎦

where

f4 =
1

ρB

ρL
+ 1

2

[1

2

DuL

Dt
− 1

ρL

∂p

∂x
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(
3Cdrag|UL − UB|

8R
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3Ṙ

2R

)
(uL − uB)

+ Clift

(
(vL − vB)

∂wL

∂y
− (wL − wB)

∂vL

∂z

) ]
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1

ρB

ρL
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[1

2
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Dt
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ρL
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3Ṙ

2R
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1

ρB

ρL
+ 1

2
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2

DuL

Dt
− 1

ρL

∂p
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(
3Cdrag|UL − UB|

8R
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3Ṙ

2R

)
(wL − wB)

+ Clift

(
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∂x
− (vL − vB)
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∂y

) ]

43



The Jacobian matrix is

J =
∂[F ]

∂[X]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 ∂f4

∂x4

∂f4

∂x5

∂f4

∂x6

0 0 0 ∂f5

∂x4

∂f5

∂x5

∂f5

∂x6

0 0 0 ∂f6

∂x
∂f6

∂x5

∂f6

∂x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

and the components are

∂f4
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=
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ρL
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8R
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3Ṙ

2R

]

44



3





7th International Conference on Multiphase Flow,
ICMF 2010, Tampa, FL, May 30 – June 4, 2010

Mass transfer cavitation model with variable density of nuclei

A. Vallier∗, H. Nilsson† and J. Revstedt∗

∗ Division of Fluid Mechanics Dept. Energy Sciences, Lund University, SE-22100 Lund, Sweden

† Applied Mechanics, Fluid Dynamics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

Aurelia.Vallier@energy.lth.se, hakan.nilsson@chalmers.se and Johan.Revstedt@energy.lth.se

Keywords: Cavitation, Sauer’s model, Variable nuclei density, Lagrangian Particle Tracking

Abstract

The performance of the mass transfer cavitation model of Sauer is investigated using a varying nuclei concentration.

The Sauer model assumes a uniform nuclei distribution despite measurement of the non-homogeneous nucleus

population. Here the nuclei density is studied and a non-homogeneous nuclei distribution in a modified Sauer

model is implemented. It is used to study how the increased cavitation nuclei density in regions of low pressure

affects the inception of cavitation. The interface between the water and the water vapor is tracked using a volume

of fluid method and vaporization and condensation are described by the modified Sauer’s mass transfer model.

The nuclei in the liquid phase are modeled with a Lagrangian Particle Tracking method. The LPT computa-

tions yield to a non uniform nuclei distribution which consists of nuclei accumulation close to the leading edge

and no nuclei on average in the boundary layer of the hydrofoil. The sensitivity of the modified Sauer model to

nuclei distribution is proven. The shape of the sheet cavity and the volume of vapour are affected by the nuclei content.

Nomenclature

Roman symbols
g gravitational constant (ms−1)

p pressure (Nm−2)

U velocity (ms−1)

D diameter (m)

R radius (m)

c0 chord length (m)

k turbulent kinetic energy (m2s−2)

Greek symbols
α vapor volume fraction

ρ density (kgm−3)

μ viscosity (kgm−1s−1)

τ relaxation time (s)
ε turbulence energy dissipation rate (m2s−3)

Subscripts
P particle

v vapor

l liquid

Introduction

Recently, many mass transfer cavitation models have

been introduced in the literature and general-purpose

CFD codes in order to fully describe the observed phe-

nomena on cavitating hydrofoils. The inception cav-

itation number is supposed to be given by the min-

imum value of the pressure coefficient. This law is

barely suitable in the case of attached cavitation on a

hydrofoil because viscosity, turbulence and water qual-

ity have a major influence on cavitation inception (Bren-

nen (1995)). In particular, cavitation inception occurs

at different pressure depending on the number of cav-

itation nuclei. Therefore, taking into account the non-

homogeneous nuclei content of the water will improve

the accuracy of the numerical simulations. Sauer (2000)

included the nuclei density parameter n0 in their cavita-

tion model, specified as a constant . This assumption is

not in accordance with experiments or the numerical re-

sults obtained by Huuva et al. (2007), where it is shown

that the nuclei accumulate in certain regions close to the

hydrofoil. Mass transfer models give very good predic-

tions of the mechanism of the cavitation inception and

development for cases of cavitating hydrofoils (Coutier-

Delgosha et al. (2007)). These models successfully rep-

resent the attached sheet cavity, the re-entrant jet, the

1
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break-off of the sheet, and the shedding of the break-off

process. All these features agree with experimental ob-

servations. However, the models fail to resolve the tran-

sition between the attached sheet cavity and the cloud of

vapor. In experiments, the transition forms a cloud of

small vapor bubbles, while the numerical methods pre-

serve a large coherent vapor region that is advected with

the surrounding flow. The models cannot further han-

dle the collapsing process of the small bubbles and the

related erosive and acoustic processes. Indeed this im-

portant feature should at some point be included in the

prediction as it is the main cause of erosion damage. The

implosion of the bubble cloud when it reached a region

of higher pressure generates pressure waves that influ-

ence the collapse of the surrounding bubbles, causing a

chain reaction that amplifies the erosive process. As the

model does not accurately predict regions containing a

low vapor concentration, we study the relevance of the

hypothesis made to simplify the model, i.e. the assump-

tion of constant nuclei concentration. It is not obvious

that the nuclei concentration is homogeneous in real ap-

plication. Therefore it is of interest to investigate how

a inhomogeneous distribution affects the inception and

development of attached sheet cavities.

The Sauer cavitation mass transfer model is intro-

duced with the nuclei density n0, taking into account

the water quality. Then the LPT method described is

used to compute the cavitation nuclei distribution. Fi-

nally we present the results obtained for the LPT nuclei

distribution and for the modified Sauer model where non

homogeneity is included.

Geometry

The simulations were performed for 2D and 3D flows

past a NACA0015 hydrofoil. Figure 1 illustrates the

125*270 C-grid used for the 2D computations. The hy-

drofoil has a chord length c0=0.15m and is positioned at

4.5c0 from the inlet and 9c0 from the outlet. The height

of the computational domain is 9c0. The angle of attack

is 8 degrees. The grid points are clustered to the hydro-

foil surface such that the first cell center near the hydro-

foil surface starts at Δy/c0 ∼ 0.1/
√
Re = 1.10−4 with

an increase of 5% per layer. Hence, the first node away

from the wall is on average positioned at y+ = 3. In

the case of the 3D simulation, 50 grid points are equally

distributed in spanwise direction, with a total spanwise

thickness of 1c0. The Reynolds number based on c0 and

the uniform inlet velocity 8m/s is Re=1.2 ·106. The cav-

itation number σ is 1.2.

Figure 1: Computational grid for the NACA0015 airfoil

Sauer model

The Sauer model (Sauer (2000)) is a mass transfer

model using the volume of fluid (VOF) approach. The

fluid density and viscosity are scaled by the vapor vol-

ume fraction α

ρ = αρv + (1 − α)ρl (1)

μ = αμv + (1 − α)μl (2)

The transport equation for the vapor volume fraction

reads
∂α

∂t
+ ∇ · (αU) = Sα (3)

where the source term Sα = − ṁ
ρv

accounts for the de-

struction and production of vapor. One can also derive a

corresponding transport equation for the liquid volume

fraction γ (where α + γ = 1). The source term is then

Sγ = ṁ
ρl

which accounts for the destruction and pro-

duction of liquid. Summing the two transport equations

results in the non divergence free continuity equation:

∇ · U = (
1
ρl

− 1
ρl

)ṁ

In order to derive the mass transfer rate, ṁ, the Sauer

model states that the vapor volume fraction corresponds

to a density n0 of nuclei of radius R. Furthermore the

dynamics of each bubble is governed by a simplified

Rayleigh-Plesset equation. Hence the vapor volume

fraction and the nuclei growth rate are written as

α =
4
3πR

3n0

1 + 4
3πR

3n0

(4)
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Ṙ =

√
2
3
|p(R) − p∞|

ρl
. (5)

The mass transfer rate ṁ is then derived (see Sauer

(2000) ) as

ṁ = −ρv
3α
R
sign(pv − p)

√
2
3
|pv − p|
ρl

(6)

Finally, the continuity and vapor transport equations

are solved together with the momentum equation:

ρ
∂U
∂t

+ ρ(U · ∇U) = −∇p+ μ∇2U + ρg (7)

Nuclei distribution

Lagrangian Particle Tracking

Lagrangian particle tracking (LPT) is a method to

track individual particles (or bubbles) in a fluid flow. A

particle P is defined by the position of its center, xP, its

diameter, DP , its velocity, UP and its density, ρP .

The fluid phase is governed by the incompressible

Navier-Stokes equations

∇ · U = 0

ρ
∂U
∂t

+ ρ(U · ∇U) = −∇p+ μ∇2U + ρg − SP (8)

The additional source term in the momentum equa-

tion (8) is due to the influence of the particles on the

flow. Here we consider the case of a dilute suspen-

sion (
xPi

−xPj

DP
> 10) with a volume fraction of parti-

cles lower than 10−6. Hence the particles’ effects on

the flow and turbulence are negligible (see Elghobashi

(1994)). This is usually denoted one-way coupling, i.e.

the flow affects the particles but the particles don’t affect

the flow. Therefore the additional source term SP in the

momentum equation is neglected. As a consequence of

the very low volume fraction of particles, inter-particle

collisions are also neglected.

In a Lagrangian frame, each particle position vector

xP is calculated from the equation

dxP

dt
= UP (9)

and the motion of each particle is governed by Newton’s

second law:

mp
dUP

dt
=

∑
F, (10)

where the mass of each particle is mP = 1
6ρPπD

3
P .

In dilute flow, the dominant forces acting on the small

particle is the drag from the fluid phase and the gravita-

tional force: ∑
F = FD +mpg (11)

The particle Reynolds number is defined as

ReP =
ρfDp|U − Up|

μf
(12)

and the drag force can be expressed as

FD = −mp
Up − U
τP

(13)

The relaxation time τp of the particles is the time it

takes for a particle to respond to changes in the local

flow velocity

τp =
4
3

ρpDp

ρfCD|U − Up| (14)

where the standard definition of the drag coefficient

CD for a spherical particle is given by Schiller and Nau-

mann as

CD =

⎧⎪⎨
⎪⎩

24
Rep

if Rep ≤ 0.1
24

Rep
(1 + 1

6Re
2/3
p ) if 0.1 ≤ Rep ≤ 1000

0.44 if Rep > 1000
(15)

Since the fluid velocity U, calculated in the Eulerian

reference frame, is needed for the calculation of the drag

force in the Lagrangian frame, it has to be interpolated

to the position of the particle from the neighboring cells.

The velocity at the particle position is denoted U@P.

Furthermore, each Eulerian time step is divided into a

set of Lagrangian time steps that is specific to each parti-

cle. A Lagrangian time step is defined as the time it takes

for the particle to leave the cell that it was occupying.

The velocity and position of a particle at the n-th La-

grangian time step Δtn within an eulerian time step is

evaluated as

Ut+
Pn

i=1 Δti
p =

Ut+
Pn−1

i=1 Δti
P + Ut

@P
Δtn

τp
+ gΔtn

1 + Δtn

τp

(16)

xt+
Pn

i=1 Δti
p = xt+

Pn−1
i=1 Δti

p + Ut+
Pn−1

i=1 Δti
P Δtn

(17)

The collision of a particle with the wall is assumed

to be inelastic. Hence, the velocities of the particle P
before and after collision are written as

UP = Un
P n + U t

P t (18)

U
′
P = Un′

P n + U t′
P t (19)

The unit vectors n and t are the normal and tangential to

the wall, respectively. The normal and tangential com-

ponents of the particle velocity after a collision with the

wall are evaluated as

Un′
P = −εwUn

P (20)
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U t′
P = (1 − μw)U t

P (21)

where εw ∈ [0, 1] and μw ∈ [0, 1]) are the coefficient of

restitution and friction of the wall.

