
Applied Mechanics / Fluid Dynamics

Håkan Nilsson 1

Welcome ...

... to the introductory workshop in MPI programming at UNICC

Schedule:
08.00-12.00 Hard work and a short coffee break

Scope of the workshop:
We will go through the basics of MPI-programming and run some
simple MPI-programs (Fortran 77) on the UNICC machines.

URLs:
Workshop homepage:
http://www.tfd.chalmers.se/ � hani/mpi/mpi-workshop.html
UNICC official homepage:
http://www.cs.chalmers.se/Support/UNICC/
MPI-support homepage:
http://www.tfd.chalmers.se/ � hani/mpi/mpi-support.html

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 2

Outline

� Message Passing Fundamentals

� Getting Started with MPI
� Point-to-Point Communication

� Collective Communications

� Portability issues

� Further issues

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 3

Outline

� Message Passing Fundamentals

� Getting Started with MPI
� Point-to-Point Communication

� Collective Communications

� Portability issues

� Further issues

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 4

Message Passing Fundamentals

MPI is a set of functions (in C) or subroutines (in Fortran) that can be called
from your code to handle communication between different processes that
belong to the same task.

MPI can be used both to distribute CPU work load on several CPUs,
and to distribute the memory requirement for tasks that cannot be fitted
into the memory of a single CPU. In both cases the result is that the code
runs faster, ideally scaling with the number of CPUs used.

The resources at UNICC are designed for this kind of parallelization
and the aim of this MPI-support is to increase the usage of MPI at UNICC.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 5

Parallel Architectures

Parallel computers have two basic architectures:

� Distributed memory: Each processor has its own local
memory and access to the memory of other nodes via some
sort of high-speed communications network. Data are ex-
changed between nodes as messages over the network. Hive
(1 CPU/Node)

� Shared memory: The processors share a global memory
space via a high-speed memory bus. This global memory
space allows the processors to efficiently exchange or share
access to data.

� Mix of the above: Helios (2 CPUs/Node), Helios64 (4 CPUs/Node)

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 6

Problem decomposition

There are two kinds of problem decompositions:

� Domain decomposition: Data are divided into pieces of
approximately the same size and then mapped to different
processes. Each process then works only on the portion of
the data that is assigned to it. Of course, the processes
may need to communicate periodically in order to exchange
data. Single-Program-Multiple-Data (SPMD) follows this
model where the code is identical on all processes.

� Functional decomposition: The problem is decomposed
into a large number of smaller tasks and then, the tasks are
assigned to the processes as they become available. Pro-
cesses that finish quickly are simply assigned more work.
Task parallelism is implemented in a master-slave paradigm.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 7

Directive based alternative

In a directives-based data-parallel language, such as High Performance
Fortran (HPF) or OpenMP, a serial code is made parallel by adding direc-
tives (which appear as comments in the serial code) that tell the compiler
how to distribute data and work across the processes. The details of how
data distribution, computation, and communications are to be done are left
to the compiler.

Data parallel languages are usually implemented on shared memory archi-
tectures because the global memory space greatly simplifies the writing of
compilers.

In the message passing approach (MPI), it is left up to the program-
mer to explicitly divide data and work across the processes as well as
manage the communications among them. This approach is very flexible.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 8

Parallel Programming Issues

In order to get good parallel performance:

� Load balancing: Equal work / CPU-time on each proces-
sor.

� Minimizing communication: Packing, sending, receiv-
ing, unpacking and waiting for messages takes time. Send
few messages with much information rather than many
messages with little information.

� Overlapping communication and computation: Non-
blocking communication allows work to be done while wait-
ing for messages. May be difficult in practice.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 9

Course Problem

Description:
The initial problem is a parallel search of an extremely large (several
thousand elements) integer array. The program finds all occurrences of a
certain integer, called the target, and writes all the array indices where the
target was found to an output file. In addition, the program reads both the
target value and all the array elements from an input file.

Exercise:
Write a description of a parallel approach to solving the above problem.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 10

Course Problem, a solution

A master- and slave and domain decomposition solution, where the master is respon-
sible for I/O and communication and the slaves search different sections of the array.

Tasks for the master process:

� Read in the target and the entire integer
array from the input file.