Random Walk

In reality, small particles have a short relaxation time

and respond quickly to the flow fluctuations. Turbulence

diverts the particles from their trajectory and small par-

ticles are trapped in eddies for a certain period of time.

Not accounting for this leads to that the particles will

follow the stream lines of the mean flow. Here we use

a random walk model (Gosman & Ioannides (1983)) to

include the effect of turbulent dispersion of the particles,

i.e. eddies are created randomly and affect the particle

trajectory. In practice, a local fluctuating component is

added to the fluid velocity at the position of the particle,

i.e. U@P becomes Ũ@P = U@P + Ufluct
@P . The local

fluctuating velocity can be estimated by

Ufluct
@P = ψ

√
2
3
k (22)

where ψ is a random number generated from a Gaussian

distribution of zero mean and variance 1 ( ψ ∈ N(0, 1))

and
√

2
3k is the local RMS fluid velocity fluctuations for

isotropic turbulence. The eddy life time (te) and the time

needed by the particle to traverse the eddy (transit time

ttr) are calculated as

te =
C0.63

μ
k1.5

ε

|Ufluct
@P | (23)

ttr = −τP ln(1 − le

τP |Ũ@P − UP |
). (24)

The random walk algorithm consists of evaluating

Ufluct
@P according to equation (22) and a random num-

ber ψ, calculating the characteristics times te and ttr
and keeping Ufluct

@P constant during the interaction time

tint = min(te, ttr).

Results

Nuclei density sensitivity to particle properties

Several cases (listed in Table 1) have been studied in

order to investigate the sensitivity of the solution to par-

ticle diameter and particle density. Also, all these cases

have been simulated both with and without the random

walk model. Furthermore one 3D case was simulated

with LES to see how the turbulence affects the particles

distribution.

Figure 2: Instantaneous distribution of cells with a large

nuclei density for cases LPT6 (top) and

LPT6RW (bottom)

Figure 3: Instantaneous distribution of cells with a large

nuclei density for case LPT6LES , in the cen-

terplane

Figure 4: Average nuclei distribution for cases LPT6
and 6RW
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Table 1: Summary of the LPT cases.

ρP DP 2D RANS 2D RANS + RW 3D LES

1000 1 LPT1 LPT1RW

1000 10 LPT2 LPT2RW

1000 20 LPT3 LPT3RW

1000 30 LPT4 LPT4RW

1000 40 LPT5 LPT5RW

1000 50 LPT6 LPT6RW LPT6LES

100 50 LPT7 LPT7RW

10 50 LPT8 LPT8RW

1 50 LPT9 LPT9RW

500 particles are injected per time step at a distance

1.5c0 in front of the hydrofoil.

Figures 2 and 3 highlight the cells which contain the

largest number of nuclei for the RANS and LES compu-

tations. Two features are observed. First, a large number

of nuclei are present at the leading edge. Obviously the

density is highest at the stagnation point (colored in red)

because the nuclei rebound against the wall and reside a

longer time in this region of low velocity. Second, the

presence of cells with a high nuclei content in the region

of low pressure should be investigated. In this region

the velocity is high and the residence time of a nuclei is

therefore very short. From one instantaneous picture to

another, the nuclei distribution is completely different.

Thus we calculate an average of the positions occupied

by the nuclei during their trajectory. Figure 4 shows the

results for case LPT6 and LPT6RW . The average nu-

clei distribution confirms the accumulation of nuclei at

the stagnation point (colored in red) . A large number

of nuclei are also observed in a part of the low pressure

region near the leading edge. However the results show

that the nuclei are not present on average in a layer close

to the hydrofoil.

In order to compare the influence of the size and the

density, as well as the turbulence modeling, the averaged

nuclei distribution has been sampled on the vertical line

which goes through the lowest pressure region (line 2 in

Figure 5). The average number of nuclei is sampled in

Figure 6, 7 and 8. It shows that the dark blue layer in

Figure 4 corresponds to a nuclei content lower than the

far field density (which is 2.1e8). This layer is thicker

(around 0.5 mm instead of 0.1 mm) for nuclei larger

than 10 μm. For large nuclei, the distribution is very

dense on the surface, exactly in the low pressure cells.

For small nuclei, the high density is located from 0.1 to

0.3 mm away from the surface, and the peak is much

lower. Particle with lower density behave like particles

with diameter smaller than 20 μm (Figure 7).

The random walk model has an impact on the nuclei

Figure 5: Contour of pressure (2D, RANS). Sampling

lines where the average nuclei distribution is

investigated.
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distribution, as shown in Figure 8. When turbulent dis-

persion is accounted for, the nuclei distribution is very

dense on the surface of the hydrofoil while there is no

nuclei on the first 0.2 mm near the surface without turbu-

lent dispersion. Furthermore the oscillations away from

the surface are damped.

Effect of inhomogeneous nuclei distribution

The Sauer model assumes a homogeneous nuclei dis-

tribution, and a value of 108 is generally used. Here the

performance of the model is investigated using a vary-

ing nuclei concentration. Using the nuclei distributions

obtained from the simulations presented in the previous

section in the modified Sauer model did not yield any

sheet cavitation. Instead, the cavity appeared somewhat

above the hydrofoil and was not attached. Indeed the

vapor production started where both crucial parameters

existed, i.e. a low pressure and a high concentration of

nuclei. This behavior is due to the lack of nuclei in the

boundary layer discussed in the results of the LPT sim-

ulations. However, it has been shown experimentally

that cavitation starts at the surface. This implies that the

transported nuclei (called free stream nuclei) don’t have

as much importance as the surface nuclei, at least for

cavitation inception. Surface nuclei are generally small

bubble of gas trapped in wall rugosity (Brennen (1995)).

Therefore it has also been studied how the nuclei con-

tent in the boundary layer affect cavitation inception and

development. In those studies it is assumed that the nu-

clei concentration N is high (N=108) in a layer attached

to the surface and low (N=102 or 104) everywhere else.

The thickness of the layer δN varies from 0.5, 1,2 and 4

mm. The cases are summarized in Table 2.

Figure 9 shows the total volume of vapor in the entire

computational domain during the cavitating process. In

cases 1 and 5, the layer is 0.5 mm thick. The nuclei con-

tent is too low to enable the cavity to grow sufficiently.

The production of vapor is lower during cavitation in-

Table 2: Summary of the cases with a prescribed non

uniform nuclei distribution. N is the nuclei

concentration in the domain. δN is the thick-

ness of the layer with high concentration of nu-

clei, i.e. where N=108.

δN =0.5 δN =1 δN =2 δN =4

N=102 case 1 case 2 case 3 case 4

N=104 case 5 case 6 case 7 case 8
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Figure 9: Total volume of vapor for cavitating flow with

different nuclei distribution.

ception compare to the uniform case. In the other cases

cavitation inception is similar to the case with uniform

nuclei distribution. The same amount of vapor is created

when the cavity grows. From t=0.02 s, the vapor pro-

duction is slightly larger than in the uniform case. The

cavity is broken by the reentrant jet, and from t=0.03 the

vapor disappears at the same rate except for cases 2 and

3. For both cases, the volume of vapor decreases slower,

grows again and then decreases as in the uniform case.

Figure 10 shows the cavitation process for the uni-

form case (left), case 7 (center) and case 3 (right). As

mentioned, the inception is similar for all cases. The

attached cavity has the same shape at t=0.02 s. Differ-

ences can be noticed from t=0.03 s, due to the re-entrant

jet which has the same thickness as the layer of nuclei.

For all the cases with δN ≤ 2mm , the cloud which is

about to be detached is closer to the hydrofoil surface.

Furthermore the re-entrant jet is faster. Thus it breaks

the attached cavity at a position closer to the leading

edge. As the point of detachment is closer to the lead-

ing edge, the length of the attached cavity is shorter and

the cloud is more stretched . With a non-uniform nuclei

distribution, the attached cavity is linked to the cloud by

a thin layer of vapor. This line of vapor is still present

when the cloud shrinks (t=0.06). It generates a second

smaller, fuzzier cloud for the cases with N=102. This

is the reason why the total volume of vapor increases

around t=0.06 s for these cases.
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Figure 10: Vapor volume fraction α. First row t=0.02s, 2nd row t=0.03s, 3rd row t=0.05s, 4th row t=0.06s, 5th row

t=0.07s. Left: N uniform, center: case 7 (N = 104, δN =2 mm), right: case 3 (N = 102, δN =2 mm)
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Figure 11: Pressure coefficient at t=0.03 s. Cases with

N=102.

The differences between the curves of the pressure

coefficient, shown in Figure 11, confirm that the non

uniform cases have a shorter attached cavity already at

t=0.03 as the the pressure increases at a position x/c0
between=0.65 and 0.7 instead of 0.75 for the uniform

case.

Conclusions

We studied the nuclei distribution over a NACA0015 hy-

drofoil. It was shown that the nuclei accumulate at the

leading edge close to the low pressure region. However

the nuclei were not present on average in the boundary

layer. The Sauer model was modified to take into ac-

count this non uniform nuclei density and didn’t yield to

attached cavitation. It means that the transported nuclei

influence is not as important as the one of the surface

nuclei for cavitation inception. Then the performance of

the modified Sauer model was investigated with a higher

nuclei concentration near the surface. The attached cav-

ity was shorter, the re-entrant jet was faster and thinner,

and the cloud was stretched. A thin layer of vapor linked

the attached cavity and the cloud of vapor. These fea-

tures emphasize the importance of the nuclei distribution

when modeling cavitation inception and developement.
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Abstract  

Mass transfer cavitation models based on the Volume-Of-Fluid method (VOF) have a limitation of the resolution due 
to the grid size. Bubbles of the same size as the control volumes (or smaller) cannot be resolved. A new multi-scale 
approach is developed in the present work, which can model the presence of bubbles smaller than the grid size. The 
principle is to complement the VOF method with a two-way coupled Lagrangian particle tracking method (LPT). Using this 
approach for simulating cavitating hydrofoils lead to a better modelling of the mixture of vapor and liquid in the transition 
region between the attached cavity and the shedding cloud. The VOF-LPT coupling model is tested on simplified 
configurations for the breakup of an attached cavity. The results show that the model successfully captures the formation of 
small bubbles and gives a better description of the liquid/gas mixture.  

Keywords: numerical simulation, VOF, LPT, multi-scale, cloud cavitation, OpenFOAM. 

1. Introduction  

In the last decades, numerous numerical cavitation models have been developed to describe the mechanisms of sheet and cloud 
cavitation on cavitating hydrofoils. A sheet cavity is a steady attached structure which covers a part of the hydrofoil. When the angle of 
attack is increased or the cavitation number decreased, cloud cavitation occurs which corresponds to foamy and unsteady structures. 
The cavity length oscillates because the rear part of the cloud is periodically detached from the cavity. The mass transfer models based 
on a Volume-Of-Fluid (VOF) formulation succeed to represent the attached sheet cavity, the re-entrant jet which breaks the sheet and 
the shedding of the cloud of vapour (Sauer and Schnerr [1], Kunz et al. [2]). However, these models give poor results regarding the 
break-up process and when bubble clouds are formed and advected.  

The VOF method is designed to track the interface between two fluids. This method is therefore suitable for modeling large vapor 
structures, such as sheet cavitation. The drawback of this method is that it cannot describe structures that are smaller than the grid size. 
A higher resolution grid would be required to capture the small cavitation bubbles that are present in the case of cloud cavitation. This 
would increase excessively the computational cost. For modelling cloud cavitation, the appropriate method is to track individual 
bubbles in a Lagrangian frame. Furthermore, if the bubble dynamics is resolved by a Rayleigh-Plesset equation (Spång [3]), the 
collapse of individual bubbles which leads to the global collapse can be modeled. This would give a better understanding and a 
more accurate prediction of the collapse and its consequences such as pressure wave and pitting on the surface (Grekula [4]).  

In order to improve the available cavitation models, the present work introduces a method that accounts for the entire spectrum of 
bubble sizes. The VOF and LPT methods are combined within a hybrid approach which uses the strength of the VOF method to model 
the large structures on a fine grid and the strength of the LPT method to model the small structures on a coarser grid.  

2. Numerical approach 

2.1 The VOF method with mass transfer cavitation model 
The Volume-Of-Fluid method (VOF) is a numerical technique for tracking and locating the interface between two or more fluid 
phases (Hirt and Nichols [7]). It is useful for modeling large vapor structures and is therefore adopted for modeling sheet 
cavitation. VOF is used together with mass transfer cavitation models to take into account vaporization and condensation (Sauer 
and Schnerr [1], Kunz et al. [2]). In VOF, the liquid volume fraction  may vary from 0 to 1 within a computational cell. The 
interface exists in the cells with intermediate values. The mixture density ρ and viscosity μ are calculated using the volume 
fraction, as  ρ=  ρl – (1- ) ρg  and  =  l – (1- )  g where subscripts l and g stand for liquid and gas. The transport equation 
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for the volume fraction reads  

( ) ( )( )r S U1U =++
t

−⋅∇⋅∇
∂
∂

, (1) 

where U is the velocity of the mixture and Ur is the relative velocity between the two fluids. The third term in the l.h.s. of eq. (1) is 
an artificial compression term active only in the interface region. It was introduced by Rusche [8] to preserve the interface 
sharpness which is crucial in the VOF approach. In mass transfer cavitation models, the destruction and production of vapor is 
accounted for by the source term in eq. (1), as  

g

m
=

−
S .  

The mass transfer rate m  between the liquid and the gas phase depends on the pressure, empirical parameters (Kunz et al. [2]) 
and on the nuclei number and size (Sauer and Schnerr [1]). 
The mass and momentum equations read 

m
gl

−=⋅∇
ρρ
11

U ,  (2) 

( ) Pst ++p=+
t

SSUUU
U 2 −∇−∇⊗⋅∇

∂
∂

,  (3) 

where p is the pressure of the mixture. The source term SP is due to the influence on the flow of the bubbles tracked within the 
Lagrangian approach and is derived in the next section. The source term Sst models the effect of surface tension (Brackbill [9]), as  

nS  = stst , 

where is the Dirac function which insures that the force is only applied at the interface, st is the surface tension coefficient, n 

is the normal vector at the interface ( | |= ∇∇ /n ) and κ is the curvature at the interface ( n∇= ). 

Instead of considering the interface as a sharp discontinuity, it is assumed to have a finite thickness which is a smooth transition 
from one fluid to the other. The dispersion of the surface tension across the transition region is obtained with the gradient of the 
volume fraction ∇α. Therefore the quality of the interface description depends on the grid size.  Hence, capturing small bubbles 
requires grid refinement which leads to an increased computational effort. An alternative is to model the small bubbles with a 
Lagrangian Particle Tracking (LPT) method. 
  

2.2 The LPT method for small bubbles 
Small bubbles are modelled as Lagrangian point particles and are tracked by an LPT method in the fluid flow. This method is 

relevant for particles much smaller than the grid size such that the source terms from the particle can be approximated as a point 
source. The recommended particle size is usually ten times smaller than the Lagrangian grid size. Arlov et al. [5] showed that a particle 
could fill up to 22% of the Lagrangian cell and still satisfy LPT theory. A particle P is defined by the position of its center, xP, its 
diameter, Dp, its velocity, UP and its density, ρP. Its volume is assumed to be the volume of a sphere Vp=Dp

3π /6 and its mass is 
mp=ρPVp. 
In a Lagrangian frame, the particle position and motion are calculated from   

P
P U

x
=

dt

d
  and   F

U P =
dt

d
mP . 

Several forces, F, are acting on the particle, such as drag, lift, added mass, inertia and buoyancy. In this preliminary study, only the 
drag force is considered, as  

P
PD m= PUU

F
−

, where | |PUU −D

PP
P C

D
=

ρ
τ

3

4
 is the relaxation time of the particles, i.e. the time it takes for a particle to 

respond to changes in the local flow velocity. The drag coefficient CD for a spherical particle is derived from experimental data 
(Clift [11]) and depends on the particle Reynolds number ReP  = ρ Dp |U-Up| / , as 

CD =24/ ReP    if  ReP < 0.1 
CD =24 (1+1/6 ReP

2/3)/ ReP   if  0.1 < ReP < 1000 
CD =0.44   if  ReP > 1000 

The force fP exerted by a particle on a unit volume of fluid  Vcelli  is proportional to the difference in particle momentum 
between the instant it enters (tin) and leaves (tout) the control volume celli , as fP ∝ mp (UP(tin)- UP(tout)) . The source term SP in eq. 
(3) is the contribution of this force for each particle Pk which traveled in the control volume celli of volume Vcelli , as 

[ ]
kPP f

1
S

k
icell

i tV
=cell

Δ
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2.3 Coupling between VOF and LPT 

The new multi-scale approach is based on switching method in order to handle the presence of both large and small structures in a 
mixture of vapor and liquid. The VOF method is complemented with a two-way coupling LPT method which accounts for the small 
bubbles on a coarser grid. The multi-scale model requires 

- a parameter and a critical value at which the switching between the VOF and LPT methods is activated, 
- a strategy to handle the communication between the VOF and LPT methods such that mass and momentum are conserved. 
The criterion parameter for switching method is simply related to the grid size limit for which LPT theory is valid. In other words, 

bubbles with a size small enough to be tracked by LPT are converted to point particles. The strategy is inspired from the technique used 
by Tomar et al. [6] to identify small droplets created during the break-up of a turbulent liquid jet in gas. At each time step, the bubbles 
described in the Eulerian frame are identified with a so-called connected components technique. It consists of associating the adjacent 
cells for which the volume fraction meets a given criterion. In the case of bubble break up, the condition is that the volume fraction is 
below a threshold value αlim. The adjacent cells which fulfil this condition are stored together with the number of the bubble (bubbleID) 
they belong to. The algorithm efficiency is optimized by using a Hash Table which is a table with two parameters, a key and an 
associated value. Here the key is the cell label and the value is its bubbleID. In this way, it is easy and fast to retrieve data (cell label) 
because the searching algorithm doesn’t use loops which are time consuming. Once the bubble identification is completed, the bubbles 
which can be handled in the Lagrangian frame because of their small volume are converted to particles. The position, size and velocity 
of these particles are deduced from the Eulerian data and the corresponding volume fraction is removed from the VOF calculations. The 
particles are tracked with the LPT method and the influence of the particles on the flow is taken into account through a source term in 
the Eulerian momentum equation.  

The Lagrangian grid is coarser than the Eulerian grid in order to fulfil the condition of validity of the LPT theory. The Lagrangian 
grid size is arbitrarily set to be four times as large as the Eulerian grid size in each direction. The maximum volume for the bubble 
handled by the LPT model is set to be 10% of the Lagrangian cell volume. With these assumptions, the bubbles described by less than 
6.4 Eulerian cells are candidates for being handled by the LPT method on the Lagrangian grid. These bubbles are small enough to be 
considered as spherical due to the surface tension. Therefore their diameter is derived from the equivalent volume of a sphere. 

The particles are small enough to be considered as source points on the Lagrangian grid. On the other hand, each particle can fill 
several cells on the Eulerian grid such that the point particle approach may not be valid on the Eulerian grid. However the finer grid is 
still necessary to obtain accurate results with the VOF method. Therefore the VOF results are interpolated from the Eulerian to the 
Lagrangian grid. The overall results on the Lagrangian grid give a more realistic description of the whole range of bubble sizes.  

The detailed algorithm of this coupling method implemented in the OpenFOAM C++ library is presented in Figure 1 and is illustrated 
by a 2D example in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Algorithm for the VOF to LPT coupling 

1- Create a list (L) of cells whith α<αlim. 
2- Identify coherent bubbles:  

Initialize bubbleID counter (maxID=0) 
 Create a Hash-Table HT which will contain (cell  label, bubbleID) 
 For all cell_i ∈ L 
       Create a list (Ln) of neighbours  
       If none element of Ln is a key of HT 
                Add cell_i's label as a new key in HT, with value bubbleID= maxID 
                maxID++ 
      If only one element of Ln (cell_k) is a key of HT  
                Get the value bubbleID_k associated to the key cell_k 
                Add cell_i's label as a new key in HT, with value bubbleID= bubbleID_k 
       If several elements of Ln (cell_k, k=1,K; K>1) in Ln are keys in HT  
                Get the values bubbleID_k, k=1,K associated to the keys cell_k k=1,K 
                Find the minimum value minID=min{bubbleID_k, k=1,K} 
                Add cell_i's label as a new key in HT, with value bubbleID= minID 
                For all elements of Ln with associated value {bubbleID_k, k=1,K}> minID in HT,  
                  change the value to minID in HT (i.e. cell _i connects bubbles together) 
3- For each bubble, get its properties  

Create a list (B) of cell label associated to the same bubbleID in HT 
    Evaluate the bubble volume ( ) cellcell

B
P V=V −1  

    Evaluate the bubble centroid position   ( ) cellcellcell
BP

P V
V

= −1x
1

x  

     Find the lagrangian cell corresponding to the centroid position, get its volume Vlag 
     If  VP <Vlag/10  (i.e. the bubble satisfies the criterion for LPT approach) 

   Evaluate the bubble velocity ( ) cellcellcell
BP

V
V

= −1U
1

UP  

               Evaluate the bubble diameter ( ) 3/1/6V=D PP  

              add the small bubble as a new point particle ( )PP Ux ,,DP P  for the LPT simulation 

              delete the corresponding bubble from the VOF simulation 1=Bcell∈  
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The choice of the threshold value αlim for bubble identification determines the degree of precision and the computational cost of the 
method. A value αlim close to one means that almost all the cells are retained for the bubble identification. With a lower threshold value, 
the cells considered for bubble identification are fewer and therefore the computational time is decreased. On the other hand, neglecting 
the cells with very low gas content may induce errors for the size and the number of structures identified. Therefore a parameter 
sensitivity study is conducted and the influence of the threshold value on the bubbles distribution and size is presented in the results 
section.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  (a) 
 
 
 
 
 
                                                              
                                                                         (c)           
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   (b) 

 

Fig. 2 (a) Illustration of the identification of bubbles on a 2D Eulerian grid. (b) Description of the steps to create the HashTable. 

(c) Illustration of the HashTable when cell 43 merges two identified bubbles. 

 

3. Results 

In order to validate the VOF–LPT coupling method for future application to cavitation modeling, numerical simulations of the 
breakup of an air bubble in water are performed. The geometrical set-up is shown in Figure 3. It consists of a box filled with water 
and an air bubble staying on the bottom (i.e. no gravity is included). The grid and fluid properties are given in Table 1. 

Key = 
Cell 
label 

Value= 
Bubble 
ID 

4 0 

5 0 

14 0 

15 0 

16 0 

30 1 

33 2 

34 2 

38 3 

39 3 

40 1 

41 1 

42 1 

43  

Key = 
Cell 
label 

Value= 
Bubble 
ID 

4 0 

5 0 

14 0 

15 0 

16 0 

30 1 

33 1 

34 1 

38 3 

39 3 

40 1 

41 1 

42 1 

43 1 
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������������������	�����������
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	���	���	���	���	�	�	���	���	�
�	�� 	��

- The coloured cells are identified with α<0.95 (Figure 2.a). 
- Set maxID = 0 
- March trough the identified cells in increasing order.  
- The cell labelled 4 has no neighbour in HT therefore the bubble ID 0 is assigned : put HT(4,0), and maxID is set to 1.  
- The cell labelled 5 has one neighbour in HT, with bubbleID=0 therefore the bubble ID 0 is also assigned : put HT(5,0) 
… 
- The cell labelled 30 has no neighbour in HT therefore the bubble ID 1 is assigned : put HT(30,1), and maxID is set to 2. 
… 
- The cell labelled 33 has no neighbour in HT therefore the bubble ID 2 is assigned : put HT(33,2), and maxID is set to 3. 
… 
- The cell labelled 43 has two neighbours in HT. The cell 42 with ID=1 and cell 33 with ID=2. The lowest bubble ID, 1, is 
assigned : put HT(43,1), and the bubble ID of cells 33 and  34 are set to 1 (Figure 2.c). 
… 
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Case 1 (Figure 3a) is similar to the set-up of the simulations performed by Gopala et al. [12] and the experiments of Andersson 
and Andersson [13] where a water jet impacts the bubble from above. In case 2 (Figure 3b), the same grid is used but the inlet is 
situated under the air bubble. The direction of the jet velocity is inclined by 30 degrees such that this configuration is a simplified 
representation of the re-entrant jet which breaks the attached cavity in the context of cloud cavitation. 