� Send the target to each of the slave pro-
cesses.

� Send different sections of the array to
each of the slave processes. Here, the do-
main (the entire integer array) is broken
into smaller parts that each slave process
will work on in parallel.

� Receive from the slave process target lo-
cations (as they find them).

� Write the target locations to the output
file (as the master gets them).

Tasks for the slave processes:

� Receive from the master the value for the
target.

� Receive from the master the subarray it
is supposed to search.

� Completely scan through its subarray,
sending the locations of the target to the
master as it finds them.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 11

Outline

� Message Passing Fundamentals

� Getting Started with MPI
� Point-to-Point Communication

� Collective Communications

� Portability issues

� Further issues

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 12

The message passing model

� A parallel computation consists of a number of processes
with local data and local variables.

� The processes are distributed on one or several processors
� Data is shared between processes by sending and receiv-

ing.

� Can be used on a wide variety of platforms, from shared
memory multiprocessors to heterogeneous networks of work-
stations

� Allows more control and can achieve higher performance
than the shared memory model

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 13

What is MPI?

� MPI (Message Passing Interface) is a standard for mes-
sage passing that the vendor of a platform must follow, thus
ensuring portability

� A library of functions (in C) or subroutines (in Fortran)

� MPI-1 specifies names, calling sequences and results of
subroutines and functions

� MPI-2 provides additional features such as parallel I/O,
C++ and Fortran 90 bindings, and dynamic process man-
agement. Not fully available - not portable. Not part of this
workshop.

� Launching an MPI-program is not part of the standard.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 14

A first program: Hello!
(download at the workshop homepage)

01 program test
02 include ’mpif.h’
03 integer ierr,id,lpname
04 character*255 pname

06 call MPI INIT(ierr)
07 call MPI COMM RANK(MPI COMM WORLD, id, ierr)
08 call MPI GET PROCESSOR NAME(pname,lpname,ierr)
09 write(6,*)’Process’,id,’ running on ’,pname(1:lpname)
10 call MPI FINALIZE(ierr)

12 end

Line 2, 6 and 10 must occur in all MPI-programs.
Line 1: Program name, standard Fortran
Line 2: MPI header files contain the prototypes for MPI functions/subroutines, as well
as definitions of macros, special constants, and datatypes used by MPI. An appropri-
ate ”include” statement must appear in any source file that contains MPI function
calls or constants.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 15

A first program: Hello!
(download at the workshop homepage)

01 program test
02 include ’mpif.h’
03 integer ierr,id,lpname
04 character*255 pname

06 call MPI INIT(ierr)
07 call MPI COMM RANK(MPI COMM WORLD, id, ierr)
08 call MPI GET PROCESSOR NAME(pname,lpname,ierr)
09 write(6,*)’Process’,id,’ running on ’,pname(1:lpname)
10 call MPI FINALIZE(ierr)

12 end

Line 3: Definition of integers
Line 4: Definition of characters

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 16

A first program: Hello!
(download at the workshop homepage)

01 program test
02 include ’mpif.h’
03 integer ierr,id,lpname
04 character*255 pname

06 call MPI INIT(ierr)
07 call MPI COMM RANK(MPI COMM WORLD, id, ierr)
08 call MPI GET PROCESSOR NAME(pname,lpname,ierr)
09 write(6,*)’Process’,id,’ running on ’,pname(1:lpname)
10 call MPI FINALIZE(ierr)

12 end

Line 6: The first MPI routine called in any MPI program must be the initialization
routine MPI INIT. This routine establishes the MPI environment, returning an error
code if there is a problem. MPI INIT may be called only once in any program! The
names of all MPI entities begin with MPI to avoid conflicts. In Fortran upper case is
used: MPI INIT(ierr), MPI COMM WORLD ...