 

 

                     (a)      (b) 

Fig. 3 Geometrical set-up (a) case 1, (b) case 2. Inlet is on the top or bottom boundary, outlets are on the sides boundaries and the 
bubble is a hemisphere. 

 

 

 

 

  

 

 

Table 1 Physical and grid properties 

 

4.1 Case 1  

The bubble is stretched under the influence of the jet velocity (Figure 4a). Then the extremities grow and the middle part becomes 
thinner. Two children bubbles are formed and are linked by a thin strip (Figure 4b). This connecting strip is eventually detached 
from the two bubbles which continue to move apart from each other. These results are in agreement with both experiments [13] 
and numerical simulations [12]. In the numerical simulations of Gopala et al. [12], the pure VOF method predicted that the 
connecting strip evolved into two small bubbles. Thanks to the coupling VOF-LPT, the present simulation also capture these two 
small bubbles and furthermore succeeds to identify a number of even smaller bubbles (Figure 5). This shows a gain of accuracy in 
the modeling of bubble breakup. 

 

  

 

 

 

(a)   (b)      (c)         (d) 

Fig. 4 Isosurface α=0.5. Instantaneous pictures of the bubble deformation and breakup.  

Density [kg/m-3] ρl = 997     ρg = 1 

Viscosity [kg/ms] l = 1e-5     g =2e-5 

Surface tension 0.072 

Inlet velocity [m/s] |U|= 0.5  

Dimensions in (x,y,z) direction [m] 0.03
�

0.02
�

0.03 

Number of cells in (x,y,z) direction 96
�

64
�

96  

Inlet dimension in (x,y) direction [m] 0.02
�

0.005 

Outlet dimension in (y,z) direction [m] 0.02
�

0.005 

Bubble diameter [m] 0.01 
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Fig. 5 Close-up of Figure 4d. The two larger bubbles in the sides of the figure are modeled by the VOF method (isosurface α=0.5) 
and the small bubbles are identified by the coupling method and modeled by the LPT method.  

 

4.2 Case 2 

The bubble breakup resulting from a jet impacting the bubble from underneath is illustrated in Figure 6. The presence of small 
bubbles is successfully captured by the coupling method. The influence of the value of αlim is studied by comparing the results 
obtained for αlim =0.95 with the results obtained with αlim =0.9 or 0.99. Figure 7 describes the influence of this parameter on the 
number of bubbles treated by the LPT method as well as their size. When αlim is increased, the method is more accurate and 
produces more particles and their sizes are smaller. With αlim =0.99, the algorithm accounts also for the cells with a lower gas 
content, i.e. the cells with α∈[0.95, 0.99[ are not neglected, compared to the case αlim =0.95. Such a cell is either isolated or 
adjacent to cells that belong to identified bubbles. In the first scenario, a particle which has a very small diameter is created from 
this very low volume of gas. In the second scenario, the cell connects several identified bubbles such that the resulting bubble has 
a volume which doesn’t satisfy LPT theory anymore. Therefore the distinct bubbles which were candidates for the LPT approach 
when  αlim =0.95 are now identified as one large bubble which can still be treated by the Eulerian approach. With αlim =0.9, the 
cells with a gas content corresponding to α>0.9 are not accounted for, therefore the smallest bubbles are not detected by the 
algorithm. This parameter study highlights the sensitivity of the identification method to the threshold value αlim which needs 
further investigations. 

 

 

 

 

 

      (a)    (b)   (c)   (d)  

      (e)    (f)   (g)   (h)  

Fig. 6 Instantaneous pictures of the bubble modeled by the VOF method (isosurface α=0.5 colored in grey) and the small bubbles 
identified by the coupling method and modeled by the LPT method .  
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      (a)            (b) 

Fig. 7 Size of the particles for different threshold value αlim, at t=0.0185 which corresponds to Figure 6.d. (a) Probability density 
function. (b) Snapshot of the particles distribution.  

 
 

4. Conclusion  

Since a model based on the VOF method fails to capture structures that are smaller than the grid size, it cannot model the small 
cavitation bubbles without investing an enormous computational effort. These bubbles are present in the case of cloud cavitation 
and influence the global dynamics of the flow. For this type of cavitation, tracking individual bubbles is more relevant. In order to 
improve the existing mass transfer cavitation models based on the VOF method, a new hybrid method has been developed. This 
multi-scale approach switches from an Eulerian to a Lagrangian frame in order to account for the small bubbles that a pure VOF 
method cannot simulate.  An algorithm for identifying small bubbles has been implemented in OpenFOAM and the coupling 
method has been tested on two simple cases of  an air bubble breaking up under the impact of a water jet. The second 
configuration is a simplified model of the re-entrant jet that breaks the attached cavity in the context of a cavitating hydrofoil.  
The results show the ability of the algorithm to detect small bubbles and track them in the Lagrangian frame. The multi-scale 
approach is therefore an improvement to the modeling of the transition from sheet to cloud cavitation.  
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Nomenclature  

 
CD 
D 
F 
g 
m 
p 
Re 
t 
U 
V 

Drag coefficient [-] 
Diameter [m] 
Force [N] 
Gravitational constant [ms -2] 
Mass [kg] 
Pressure [Nm -2] 
Reynolds number [-] 
Time [s] 
Velocity [ms -1] 
Volume [m 3] 

α 
κ 
μ 
ρ 
σ 
 �

�
�

Volume fraction [-] 
Curvature [m-1] 
Dynamic viscosity [ kg m-1s-1] 
Density [kg m -3] 
Surface tension coefficient [Nm -1] 
 
Liquid (water) 
Gas (vapor or air) 
Particle 
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SUMMARY

Cavitation on hydrofoils comprises several physical processes. Cavitation nuclei are transported to regions

of low static pressure, where they grow and contribute to the formation of large-scale vapour cavities. The

large-scale structures may periodically deform and break up into smaller cavitation bubbles. The cavitation

bubbles are transported to regions of higher static pressure, where they implode and may erode the material

of the hydrofoil.

Large-scale cavitation inception, development and break-up is frequently modelled using the Volume-Of-

Fluid (VOF) method together with a mass transfer model for the vaporization and condensation. The VOF

method is limited to the modelling of structures that are larger than the computational control volume cell

size, and is thus unable to resolve the cavitation nuclei and the small bubbles that break off the large structure.

On the other hand, the transport of the cavitation nuclei is frequently modelled using the Discrete Bubble

Model (DBM), which tracks spherical bubbles that are much smaller than the cell size. A Rayleigh-Plesset

bubble dynamics model may then be used to estimate the evolution of the spherical bubble radius as the

surrounding pressure is changing. The DBM approach is thus unable to model the large-scale non-spherical

structures.

The present work develops a new multi-scale approach which can model both the small spherical bubbles,

the large non-spherical structures, and the transition between those regimes. The principle of the approach

is to couple an Eulerian cavitation model (VOF method with a mass transfer model) with a Lagrangian

cavitation model (DBM that includes four-way coupling and the Rayleigh-Plesset bubble dynamics model).

The approach is tested for the development of an attached cavity on a hydrofoil. The results show that the

approach successfully predicts the formation of small bubbles in the attached cavity and the shedding cloud

and gives a better description of the mixture of liquid, vapour and gas.
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1. INTRODUCTION

In the last decades, numerous numerical cavitation models have been developed to describe the

mechanisms of sheet and cloud cavitation on hydrofoils. A sheet cavity is a large attached structure

which covers a part of the hydrofoil, while cloud cavitation corresponds to a large number of

small bubbles being transported with the flow. The sheet cavity length may oscillate if the rear

part is periodically detached from the cavity, and the detached part turns into a cloud of small

bubbles. The large-scale cavitation inception, development and breakup is frequently modelled

using the Volume-Of-Fluid (VOF) method, with a mass transfer model for the vaporization and

condensation [1, 2]. In the mass transfer model developed by Sauer and Schnerr [3], the vaporization

is governed by the number of cavitation nuclei per unit volume in the fluid. The cavitation inception

is modelled by a linearised Rayleigh-Plesset equation for the rate of growth of the nuclei. Together

with an appropriate turbulence model, the dynamic of the flow is well described and the approach

successfully predicts the attached sheet cavity, the re-entrant jet which breaks up the cavity, and the

shedding process. The part of the cavity that breaks off is however transported downstream as a

large coherent structure rather than a cloud of bubbles.

The VOF method is designed to track the interface between two fluids [4]. This method is

therefore suitable for modelling large resolvable vapour structures, such as sheet cavitation. The

drawback of this method is that it can not describe structures that are smaller than the cell size.

It would therefore be very impractical to use VOF to capture the small cavitation bubbles that are

present in the case of cloud cavitation, due to the extremely high mesh resolution required. If also

the bubble dynamics at the collapse phase is to be resolved by VOF (and in that case also including

compressibility effects), the required mesh resolution would rapidly grow out of reach. That is

the reason why the VOF method does not give sufficiently accurate results regarding the breakup

process when bubble clouds are formed and advected.

In the present work, the VOF method with the Sauer and Schnerr mass transfer model is improved

to give a more realistic prediction of the whole range of bubble sizes. Small bubbles are identified

from the VOF representation and transferred to a Lagrangian frame. The method for transition

from the Eulerian to the Lagrangian frame is inspired from the technique used by Tomar et al. [5]

when identifying small droplets created during the breakup of a turbulent liquid jet in gas. The

small bubbles are tracked individually with the Discrete Bubble Model and the bubble dynamics

is resolved by a Rayleigh-Plesset equation in order to model the collapse of individual bubbles.

The interaction between the bubbles is accounted for and the flow is affected by the presence of the

bubbles. The bubbles may also be transferred back from the Lagrangian to the Eulerian frame, based

on the size of the Lagrangian bubbles or on their distance to the interface of the VOF structures.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
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The present multi-scale approach thus uses the strength of the VOF method to model the large

structures in the Eulerian framework, and the strength of the DBM approach to model the small

bubbles in the Lagrangian framework.

2. THE VOF METHOD WITH A MASS TRANSFER CAVITATION MODEL

The Volume-Of-Fluid (VOF) method, introduced by Hirt and Nichols [4], is a numerical technique

for tracking the sharp interface between two or more fluid phases. It is useful for modelling large

vapour structures and is therefore frequently adopted for modelling sheet cavitation. In VOF, the

liquid volume fraction α takes values between 0 to 1 within a computational cell. The interface is

defined to exist in the cells with intermediate values. The mixture density ρ and viscosity μ are

calculated using the liquid volume fraction α, as

ρ = αρl + (1 − α)ρv, (1)

μ = αμl + (1 − α)μv,

where subscripts l and v stand for liquid and vapour. In the mass transfer cavitation model of Sauer

and Schnerr [3], the continuity, momentum, and liquid volume fraction transport equations read

∇ · U = (
1
ρv

− 1
ρl

)ṁ, (2)

∂ρU
∂t

+ ∇ · (ρU ⊗ U) = −∇p+ ∇ · [μ(∇U + ∇UT )] + ρg − Sst + SB , (3)

∂α

∂t
+ ∇ · (αU) + ∇ · (α(1 − α)Ur

)
= −ṁ

ρl
, (4)

where U and p are the mixture velocity and pressure, respectively. The mass transfer rate, ṁ,

accounts for the destruction and production of water vapour. The source term Sst models the effect

of surface tension. According to Brackbill [6], it is expressed as Sst = σstκδn, where σst is the

surface tension coefficient, δ is the function that ensures that the force is only applied at the interface

(δ = |∇α|), n is the normal vector at the interface (n = ∇α
|∇α| ) and κ is the curvature at the interface

(κ = −∇ · n). The additional source term SB in the momentum equation (3) is due to the influence

of the Lagrangian bubbles on the flow. In the volume fraction transport equation (4), the third term

on the l.h.s. is an artificial compression term that is active only in the interface region, and where

Ur is the relative velocity between the liquid and the water vapour. This term was introduced by

Rusche [7] to preserve the interface sharpness, which is crucial in the VOF approach.