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 17

A first program: Hello!
(download at the workshop homepage)

01 program test
02 include ’mpif.h’
03 integer ierr,id,lpname
04 character*255 pname

06 call MPI INIT(ierr)
07 call MPI COMM RANK(MPI COMM WORLD, id, ierr)
08 call MPI GET PROCESSOR NAME(pname,lpname,ierr)
09 write(6,*)’Process’,id,’ running on ’,pname(1:lpname)
10 call MPI FINALIZE(ierr)

12 end

Line 7: A process can determine its rank in a communicator (MPI COMM WORLD)
with a call to MPI COMM RANK. The rank is returned in ’id’. The error code ’ierr’ re-
turned is MPI SUCCESS if the routine ran successfully (that is, the integer returned
is equal to the pre-defined integer constant MPI SUCCESS). Thus, you can test for
successful operation with if (ierr.eq.MPI SUCCESS) then ... end if

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 18

Communicators

� A communicator is a handle representing a group of processes that can communicate with one
another.

� The communicator name is required as an argument to all point-to-point and collective opera-
tions.

� The communicator specified in the send and receive calls must agree for communication to
take place.

� Processes can communicate only if they share a communicator.

� There can be many communicators, and a given process can be a member of a number of
different communicators. Within each communicator, processes are numbered consecutively
(starting at 0). This identifying number is known as the rank of the process in that communi-
cator.

� The rank is also used to specify the source and destination in send and receive calls.

� If a process belongs to more than one communicator, its rank in each can (and usually will) be
different!

� MPI automatically provides a basic communicator called MPI COMM WORLD. It is the com-
municator consisting of all processes. Using MPI COMM WORLD, every process can commu-
nicate with every other process. You can define additional communicators consisting of subsets
of the available processes.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 19

A first program: Hello!
(download at the workshop homepage)

01 program test
02 include ’mpif.h’
03 integer ierr,id,lpname
04 character*255 pname

06 call MPI INIT(ierr)
07 call MPI COMM RANK(MPI COMM WORLD, id, ierr)
08 call MPI GET PROCESSOR NAME(pname,lpname,ierr)
09 write(6,*)’Process’,id,’ running on ’,pname(1:lpname)
10 call MPI FINALIZE(ierr)

12 end

Line 8: The name of the processor on which the present process runs is returned
in ’pname’ and the number of characters in the name of the processor is returned in
’lpname’
Line 9: Write out information

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 20

A first program: Hello!
(download at the workshop homepage)

01 program test
02 include ’mpif.h’
03 integer ierr,id,lpname
04 character*255 pname

06 call MPI INIT(ierr)
07 call MPI COMM RANK(MPI COMM WORLD, id, ierr)
08 call MPI GET PROCESSOR NAME(pname,lpname,ierr)
09 write(6,*)’Process’,id,’ running on ’,pname(1:lpname)
10 call MPI FINALIZE(ierr)

12 end

Line 10: The last MPI routine called should be MPI FINALIZE which cleans up all
MPI data structures, cancels operations that never completed, etc. MPI FINALIZE
must be called by all processes; if any one process does not reach this statement, the
program will appear to hang. Once MPI FINALIZE has been called, no other MPI
routines (including MPI INIT) may be called. ’ierr’ is similar to line 6.
Line 12: End of program

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 21

A first program: Hello!
(download at the workshop homepage)

01 program test
02 include ’mpif.h’
03 integer ierr,id,lpname
04 character*255 pname

06 call MPI INIT(ierr)
07 call MPI COMM RANK(MPI COMM WORLD, id, ierr)
08 call MPI GET PROCESSOR NAME(pname,lpname,ierr)
09 write(6,*)’Process’,id,’ running on ’,pname(1:lpname)
10 call MPI FINALIZE(ierr)

12 end

Each process executes the same code, including probing for its rank and processor
name and printing the string. The order of the printed lines is essentially random!
There is no intrinsic synchronization of operations on different processes. Each time
the code is run, the order of the output lines may change.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 22

A first program: Hello!
(download at the workshop homepage)

Typical output

Process 1 running on node203.unicc.chalmers.se
Process 3 running on node203.unicc.chalmers.se
Process 6 running on node214.unicc.chalmers.se
Process 5 running on node214.unicc.chalmers.se
Process 7 running on node214.unicc.chalmers.se
Process 4 running on node214.unicc.chalmers.se
Process 2 running on node203.unicc.chalmers.se
Process 0 running on node203.unicc.chalmers.se