In order to derive the mass transfer rate, ṁ, Sauer and Schnerr [3] stated that the inception of

cavitation is due to the presence and growth of nuclei in the liquid. The nuclei are assumed to be

spherical micro-bubbles filled solely with water vapour. These micro-bubbles are supposed to be

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
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uniformly distributed in the liquid and to have the same radius, Rnuc. The number of micro-bubbles

per unit volume is denoted nnuc and the vapour volume fraction is therefore expressed as

(1 − α) =
4
3πR

3
nucnnuc

1 + 4
3πR

3
nucnnuc

. (5)

Furthermore, Sauer and Schnerr [3] assumed that the dynamics of each micro-bubble is governed

by a simplified Rayleigh-Plesset equation, obtained by neglecting the second-order derivative, the

viscosity and the surface tension. The pressure inside the nuclei is the saturated vapour pressure, pv,

and the liquid pressure at the micro-bubble position is set to the local mixture pressure, p. Thus, the

nuclei growth rate is given by

Ṙnuc = sign(pv − p)

√
2
3
|pv − p|
ρl

,

which yields a mass transfer rate of

ṁ =
ρvρl

ρ
(1 − α)α

3Ṙnuc

Rnuc
. (6)

If p < pv, the mass transfer rate is positive, and the source term − ṁ
ρl

is negative in the liquid volume

fraction transport equation (4), which corresponds to evaporation.

The results obtained with this model agree well with experimental data for cavitation on

hydrofoils, as shown by Huuva et al. [1], Lu [2] and Senocak [8]. Together with an appropriate grid

resolution and turbulence model, the dynamic of the flow is well described and the cavitation model

predicts the inception, the development into a sheet cavity, the re-entrant jet breaking up the cavity,

and the shedding of the breakup process. However, it is unable to predict the generation, transport

and dynamics of the small bubbles that eventually collapse and cause strong pressure waves and

surface pitting. The detached vapour region shrinks when it comes to a region with higher pressure,

but as it is simply predicted as a region of intermediate volume fraction, the collapse of individual

bubbles is not represented. As these physical processes are crucial for cavitation erosion prediction,

their effect should be included. The present work suggests that bubbles that are too small for the

VOF resolution requirements should be transferred to the Lagrangian framework, tracked using

DBM, and develop under the Rayleigh-Plesset equation.

3. TRANSITION BETWEEN THE FRAMEWORKS

The present work develops a new multi-scale approach that enables the transfer of bubbles that are

too small for the VOF resolution requirements, to the Lagrangian framework and a coarser mesh for

the DBM tracking. An overview of the approach is given in section 3.1, while a detailed description

of the algotithm, implemented in the OpenFOAM C++ library, is presented in Appendix A. The

requirements and the methodology for transferring the Lagrangian bubbles back to the Eulerian

frame, are discussed in section 3.2
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3.1. Lagrangian bubble detection

The strategy used to identify the bubbles is inspired from the technique used by Tomar et al. [5]

when identifying small droplets created during the breakup of a turbulent liquid jet in gas. At each

time step, the droplets are identified with a so-called connected components technique. It consists in

associating the adjacent cells for which the liquid volume fraction meets a given criterion. The size

of the coherent liquid structures can be estimated and small structures are transformed into droplets.

In the case of breakup of vapour structures, the condition used for the connected components

technique is that the cell contains vapour, i.e, the liquid volume fraction is below a threshold value,

αlim < 1. The adjacent cells that fulfill this condition are stored together with the number of the

bubble (bubbleID) they belong to. The algorithm efficiency is optimized by using a hash table,

which is a table with two parameters; a key and an associated value. Here the key is the cell label

and the value is its bubbleID. In this way, it is easy and fast to retrieve data (cell label) because the

search algorithm does not use time consuming loops. Once the bubble identification is completed,

the bubbles that are too small to be resolved by VOF are converted to Lagrangian bubbles. The

minimum number of connected cells required to represent the smallest vapour structure is denoted

NE−L. Thus, it is assumed that a VOF vapour structure that occupies less than NE−L Eulerian cells

is a candidate for being handled in the Lagrangian frame. The position, xB , radius, R, and velocity,

UB , of the identified Lagrangian bubbles are deduced from the Eulerian representation, from which

the corresponding vapour volume fraction is removed. The bubbles are considered small enough

to be spherical due to the surface tension, and their diameters are thus derived from the equivalent

volume of a sphere. Bubbles of that size does not fulfill the DBM requirement that the bubble should

be smaller compared to the cell size, on the mesh used in the Eulerian representation (referred to as

the Eulerian mesh). The Lagrangian bubbles are thus tracked on a much coarser Lagrangian mesh.

The choice of the threshold value, αlim, for bubble identification determines the accuracy and

the computational cost of the detection method. A value close to one means that almost all the

cells are retained for the bubble identification. With a lower threshold value, the cells considered for

bubble identification are fewer and therefore the computational time is decreased. On the other hand,

neglecting the cells with very low vapour content may induce errors for the size and the number of

structures identified. The influence of the threshold value on the bubble distributions and sizes was

investigated in a previous work [9].

3.2. Transfer of the Lagrangian bubble to the Eulerian frame

A bubble described in the Lagrangian frame may become very large. It can happen after a

coalescence event or due to an explosive growth when the bubble is subjected to a pressure lower

than its critical pressure. Bubbles that are too large for the DBM requirements, or large enough to

be tracked by VOF, should be moved to the Eulerian framework. The criterion for this is that the
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bubble has a volume larger than a group of NL−E neighbouring Eulerian cells, where the innermost

cell hosts the bubble centroid. The threshold value NL−E is a model parameter that is chosen larger

than NE−L. Thus, the Lagrangian bubbles can grow, and it is possible to capture the collapse and

rebounds following the growth phase.

The transition from Lagrangian to Eulerian also happens when a bubble comes close enough to

the Eulerian isosurface where α = 0.5. The method to determine if a bubble is close to an Eulerian

isosurface consists in estimating the location of the Lagrangian bubble surface at the six points with

coordinates (xB ±R, yB ±R, zB ±R). If α ≤ 0.5 in any of those points, the Lagrangian bubble is

in contact with a resolved vapour structure, and is converted to the Eulerian representation.

The method for the conversion from Lagrangian to Eulerian framework consists in filling with

vapour the Eulerian cell hosting the centroid xB and some of its neighbours. The number of cells

concerned depends on the volume VB and also on the volume available in these cells that can be

converted into vapour. A detailed description of this method is given in Appendix C.

4. LAGRANGIAN BUBBLE MODELLING

In the discrete bubble model (DBM), a bubble is considered as a point source when modelling

its transport in the surrounding fluid and it is modelled as a finite volume sphere when modelling

its dynamics, the interactions with the flow, solid surfaces and other bubbles. These features are

presented in detail here.

4.1. Bubble motion

In a Lagrangian frame, each bubble position vector xB is calculated from the equation

dxB

dt
= UB , (7)

and the motion of each bubble is governed by Newton’s second law

mB
dUB

dt
= Fa + Fp + Fbuoy + Fdrag + Flift. (8)

The forces acting on the bubble are the added mass force, the pressure gradient force, the buoyancy

force, the drag force and the lift force.

Fa = 1
2ρ

mB

ρB

(
DU
Dt − dUB

dt

)
,

Fp = −mB

ρB
∇p,

Fbuoy = mB(1 − ρ
ρB

)g,
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Fdrag = Cdragρ
mB

ρB

3
8R (U − UB)|U − UB |,

Flift = Cliftρ
mB

ρB
(U − UB) × ω.

Empirical relations of drag, lift and added mass effect for spherical non-rotating particles are

considered in this model. DU
Dt is the total acceleration of the fluid as seen by the bubble. g is the

gravitational acceleration. The vorticity of the fluid is ω = ∇× U and Clift is the lift coefficient,

assumed to take the value 0.5 according to Auton [10]. The drag coefficient Cdrag depends on the

bubble Reynolds number

ReB =
2ρR|U − UB |

μ
.

For very small Reynolds number (≤ 0.1), the drag coefficient is Cdrag = 24
ReB

. For larger Reynolds

number it is estimated by an empirical law [11], given by

Cdrag =
24
ReB

(
1 + 0.15Re0.687

B

)
for 0.1 < Re ≤ 1000,

= 0.44 for Re > 1000.

4.2. Bubble dynamics

A bubble, B, identified for being handled in the Lagrangian frame is small enough to be considered

as a spherical bubble of radius R(t). Its rate of growth and its interface acceleration are denoted

Ṙ = dR(t)
dt and R̈ = d2R(t)

dt2 . The density ρB and the internal pressure pB(t) are assumed to be

uniform inside the bubble. It is assumed that the fluid in the far field is composed of water and

a certain amount of non-condensable gas. This gas is present in any fresh water and corresponds to

small bubbles of air that did not have time to diffuse or to travel up to the free surface. The presence

of non-condensable gas is neglected in the Eulerian frame, since the nuclei are solely composed

of vapour in the Sauer and Schnerr model. It is however included in the present work, when the

bubbles are modelled in the Lagrangian frame, because its presence has a crucial role at the last

stage of a collapse. Indeed, the gas ensures that a collapsing bubble can not disappear, i.e. R(t) > 0.

It implies that the collapse phase ends when the compression stops and is followed by a rebound of

the bubble. Thus, this approach does not account for the possibility that a Lagrangian bubble may

disappear or split into smaller bubbles upon collapse.

A bubble,B, identified with the connected component technique has a volume VB and its centroid

is located at the position xB . It is subjected to the mixture pressure p, interpolated at the location

xB . It is assumed that in the far field, where the liquid pressure is the constant reference pressure

p0, this bubble will be in equilibrium (Ṙ = R̈ = 0) and it contains only gas. The corresponding

equilibrium radius is R0 and its mass is mg0 = 4
3πR

3
0ρg0 where ρg0 is the density of air at pressure

p0. It is assumed that the mass of the non-condensable gas is constant during the evolution of the

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)

Prepared using fldauth.cls DOI: 10.1002/fld



8 A. VALLIER ET AL.

bubble size. Therefore each Lagrangian bubble contains a volume Vv of water vapour to which is

artificially added an amount of non-condensable gas whith a constant mass.