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 23

Logging in, compiling and running MPI programs at Helios
� Logging in:

ssh CID@helios.unicc.chalmers.se
Use your CDKS password

� Get hello.f and hello Helios from the workshop homepage using mozilla

� Make sure that MPICHPATH is set to /opt/mpich-1.2.5.2-pgi/bin in .cshrc
(see http://www.cs.chalmers.se/Support/UNICC/Helios/mpi.html)

� mpif77 -o hello hello.f

� qsub -cwd -l s rt=0:5:0 -pe mpich 4 hello Helios
(see http://www.cs.chalmers.se/Support/UNICC/Helios/kora jobb.html#Parallella)

� SGE (Sun Grid Engine) commands: qsub, qstat -f -r, qdel � PID �

(see http://www.cs.chalmers.se/Support/UNICC/Helios/kora jobb.html#SGE)

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 24

Logging in, compiling and running MPI programs at Helios64
� Logging in:

ssh CID@helios64.unicc.chalmers.se
Use your CDKS password

� Copy files from Helios:
cp /users/unicc old/ � CID � /hello.f .
cp /users/unicc old/ � CID � /hello Helios .

� Modify .cshrc:
set COMPILER=pgi-5.1
source /users/unicc/Common/adm/cshrc
(see http://www.cs.chalmers.se/Support/UNICC/Helios64/mpi.html)

� mpif77 -o hello hello.f

� qsub -cwd -l s rt=0:5:0 -pe mpich 4 hello Helios
(see http://www.cs.chalmers.se/Support/UNICC/Helios64/running.html)

� SGE (Sun Grid Engine) commands: qsub, qstat -f -r, qdel � PID �

(see http://www.cs.chalmers.se/Support/UNICC/Helios64/running.html)

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 25

Logging in, compiling and running MPI programs at Hive
� Get hello.f and hello Hive to your local computer from the workshop homepage

using mozilla

� Logging in:
ssh CID@hive.unicc.chalmers.se
Use your CDKS password

� Copy files from local computer:
scp CID@computer.domain.se:hello.f .
scp CID@computer.domain.se:hello Hive .

� mpif77 -fc=pgf77 -o hello hello.f

� qsub -l nodes=4 -l walltime=00:05:00 hello Hive
(see http://www.cs.chalmers.se/Support/UNICC/Hive/jobs.html)

� OpenPBS commands: qsub, qstat -f, qdel � PID �

(see http://www.cs.chalmers.se/Support/UNICC/Hive/jobs.html)

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 26

Course Problem

Description:
The initial problem is a parallel search of an extremely large (several
thousand elements) integer array. The program finds all occurrences of a
certain integer, called the target, and writes all the array indices where the
target was found to an output file. In addition, the program reads both the
target value and all the array elements from an input file.

Exercise:
Write a serial version of the program.
Then write a parallel pseudo-code where MPI is correctly initialized, the
processes determine and use their rank, and terminate MPI. Assume that
the real code will be run on 4 processors/processes.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 27

Course Problem, serial version

PROGRAM search
parameter (N=300)
integer i, target ! local variables
integer b(N) ! the entire array of integers

! File b.data has the target value
! on the first line
! The remaining 300 lines of b.data
! have the values for the b array
open(unit=10,file=”b.data”)

! File found.data will contain the
! indices of b where the target is
open(unit=11,file=”found.data”)

! Read in the target
read(10,*) target

! Read in b array
do i=1,300
. read(10,*) b(i)
end do

! Search the b array and output
! the target locations
do i=1,300
. if (b(i) .eq. target) then
. . write(11,*) i
. end if
end do

END

Run it using search Helios64 (modified hello Helios64) and b.data

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 28

Course Problem, parallel pseudo-code, first part

PROGRAM parallel search
INCLUDE ’mpif.h’
INTEGER rank,error

CALL MPI INIT(error)
CALL MPI COMM RANK(MPI COMM WORLD, rank, error)

if (rank .eq. 0) then ! Master process
. read in target value from input data file
. send target value to process 1,2,3
. read in integer array b from input file
. send first third of array to process 1
. send second third of array to process 2
. send last third of array to process 3

. while (not done)

. . receive target indices from slaves

. . write target indices to the output file

. end while

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 29

Course Problem, parallel pseudo-code, second part

else
. receive the target from process 0
. receive my sub array from process 0

. for each element in my subarray

. . if (element value .eq. target) then

. . . convert local index into global index

. . . send global index to process 0

. . end if

. end loop

send message to process 0 indicating my search is done

end if

CALL MPI FINALIZE(error)
END

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 30

Outline

� Message Passing Fundamentals

� Getting Started with MPI
� Point-to-Point Communication

� Collective Communications

� Portability issues

� Further issues

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 31

Point-to-Point Communication

� One process (the source) sends, and another process (the
destination) receives.

� In general, the source and destination processes operate
asynchronously.

� Pending message has several attributes and the destina-
tion process (the receiving process) can use the attributes
to determine which message to receive.

� To receive a message, a process specifies a message enve-
lope that MPI compares to the envelopes of pending mes-
sages.

� The receiving process must be careful to provide enough
storage for the entire message.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 32

Point-to-Point Communication

Messages consist of 2 parts: the envelope and the message body.

The envelope of an MPI message has 4 parts:
� source - the sending process

� destination - the receiving process

� communicator - the group of processes the communication
belongs to

� tag - used to classify messages

The message body has 3 parts:

� buffer - the message data

� datatype - the type of the message data

� count - the number of items of type datatype in buffer

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 33

Basic Datatypes - Fortran

MPI type names are used as arguments in MPI routines when a type is
needed.
As a general rule, the MPI datatype given in a receive must match the MPI
datatype specified in the send.

MPI Datatype
MPI INTEGER
MPI REAL
MPI DOUBLE PRECISION
MPI COMPLEX
MPI CHARACTER
MPI LOGICAL
MPI BYTE
MPI PACKED

Fortran Type
integer
real
double precision
complex
character(1)
logical
(none)
(none)

In addition, MPI allows you to define arbitrary data types built from the
basic types - Derived Datatypes, not part of the workshop.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 34

Blocking Send and Receive

Blocking Send and Receive block the calling process until the communica-
tion operation is completed. Blocking creates the possibility of deadlock!
Fortran:
MPI SEND(BUF, COUNT, DTYPE, DEST, TAG, COMM, IERR)

� The input argument BUF is an array; its type should match
the type given in DTYPE.

� The input arguments COUNT, DTYPE, DEST, TAG, COMM
are of type INTEGER.

� The output argument IERR is of type INTEGER; it contains
an error code when MPI SEND returns.

The variables passed to MPI SEND can be overwritten and reused immedi-
ately efter the call, although the message might not have been received yet
(buffering/synchronizing).

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 35

Blocking Send and Receive

MPI RECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM, STATUS, IERR)
� The output argument BUF is an array; its type should match the type in

DTYPE.

� The input arguments COUNT, DTYPE, SOURCE, TAG, COMM are of type
INTEGER.

� The output argument STATUS is an INTEGER array with
MPI STATUS SIZE elements, which contains source, tag and actual count of
data

� The output argument IERR is of type INTEGER; it contains an error code
when MPI RECV returns.

� The source, tag, and communicator arguments must match those of a pending
message in order for the message to be received.

� Wildcard values may be used for the source (accept a message from any pro-
cess) and the tag.

Have a look at simple send and receive.f

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 36

Deadlock

� Deadlock occurs when 2 (or more) processes are blocked and each is wait-
ing for the other to make progress.

� Figure out why simple deadlock.f deadlocks, why safe exchange.f never
deadlocks, why depends on buffering.f might deadlock and why proba-
ble deadlock.f is likely to deadlock!

� Delete your deadlocked jobs afterwards, using qdel � PID �

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 37

Nonblocking Send and Receive

� Nonblocking Send and Receive separate the initiation of a send or receive
operation from its completion by making two separate calls to MPI. The
first call initiates the operation, and the second call completes it. Between
the two calls, the program is free to do other things.

� Sends and receives may be posted (initiated) by calling nonblocking rou-
tines. Posted operations are identified by request handles. Using request
handles, processes can check the status of posted operations or wait for
their completion.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 38

Nonblocking Send and Receive

MPI ISEND(BUF, COUNT, DTYPE, DEST, TAG, COMM, REQ, IERR)
� The input argument BUF is an array; its type should match the type in

DTYPE.

� The input arguments COUNT, DTYPE, DEST, TAG, COMM have type
INTEGER.