During its trajectory, the Lagrangian bubble is affected by the mixture pressure which evolves

with space and time. It acts as a disturbance on the bubble stability and influences the radius of the

bubble R(t). The bubble dynamics is modelled by the Rayleigh-Plesset [12] equation

RR̈+
3
2
Ṙ2 =

1
ρ

[
pB(t) − 4μ

Ṙ

R
− 2σst

R
− p(xB , t)

]
, (9)

where the pressure inside the bubble, pB(t), is the sum of the saturated vapour pressure pv and

the gas pressure pg(t). It is related to the gas pressure pg0 at the equilibrium state, (R0, p0), as

pg(t) = pg0

(
R0

R(t)

)3γ

. Moss [13] suggested to use different values for the polytropic coefficient

γ during the process of growth and collapse. The bubble growth phase preceding a collapse is

sufficiently slow to be assumed isothermal and during this process, when R ≥ R0, γ is unity. On the

other hand, the collapse occurs within an extremely short time, therefore the compression of gas is

assumed adiabatic during this phase and γ takes the value of the ratio of the heat capacities of the

gas, γ = 1.4, when R < R0. Writing equation (9) at the equilibrium state, (R0, p0), the gas pressure

pg0 is expressed as

pg0 = p0 +
2σst

R0
− pv. (10)

In practice, the known parameters when solving equation (9) are the initial radius R, the initial

mixture pressure interpolated at the location xB and the reference pressure p0. It is important to

make sure that the bubble is initially in equilibrium in order to avoid unphysical oscillations at the

early stage of bubble lifetime. As shown in a previous work [14], it is necessary to determine the

equilibrium radius R0 corresponding to the reference pressure p0 that satisfies the condition

R3γ
0 +

2σst

p0 − pv
R3γ−1

0 +
R3γ

p0 − pv

(
pv − 2σst

R
− p(xB , t)

)
= 0. (11)

When the bubble grows, the contribution of the vapour is included for the calculation of the bubble

mass. However, during a collapse, when R(t) ≤ R0, it is assumed that the mass is solely due to the

non-condensable gas. Therefore the mass of the bubble is evaluated as

mB(t) =

⎧⎨
⎩ mg0 if R(t) ≤ R0,

mg0 + ρv(VB(t) − Vg(t)) if R(t) > R0.
(12)

Here VB is the total volume of the bubble, the volume of gas is Vg = mg0/ρg and ρg is obtained

from pg/ρ
γ
g = pg0/ρ

γ
g0. When solving for the bubble dynamics, the pressure p(xB , t) in equation

(9) is the mixture pressure interpolated at the centroid position if the bubble is smaller than the host

cell in the Eulerian mesh. If the bubble is larger than this cell, the pressure, p, in equation (9) is

calculated as the average of the liquid pressures interpolated at the Eulerian cells containing the

bubble volume. This yields a more realistic approximation of the forces over the bubble surface.
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MULTI-SCALE APPROACH FOR MODELLING CAVITATION 9

4.3. Bubble-flow interaction

The influence of the Lagrangian bubbles on the flow is taken into account through the source

term SB in the momentum equation (3). According to the Lagrangian theory, a momentum source

contribution is generated by a Lagrangian bubble in each cell visited along its path. Each bubble Bi

which is in a cell cell0k of volume V 0
k generates a contribution during a time specific to this bubble,

Δtk,i. Thus, the contribution of all bubblesBi, i = 1 : I , crossing the cell cell0k is commonly written

as

SB [cell0k] =
−1
V 0

k

I∑
i=1

mBi

ΔUBi

Δtk,i
. (13)

In the present work, the multi-scale approach is performed on two grids. The Lagrangian bubbles

are tracked on a coarse Lagrangian mesh, and their influence on the flow is accounted for in a finer

Eulerian mesh. In the Lagrangian mesh, the cell hosting the bubble centroid is cellB and it contains

several Eulerian cells, as shown in Figure 1(a). Applying the source term at the center of cellB or

at the center of all the Eulerian cells inside cellB yields erroneous results, as shown by Arlov et

al. [15]. In the Eulerian mesh, the cell hosting the bubble centroid is cell0k. If the volume of the

bubble is smaller than cell0k, then equation (13) is accurate. However, if the volume of the bubble is

larger than cell0k, then the point-particle theory is violated in the Eulerian frame. This shortcoming

is a common issue when modeling Lagrangian bubbles in a turbulent flow because both approaches

imply conflicting assumption on the grid size. The point-particle theory requires that the cells are

much larger than the bubbles while the turbulent modelling requires very small cells. In order to

account for the fact that the bubble is not a point-particle but has a finite volume, the contribution

SB is also distributed in the neighbouring Eulerian cells of cell0k, {celljk, j = 1 : J}, yielding

SB [celljk] =
−1
V j

k

I∑
i=1

mBi

ΔUBi

Δtk,i
H(xB − xj

k) for j = 0 : J (14)

where xj
k is the center of cell celljk and the function H is a Gaussian function centred in xB with

variance R,

H(xB − xj
k) =

1
(R

√
2π)3

exp
(
− 1

2

[ |xj
k − xB |
R

]2)
. (15)

If the contribution is applied to the cells that fulfill |xB − xj
k| < 3R, then 99.9% of the source term

is distributed with this approach. However, in order to limit the computational cost of this method,

the neighbouring cells {celljk, j = 1 : J} are restricted to those that share a vertex with cell0k, as

shown in Figure 1(b). This choice is still more accurate than if SB was only applied in cell0k because

it accounts for the finite volume of the bubble.
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×× ×
×× ×

×× ×

×× ×× ××

Lagrangian mesh

Eulerian mesh

Cell cell0k

Cells connected to cell0k
Centroid xB

Circle (xB ,3R)

× Centre xj
k of the cells

{celljk, j = 0 : J} that
fulfill |xB − xj

k| < 3R
(a) (b)

Figure 1. (a) Lagrangian bubble, Lagrangian and Eulerian mesh. (b) The source term SB is applied in the

coloured Eulerian cells. The circle with center xB and radius 3R showing the zone of influence of the

function H(xB − xj
k) for |xB − xj

k| < 3R, in 2D.

4.4. Bubble-wall interaction

A bubble colliding with a wall either bounces, sticks or slides depending whether inertia or

dissipation dominates the process. Experiments show the presence of a liquid film between the

bubble and the wall at collision [16]. Zenit [17] showed that the behavior of a bubble colliding with

a wall is different from that of a solid sphere due to the liquid film and the bubble deformation. It

was found that the coefficient of restitution εw depends on the capillary number Ca = μlU
0n

σst
and

the modified Stokes number St∗ = (ρB+ 1
2 ρl)2RU0n

9μl
, it reads

εw = e−30
√

Ca/St∗ .

In practice, an impact with a wall is modeled when the bubble trajectory crosses a face fw of the

wall boundary. Neglecting the actual flattening of the bubble when it approaches a surface boundary,

it is assumed that a collision occurs when the distance from the spherical bubble center to the center

of the face is equal to the bubble radius. Denoting the normal and tangential unit vectors of fw as

nw and tw, respectively, the bubble velocity before the impact is written as

U0
B = U0n

B nw + U0t
B tw.

The normal component of the bubble velocity after the impact is evaluated as Un
B = −εwU0n

B and

the tangential component is unchanged as friction is neglected.

The Eulerian mesh used to compute the fluid flow is chosen fine enough to capture the flow details

and it is refined in the vicinity of the wall in order to resolve the boundary layer. The tracking of the

bubbles is done on a coarser mesh to ensure that the condition for wall collision is fulfilled. Wall

collisions are properly modelled solely for bubbles with their centroid located in a cell connected to

the wall surface. This implies that the bubble radius has to be smaller than the wall-normal edges

of the Lagrangian host cell connected to the wall, even when the initially small bubbles grow up
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MULTI-SCALE APPROACH FOR MODELLING CAVITATION 11

to several orders of magnitude. Therefore, a mesh that is coarser in the wall-normal direction is

necessary to resolve properly the wall collision events.

4.5. Bubble-bubble interaction

In order to reduce the cost of collision detection, collision partners are searched in the vicinity of

each bubble. In the present work, the bubble motion is solved together with the bubble dynamics

which requires very small time steps. This implies that the bubbles travel only a small fraction of

a Lagrangian cell per time step. Therefore there is no loss of accuracy in limiting the search for

the collision partners to the Lagrangian owner cell cellB and its neighbours that are closest to xB .

As shown in Figure 2, these neighbours are sharing the vertex of cellB that is the closest to the

centroid position xB . A deterministic model for collision detection and its outcome are described in

Appendix B.

×

(a) (b)

Figure 2. (a) Lagrangian bubble and vertex (symbol ×) of cellB closest to the bubble centroid. (b)

Lagrangian cells (coloured) selected for searching collision partner, in 2D.

4.6. Pressure wave

The main purpose of the multi-scale approach is to include the prediction of the dynamics of the

small bubble as they are transported with the flow. The pressure emitted by a collapsing bubble, and

the distance of the bubble from the solid surface, are important features for estimating the collapse

intensity and its damaging effects. Therefore, the pressure of the acoustic wave radiated by the

bubble collapse, pa, is studied. It is estimated by Mettin et al. [18] as

pa(r) =
ρ

r
(R2R̈+ 2RṘ2), (16)

where r ≥ R is the distance from the center of the bubble.
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5. TEST CASE AND NUMERICAL SET-UP

The multi-scale approach is tested for the cavitating flow past a NACA0015 hydrofoil, with an angle

of attack of 8 degrees. Figure 3(a) shows the Eulerian and Lagrangian computational domains, while

Figure 3(b) shows the Lagrangian mesh. The hydrofoil has a chord length (and a span-wise width)

c0=0.15 m, and is positioned at 4.5c0 from the inlet and 9c0 from the outlet of the Eulerian domain.

The height of this computational domain is 9c0. The Eulerian mesh is clustered to the hydrofoil

surface such that the first cell center is on average positioned at y+ = 3, and the expansion ratio is

1.05. In the span-wise direction, 50 grid points are equally distributed. Wall boundary conditions

are applied on the back and front of the domain. The uniform inlet velocity is Uin = 8 m/s. The

reference pressure, p0 = 40.7 kPa, is the liquid pressure of the undisturbed flow, i.e. the value

imposed at the outlet boundary. The Reynolds number based on c0 and Uin is 1.2 · 106. The nuclei

concentration is set to nnuc = 108 nuclei/m3 water and the nuclei size is set to Rnuc = 10−6 m

which yields an initial vapour volume fraction (1 − α) ∼ 4 · 10−10.

The attached cavity shown in Figure 4 is obtained from an LES simulation with the Smagorinsky

model, and the original mass transfer model of Sauer and Shnerr [3]. These results are used as

initial conditions when applying the multi-scale approach. The purpose is to identify the Lagrangian

bubbles and model their dynamics in the region where the re-entrant jet breaks up the sheet

cavity. Therefore, the Lagrangian domain needs to cover only the cavitating zone, and it is chosen

smaller than the Eulerian domain, as shown in Figure 3(a). The Lagrangian bubbles are expected to

appear in the recirculation zone, where the cloud is detached from the sheet cavity. Furthermore,

the Lagrangian approach is not suitable at the leading edge, where the Eulerian description is

more adapted for predicting the inception of the attached cavity. Therefore, the transition from

the Eulerian to the Lagrangian description is limited to the region downstream the leading edge,

x > 1
15c0. The plane x = 1

15c0 is shown in Figure 3(b) together with the Lagrangian mesh. The

points of the Lagrangian mesh on the hydrofoil surface are distributed identically to the Eulerian

mesh such that the curvature of the hydrofoil surface in not altered. The mesh is coarser downstream

the hydrofoil for simplicity, and in the normal direction in order to satisfy the requirement for

bubble-wall collision. The parameters used for the bubble detection and the framework transitions

are αlim = 0.95, NE−L = 5 and NL−E = 27. The choice for NL−E is due to the restriction used

in the present work for distributing SB in the 27 cells around the bubble centroid, as explained

in section 4.3. It simplifies also the implementation of the algorithm for the transition from the

Lagrangain to the Eulerian frame because only the host cell and its closest neighbours need to be

considered for being filled with vapour.
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(a) (b)

Figure 3. (a) The Eulerian and Lagrangian domain. (b) The Lagrangian mesh and the plane x = 1
15 c0.

(a) (b)

Figure 4. Attached cavity obtained with the original model of Sauer and Shnerr [3], at t = 0.006 s which

is the initial time for the computations with the multi-scale approach. (a) Isosurface α = 0.5. (b) Isosurface

α = 0.5 and vector plot in the middle plane z = 1
2 c0.