� The output argument REQ has type INTEGER; it is used to identify a
request handle.

� The output argument IERR has type INTEGER; it contains an error code
when MPI ISEND returns.

� None of the arguments passed to MPI ISEND should be read or
written until the send operation is completed by another call to
MPI.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 39

Nonblocking Send and Receive

MPI IRECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM, REQUEST, IERR)
� The output argument BUF is an array; its type should match the type in

DTYPE.

� The input arguments COUNT, DTYPE, SOURCE, TAG, COMM have
type INTEGER.

� The output argument REQUEST has type INTEGER; it is used to iden-
tify a request handle.

� The output argument IERR has type INTEGER; it contains an error code
when MPI IRECV returns.

� None of the arguments passed to MPI IRECV should be read or
written until the receive operation is completed with another call
to MPI.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 40

Nonblocking Send and Receive, completion

Completion, waiting (blocking):
MPI WAIT(REQUEST, STATUS, IERR)

� The in/out argument REQUEST has type INTEGER.

� The output argument STATUS is an INTEGER array with MPI STATUS SIZE
elements.

� The output argument IERR has type INTEGER and contains an error
code when the call returns.

� The request argument is expected to identify a previously posted send or
receive.

� If the posted operation was a receive, then the source, tag, and actual
count of data received are available via the status argument.

� If the posted operation was a send, the status argument may contain an
error code for the send operation (different from the error code for the call
to MPI WAIT).

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 41

Nonblocking Send and Receive, completion

Completion, testing (non-blocking):
MPI TEST(REQUEST, FLAG, STATUS, IERR)

� The in/out argument REQUEST has type INTEGER.

� The output argument FLAG has type LOGICAL.

� The output argument STATUS is an INTEGER array with MPI STATUS SIZE ele-
ments.

� The output argument IERR has type INTEGER and contains an error code when the
call returns.

� The request argument is expected to identify a previously posted send or receive.

� If the flag argument is true, then the posted operation is complete.

� If the flag argument is true and the posted operation was a receive, then the source,
tag, and actual count of data received are available via the status argument.

� If the flag argument is true and the posted operation was a send, then the status argu-
ment may contain an error code for the send operation (not for MPI TEST).

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 42

Nonblocking Send and Receive, Example

Investigate simple deadlock avoided.f, which is a non-blocking version of the blocking
and deadlocking simple deadlock.f

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 43

Send Modes

There are four send modes, standard, Synchronous (S), Ready (R) and Buffered (B),
but there is only one receive mode.

Send Mode
Standard
Synchronous
Ready
Buffered

Receive Mode
Only

Blocking function
MPI SEND
MPI SSEND
MPI RSEND
MPI BSEND

Blocking function
MPI RECV

Nonblocking function
MPI ISEND
MPI ISSEND
MPI IRSEND
MPI IBSEND

Nonblocking function
MPI IRECV

The blocking send functions take the same arguments (in the same order) as
MPI SEND. The nonblocking send functions take the same arguments (in the same
order) as MPI ISEND.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 44

Send Modes

� Standard: Either buffered (asynchronous) or synchronized. Completed
when buffered or when the receive has started. Note: the variables passed
to MPI ISEND cannot be used (should not even be read) until the send op-
eration invoked by the call has completed. A call to MPI TEST, MPI WAIT
or one of their variants is needed to determine completion status.

� Synchronous: Synchronized. Completed when the receive has started.

� Ready: Requires that a matching receive has already been posted at
the destination process before ready mode send is called. If a matching
receive has not been posted at the destination, the result is undefined. It
is your responsibility to make sure the requirement is met.

� Buffered: Requires MPI to use buffering. The downside is that you
must assume responsibility for managing the buffer. If at any point, in-
sufficient buffer is available to complete a call, the results are undefined.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 45

Course Problem

Description:
The initial problem is a parallel search of an extremely large (several
thousand elements) integer array. The program finds all occurrences of a
certain integer, called the target, and writes all the array indices where the
target was found to an output file. In addition, the program reads both the
target value and all the array elements from an input file.