The multi-scale approach is applied to three different cases. The first case includes the full

approach described in this work, i.e. a four-way coupled DBM that accounts for the bubble

interactions, their influence on the flow and their interaction with the Eulerian description (Case

4wc). In order to investigate the importance of these features on the results, computations are also

performed for one way coupling (Case 1wc), and without the conversion from the Lagrangian to the

Eulerian framework (Case 1wc�).
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6. RESULTS

In section 6.1, the effects of the bubble-bubble and bubble-flow interactions, as well as the transfer

of the Lagrangian bubbles back to the Eulerian frame, are studied in order to clarify their importance

in the multi-scale approach. In section 6.2, the behavior of the Lagrangian bubbles is investigated

for Case 1wc�. The radius, trajectories and collapse properties are presented in order to predict the

regions that are the most exposed to erosion.

6.1. Sensitivity of different parts of the model

Figure 5(a)-(b) shows that the multi-scale model successfully identifies Lagrangian bubbles in

all cases. Bouncing and coalescence events are few, even when the total number of Lagrangian

bubbles present in the domain is several hundreds (see Figure 6(a)-(b)). The number of Lagrangian

bubbles increases at each time step for t ∈ [8, 13] ms, and the computational time spent for finding

the collision partners is increased whereas it results in few collisions. Occasionally, two or three

collision events are detected within one time step. The computation applying the one-way coupling

algorithm is 2.5 times faster (Case 1wc compared to Case 4wc in Table I).

For Case 1wc, the number of bubbles decreases at t∼0.014 s and t∼0.017 s, due to successive

conversions of Lagrangian bubbles into the Eulerian frame. However, Figure 6(c) shows that at each

time step, a maximum of two Lagrangian bubbles are converted to VOF, while the computational

time is more than three time higher with this method (Case 1wc� compared to Case 1wc in Table I).

At t = 0.013 s, the same amount of Lagrangian bubbles is present in the domain for all cases.

However, Figure 7(a) shows that their spatial distribution differs. On the other hand, at t=0.019

s, there are less bubbles for Case 1wc compared to Case 1wc� (Figure 5(b)) while the bubble

distributions are in good agreement in Figure 7(b).

These results show that both the 4-way coupling method and the transition from Lagrangian to

Eulerian approach are computationally expensive and their impact on the results accuracy needs

further investigations. The instant and location of the inception of the first Lagrangian bubbles are

compared for each case. It suggests that the first bubble that is created in Case 4wc affects locally

the flow and thus, the inception of the following Lagrangian bubbles. Therefore, the discrepancies

observed in the shape of the attached cavity and the Lagrangian bubble distributions (Figures

5(a)-(b) and 7) may rather be attributed to the bubble-flow interactions than to the bubble-bubble

interactions or their removal from the Lagrangian framework.

In order to estimate the importance of the bubble interactions in the model, the number of

bubbles that are overlapping another bubble is calculated a posteriori, for the Case 1wc�. It gives an

estimation of the error introduced when the bubble interactions are neglected. Similarly, the number

of bubbles located inside a VOF structure are sampled in order to estimate the importance of the
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Table I. Computational time for the three different cases. The case denoted 1wc� corresponds to one-way

coupling without transition from Lagrangian to Eulerian frame.

t [s] Case 4wc [h] Case 1wc [h] Case 1wc� [h]

[0.0061, 0.0129] 326 119 35

[0.0129, 0.0189] - 255 72

[0.0189, 0.0325] - - 216

model for the transition from the Lagrangian to the Eulerian framework. The results in Figure 8 show

that a large numbers of bubbles overlap while the number of bubbles inside the VOF structures is

negligible. The observed locally dense concentration of bubbles implies that the bubble interaction

must be taken into account. Moreover, the importance of the influence of the bubbles on the flow is

confirmed because a localy dense suspension enhances the production or dissipation of turbulence

[19].
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Figure 5. Number of Lagrangian bubbles present in the domain for different cases.
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Figure 6. (a)-(b) Collision events treated for the case 4wc, i.e. four way coupling. (c) Removal events

(conversion from Lagrangian bubble to the VOF description) treated for the case 1wc, i.e. one way coupling.
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Figure 7. Probability density function of the position of the Lagrangian bubbles,

at (a) t=0.013 s, and (b) t=0.019 s.
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Figure 8. (a) Number of overlapping Lagrangian bubbles (|xBi − xBj | < (Ri + Rj)) normalized with the

total number of bubbles in the domain at each time step.

(b) Number of Lagrangian bubbles inside a VOF structure (α[cell[xB ]] < 0.5) normalized with the total

number of bubbles in the domain at each time step. Case 1wc�, i.e. one way coupling without transition

from Lagrangian to Eulerian frame, for t∈[0.0061, 0.0325].
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6.2. Erosion prediction

The algorithm for the one-way coupling approach without the transition from Lagrangian to

Eulerian is fast enough for studies of the evolution of the Lagrangian bubbles when the cloud of

vapour is transported downstream the attached cavity. Despite the lower accuracy in this case due

to the absence of the bubble interactions and their influence on the flow, as stressed above, the

following study gives an overview of the results that can be obtained with the new cavitation model.

Figure 9 shows instantaneous pictures of the attached cavity and the shedding cloud described in

the Eulerian frame as well as the Lagrangian bubbles. The bubbles first appear where the re-entrant

jet breaks off the attached cavity. Then they are transported upstream with the re-entrant jet. Further

on, they are either trapped in the recirculation zone, or continue downstream with the detached

cloud of vapour. These trajectories are illustrated in Figure 10(a)-(b) for two different bubbles that

are created under very similar conditions, at almost the same position and within a small interval

of time. For these bubbles, the radius and the pressure emitted, pa(R), are shown in Figure 10(c)-

(f). The trajectory combined with the pressure emitted are important features for estimating the

region that are the most exposed to erosion. For instance, the bubble that stays near the leading edge

(left column) is located very close to the hydrofoil surface and emits large peak pressure during its

rebounds. On the other hand, the bubble that follows the shedding cloud (right column) yields less

direct damages on the solid surface because it undergoes weaker rebounds and is further away from

the hydrofoil surface.

Figure 11 shows the location of the Lagrangian bubbles at the end of their first collapse.

They occur mainly near the leading edge, especially close to the center line (z ∈ [0.37c0, 0.5c0],

denoted zoneCL), and also near the front wall (z ∈ [0.9c0, c0], denoted zoneFW). These results

are also shown in Figure 12(a), where the probability density function of the first collapse against

the position xB highlights the region exposed to erosion due to the successive collapses, xB ∈
[0.1c0, 0.7c0]. Most of the first collapses occur close to the surface of the hydrofoil, δ ∈ [0, 0.04c0]

(Figure 12(b)). The pdf are also sampled in the regions zoneCL and zoneFW. The trend observed

on Figure 12(a)-(b) are emphasized in the region zoneCL, where all the collapses occurs close to

the leading edge (xB < 0.3c0) and 50% of them happen in the first cells near the hydrofoil surface

(δ < 0.005c0). However, near the front wall, the collapses are distributed along two third of the

length of the hydrofoil (Figure 12(c)). In this region, the collapses may damage the front wall, and

the probability density function is therefore sampled against the distance to this wall, δw (Figure

12(d)).

The strength of the multi-scale approach lies in giving information about the location and the

intensity of the collapses which are damaging the solid surfaces. However, post-processing the

properties {xB(t),R(t), pa(r, t)} of each Lagrangian bubbles is expensive in terms of computational
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time and memory. It is therefore necessary to find an efficient way to estimate the regions that are

the most exposed to the successive collapses and rebounds. For instance, the residence time of the

Lagrangian bubbles gives a good prediction of erosion risk. Indeed, Figure 13 shows that the regions

where the bubbles stay and rebound are similar to the regions zoneCL and zoneFW which host the

largest number of first collapse (Figure 11 and 12). The darker region is therefore the most exposed

to erosion as it was observed that the intensity of the rebounds increased with time in this region

(Figure 10(e)). Furthermore, it appears that, for the time range of the present simulations, the bubble

stay mostly in the recirculation zone, where the pressure is lower and the collapses are stronger.

Figure 9. Instantaneous picture of the Eulerian isosurface α = 0.5 and the Lagrangian bubbles obtained with

the multi-scale approach. Case 1wc, i.e. one way coupling without transition from Lagrangian to Eulerian

frame.
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Figure 10. Temporal evolution of two Lagrangian bubbles that are created almost at the same position and

time. (a)-(b) Trajectory, δ is the distance to the hydrofoil. (c)-(d) Radius. (e)-(f) Acoustic pressure emitted

during the collapses at the bubble surface, pa(R).
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Figure 11. Position of the Lagrangian bubbles recorded at first collapse. Case 1wc�, i.e. one way coupling

without transition from Lagrangian to Eulerian frame, for t∈[0.0061, 0.0325].
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Figure 12. Normalized probability density function of the position of the Lagrangian bubbles when their first

collapse occurs. (a)-(b) Results over the whole domain z ∈ [0, c0]. (c)-(d) Results for the region zoneCL,

z ∈ [0.37c0, 0.5c0]. (e)-(f) Results for the region close to the front wall, zoneFW, z ∈ [0.9c0, c0]. The figures

on the left depict the position along the x-axis normalized with the chord length c0. The figures on the right

column depict the distance to the hydrofoil (δ) and front wall (δw) normalized with the chord length c0. Case

1wc�, i.e. one way coupling without transition from Lagrangian to Eulerian frame, for t∈[0.0061, 0.0325] s.
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Figure 13. Residence time of the Lagrangian bubbles shown on the hydrofoil surface and coloured from the

highest value in black to the lowest in white. Case 1wc�, i.e. one coupling without transition from Lagrangian

to Eulerian frame, for t∈[0.0061, 0.0325] s.
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7. CONCLUSION

Since a model based on the VOF method fails to describe structures that are smaller than the cell

size, it can not model the small cavitation bubbles without investing an enormous computational

effort. These bubbles are present in the case of cloud cavitation and influence the global dynamic of

the flow. For this type of cavitation, tracking individual bubbles is more relevant. In order to improve

the existing mass transfer cavitation model based on the VOF method, a new multi-scale method

has been developed. This multi-scale approach switches from an Eulerian to a Lagrangian frame

in order to account for the small bubbles that a pure VOF method can not simulate. An algorithm

for identifying Lagrangian bubbles have been implemented in OpenFOAM. The bubble dynamics is

resolved using the Rayleigh-Plesset equation. The collision events are described by a deterministic

model, the bubbles affect the flow, and the transition from the Lagrangian to the Eulerian frame is

included. The multi-scale approach is applied to a cavitating hydrofoil and describes the re-entrant

jet that breaks the attached cavity and yields the formation of Lagrangian bubbles. The importance of

the bubble influence on the flow and the bubble interactions are highlighted by comparing the bubble

distributions and the cavity shape for different cases. The bubble locations at their first collapse,

the bubble trajectories, and the pressure wave emitted during the collapses and rebounds are crucial

features for predicting erosion damages on the hydrofoil surface. However, these features, presented

here, are computationally expensive to post-process. A more efficient approach consists in studying

the residence time of the bubbles, which gives a good estimation of the regions exposed to successive

collapses and rebounds. The multi-scale approach is therefore an improvement to the modelling of

the transition from sheet to cloud cavitation and the modelling of cavitation erosion risk.

NOMENCLATURE

Roman symbols

m Mass[kg]

n Unit normal vector [−]

p Pressure [Nm−2]

R Radius [m]

t Time[s]

U Velocity [ms−1]

V Volume [m3]

x Position [m]

Greek symbols

α Liquid volume fraction [−]
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γ Polytropic coefficient [−]

μ Dynamic viscosity [kgm−1s−1]

ρ Density [kgm−3]

σst Surface tension coefficient [−]

Subscripts

B bubble

g Non-condensable gas

l Liquid water

nuc Nuclei (vapour inclusion)

v Water vapour
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A. COUPLING METHOD FROM EULERIAN TO LAGRANGIAN FRAME.

The algorithm of the coupling method implemented in the OpenFOAM C++ library is presented in detail.

• Create a list (L) of cells that contains vapour. i.e. with α < αlim.

• Identify coherent bubbles:

1. Initialize bubbleID counter (maxID=0).

2. Create a Hash-Table HT that will contain the couples (cell label, bubbleID).

3. For all celli ∈ (L), create a list (Ln) of neighbours.

(a) If none element of (Ln) is a key of HT,

i. Add celli label as a new key in HT, with value bubbleID= maxID,

ii. Increment maxID.

(b) If only one element of (Ln), (cellk), is a key of HT,

i. Get the value bubbleIDk associated to the key cellk,

ii. Add celli label as a new key in HT, with value bubbleID= bubbleIDk.
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(c) If several elements of (Ln), (cellk, k=1:K; K¿1), are keys in HT

i. Get the values bubbleIDk, k=1:K associated to the keys cellk, k=1:K,

ii. Find the minimum value minID=min(bubbleIDk, k=1:K),

iii. Add celli label as a new key in HT, with value bubbleID= minID.

iv. For all elements of (Ln) with associated value bubbleIDk¿ minID in HT, change the

value to minID in HT (i.e. celli connects bubbles together)

• For each coherent bubble identified, get its properties:

1. Create a list (LB) of cell labels cellj , j=1:J, associated to the same bubbleID in HT.

2. If J < NE−L (i.e. the bubble is too small to be described by the Eulerian approach),

(a) Evaluate the bubble volume on the Eulerian mesh, VB =
P

j(1 − α[cellj ])V [cellj ].

(b) Evaluate the bubble centroid position xB = 1
VB

P
j x[cellj ](1 − α[cellj ])V [cellj ] .

(c) Evaluate the bubble velocity UB = 1
VB

P
j U[cellj ](1 − α[cellj ])V [cellj ] .

(d) Evaluate the bubble radius R =
` 3VB

4π

´ 1
3 .

(e) Add the bubble in the Lagrangian cloud.

(f) Delete the corresponding bubble from the VOF simulation, α[cellj ] = 1, j=1:J.

B. BUBBLE-BUBBLE INTERACTIONS

A deterministic model for collision detection and its outcome are described here. The subscript B, related

to the Lagrangian bubble properties, is dropped here for simplicity.

B.1. Collision detection

Consider a bubble pair with respective radius R1 and R2, respective initial velocities U0
1 and U0

2, and

at a distance x0
1 − x0

2 = d0
12 > (R1 + R2) from each other. The final positions are denoted x1 and x2.

The purpose of the model is to determine if collision can occur within the time dt. Let bubble 2 be the

new coordinate reference system, then bubble 2 has relative velocity U22 = 0 and bubble 1 has velocity

U12 = U0
1 − U0

2

1 2222

U0
1

U0
2

R1
R2

d0
12

changing the

referential
1 2222

U12

θ

Figure 14. From general referential to the referential with bubble 2 as centre.

The angle between line (1,2) and U12 is denoted θ.

cos θ =
U12

|U12| ·
x0

2 − x0
1

|x0
2 − x0

1|
If cos θ < 0 then the bubbles are obviously moving apart. However in the case cos θ > 0, there exists a

critical value θc such that if θ < θc then the collision is possible.
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222

1
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12

d12
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θ

Figure 15. The distance d is the projection on the line (1,2) of the distance traveled by the bubble 1 with

respect to the bubble 2.

The distance d is the projection on line (1,2) of the distance traveled during the time step dt, as sketched

in figure 15 :

d = |U12| cos θdt

Then bubble 1 should travel long enough during this time step to impact bubble 2. So there exists also a

critical distance dc such that if d > dc then the collision occurs. Collision occurs if d12 < R1 + R2 where

d12 is the final distance between bubble 1 and 2. In the new reference system, the initial and final positions

of the bubbles are (x0
2, y0

2) = (x2, y2) = (0, 0), (x0
1, y0

1) = (−d0
12, 0) and (x1, y1) = (x0

1 + d, y0
1 + d tan θ).

Therefore the distance between bubble 1 and 2 is

d12 =
q

(−d0
12 + d)2 + (d tan θ)2

And the condition for collision is

q
(−d0

12 + d)2 + (d tan θ)2 < (R1 + R2)

which is equivalent to

(1 + tan2 θ)d2 − 2d0
12d + (d0

12)
2 − (R1 + R2)

2 < 0

The distance d is solution of the equation of the 2nd degree in d, f(d) = 0 with

f(d) = (1 + tan2 θ)d2 − 2d0
12d + (d0

12)
2 − (R1 + R2)

2

This equation has no solution if there is no collision (i.e. if θ > θc), see Figure 16(a). When the angle θ is

decreased until θ = θc, the bubbles become tangent (see figure 16(b)) and the equation has one solution. If

θ < θc, then there is a collision and the trajectory of the bubble is such that they really meet each other. They

first impact and then they overlap. The first intersection is the smallest root of the equation. The overlapping

period corresponds to the interval for which f(d) < 0 and the second root corresponds to the moment when

the bubbles would leave each other if they didn’t interact (see figure 16(c)).

The determinant of the equation f(d) = 0 is

Δ =
“
2d0

12

”2
− 4

“
1 + tan2 θ

” “
(d0

12)
2 − (R1 + R2)

2
”

• For Δ = 0, we obtain θ = θc

(d0
12)

2 −
“
1 + tan2 θc

” “
(d0

12)
2 − (R1 + R2)

2
”

= 0
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1

U12

θ > θc

(a)

1

1

2222

U12

θc

(b)

1

1
1

2222

dc

U12

θ < θc

(c)

Figure 16. Different cases for the bubble pair interaction. (a) the angle θ > θc and there is no collision, (b)

θ = θc and bubble 1 is tangent to bubble 2, (c) θ < θc, there is collision.

tan θc =
R1 + R2q

(d0
12)

2 − (R1 + R2)2

θc = arctan

0
@ R1 + R2q

(d0
12)

2 − (R1 + R2)2

1
A

There is one solution

dc =
d0
12`

1 + tan θ2
c

´ =

“
d0
12

”2
− (R1 + R2)

2

d0
12

• For Δ > 0, i.e. θ < θc, there are 2 solutions

2d0
12 ±√

Δ

2
`
1 + tan2 θ

´

The smallest root is in [0, d0
12] and it is the critical distance dc for this collision:

dc =

d0
12 −

r`
d0
12

´2 − (1 + tan θ2)
“`

d0
12

´2 − (R1 + R2)2
”

(1 + tan θ2)

This collision detection algorithm consists in finding the possible binary collision partner of bubble 1 (i.e.

θ < θc and d ≥ dc) at the end of the Lagrangian time step dt specific to bubble 1. The limitation is that the

bubble considered can collide only once during this time step. The inherent inaccuracy of this time driven

method is assumed to be negligible when using a sufficiently small time step. A more rigorous approach

would be to list all the possible collisions during this time step, sort them in a priority list and treat the first

occurring collision, update all the bubble at the time of this event and repeat these four steps until the end of

the Lagrangian time step. In that case, it is appropriate to evaluate the collision time tc instead of the critical

distance of collision. This is simply done by using d = U12 cos θdt such that f(d)=0 becomes an equation of
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the second degree in t, for which the solution is

tc =

d0
12U12 cos θ −

r
(d0

12U12 cos θ)2 − (U12)2
“`

d0
12

´2 − (R1 + R2)2
”

(U12)2

This approach is widely used in the field of molecular dynamics [20]. However the computational cost of

such a event driven method is extremely high and this approach doesn’t appear relevant for the present

model.

B.2. Collision outcome

The outcome of a collision between a bubble pair is either bouncing or coalescence depending on

two parameters: the size of the bubbles and the collision speed. Experimental results [21] suggest that

coalescence is enhanced when both parameters have a small value. This corresponds to a small Weber

number. The Weber number based on the equivalent diameter, Deq = 4R1R2
R1+R2

, is given by

Weeq =
ρ|Un

B2 − Un
B1|2Deq

2σst
, (17)

where the collision speed is |Un
B2 − Un

B1|, and U0n
Bi is the normal component of the velocities before

impact, as shown in Figure 17.

UB1

UB2

Un
B1

Un
B2

Ut
B1

Ut
B2

Figure 17. Decomposition of the velocities into normal and tangential components.

The theoretical models that have been developed to predict the coalescence efficiency (i.e. the probability

that a collision results in coalescence) are based on the observation that a liquid film is trapped between

the bubbles at impact [22, 23]. The bubbles coalesce if the liquid film has time to drain during the time the

bubble pair interacts. The outcome of collision is therefore assumed to be a function of two time-scales: the

interaction time ti and the drainage time td. The resulting coalescence probability for a head-on collision is

theoretically Pc = 0 if ti < td and Pc = 1 if ti ≥ td. In order to account for the the fact that the collision may

not be frontal, a smooth semi-empirical function is used [22], and the coalescence probability is expressed

as Pc = e−td/ti . If a uniform random number in the range [0,1] becomes smaller than the coalescence

probability then coalescence occurs, otherwise bouncing happens. According to Chester [24], the time-scales

are given by ti =
“

ρD3
eq

16σst

” 1
2

and td =
ρ|Un

B2−Un
B1|D2

eq

8σst
. Thus, the probability is given by

Pc = e−
q

W eeq
2 . (18)

The effects of a collision on the bubble pair are described here, for both bouncing and coalescence.
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B.2.1. Bouncing In the case of bouncing, the momentum and trajectory of both bubbles are altered. It

is assumed that bubble deformation and friction are neglected in the present work. Using the notations of

Figure 17, the unit normal vector is given by

n12 =
x0

B2 − x0
B1

|x0
B2 − x0

B1|
,

and the velocity normal components are expressed as

U0n
Bi = (U0

Bi&n12) · n12.

The normal component of the velocities after impact changes according to

Un
Bi =

mBiU
0n
Bi + mBjU

0n
Bj − mBjε(U

0n
Bi − U0n

Bj)

mBi + mBj
, (19)

where ε is the coefficient of restitution, and the tangential component is unchanged after collision when

friction is neglected.

B.2.2. Coalescence In the case of coalescence of two bubbles, 1 and 2, a new bubble is formed with

properties R, xB and UB . Conservation of mass, momentum and energy yields

R =
“
R3

1 + R3
2

” 1
3

,

xB =
mB1xB1 + mB2xB2

mB1 + mB2
,

UB =
mB1UB1 + mB2UB2

mB1 + mB2
.

The equilibrium radius R0 for this new bubble, is evaluated with equation (11).

C. COUPLING METHOD FROM LAGRANGIAN TO EULERIAN FRAME.

The detailed algorithm of the coupling method implemented in the OpenFOAM C++ library is presented.

• Find the Eulerian cell, cellk, hosting the centroid position.

• Determinate the volume of liquid of this cell Vdispo = α[cellk]V [cellk].

• If Vdispo ≥ VB , fill only the hosting cell :

1. Update the liquid volume fraction, α[cellk] = α[cellk] − VB/V [cellk]

• Otherwise, fill the hosting cell and its neighbours:

1. Update the liquid volume fraction, α[cellk] = α[cellk] − Vdispo/V [cellk].

2. The remaining volume of vapour to be converted in the Eulerian frame is

VB,left = VB − Vdispo.

3. Fill the neighbour cells cellj until VB,left = 0:

(a) Determinate the volume of liquid of the neighbour cell cellj ,

V j
dispo = α[cellj ]V [cellj ]

(b) Update the liquid volume fraction,

α[cellj ] = α[cellj ] − min(V j
dispo, VB,left)/V [cellj ].

(c) Update the remaining volume of vapour to be converted in the Eulerian frame,

VB,left = VB,left − min(V j
dispo, VB,left).
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