Exercise:
Write the real parallel code for the search problem! Using the pseudo-code
from the previous chapter as a guide, fill in all the sends and receives with
calls to the actual MPI send and receive routines. For this task, use only the
blocking routines. Run your parallel code using 4 processes. See if you get
the same results as those obtained with the serial version. Of course, you
should. See parallel search.f for one solution.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 46

Outline

� Message Passing Fundamentals

� Getting Started with MPI
� Point-to-Point Communication

� Collective Communications

� Portability issues

� Further issues

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 47

Collective communication

� Collective communication routines transmit data among all processes in
a group.

� It is important to note that collective communication calls do not use
the tag mechanism of send/receive for associating calls. Rather they are
associated by order of program execution. Thus, the user must ensure
that all processes execute the same collective communication calls and
execute them in the same order.

� Collective communication is normally synchronized, but it is not guar-
anteed.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 48

Barrier Synchronization

The MPI BARRIER routine blocks the calling process until all group pro-
cesses have called the function. When MPI BARRIER returns, all processes
are synchronized at the barrier.

INTEGER COMM, ERROR
MPI BARRIER (COMM, ERROR)

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 49

Broadcast

The MPI BCAST routine enables you to copy data from the memory of the
root process to the same memory locations for other processes in the com-
municator.

INTEGER COUNT, DATATYPE, ROOT, COMM, ERROR

� type � BUFFER

MPI BCAST (BUFFER, COUNT, DATATYPE, ROOT, COMM, ERROR)

See broadcast.f

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 50

Reduction
The MPI REDUCE routine enables you to collect data from each process,
reduce these data to a single value (such as a sum or max), and store the
reduced result on the root process.

INTEGER COUNT, DATATYPE, OPERATION, COMM, ERROR

� datatype � SEND BUFFER,RECV BUFFER

MPI Reduce (SEND BUFFER, RECV BUFFER, COUNT, DATATYPE, OPERATION, ROOT, COMM, ER-

ROR)

See product.f

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 51

Predefined operations available for MPI REDUCE

Operation
MPI MAX
MPI MIN
MPI SUM
MPI PROD
MPI LAND
MPI BAND
MPI LOR
MPI BOR
MPI LXOR
MPI BXOR
MPI MINLOC

MPI MAXLOC

user-defined

Description
maximum
minimum
sum
product
logical and
bit-wise and
logical or
bit-wise or
logical xor
bitwise xor
computes a global minimum and an index at-
tached to the minimum value – can be used to
determine the rank of the process containing
the minimum value
computes a global maximum and an index at-
tached to the rank of the process containing the
minimum value
user-defined

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 52

Gather

When MPI GATHER is called, each process (including the root process)
sends the contents of its send buffer to the root process. The root process
receives the messages and stores them in rank order.

INTEGER SEND COUNT, SEND TYPE, RECV COUNT, RECV TYPE, RANK, COMM, ERROR

� datatype � SEND BUFFER, RECV BUFFER

MPI GATHER (SEND BUFFER, SEND COUNT, SEND TYPE, RECV BUFFER, RECV COUNT,

RECV TYPE, RANK, COMM, ERROR)

See gather.f

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 53

Scatter
When MPI SCATTER is called, the root process breaks up a set of contigu-
ous memory locations into equal chunks and sends one chunk to each pro-
cess.

INTEGER SEND COUNT, SEND TYPE, RECV COUNT, RECV TYPE, RANK, COMM, ERROR

� datatype � SEND BUFFER, RECV BUFFER

MPI Scatter (SEND BUFFER, SEND COUNT, SEND TYPE, RECV BUFFER, RECV COUNT,

RECV TYPE, RANK, COMM, ERROR)

See scatter.f

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 54

Advanced Operations / MPI ALLGATHER

After the data are gathered into the root process, you could then
MPI BCAST the gathered data to all of the other processes. It is
more convenient and efficient to gather and broadcast with the single
MPI ALLGATHER operation.

The calling sequence for MPI ALLGATHER is exactly the same as the call-
ing sequence for MPI GATHER.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 55

Course Problem
Description:
The initial problem is a parallel search of an extremely large (several
thousand elements) integer array. The program finds all occurrences of a
certain integer, called the target, and writes all the array indices where the
target was found to an output file. In addition, the program reads both the
target value and all the array elements from an input file.

Exercise:
Modify your code parallel search.f, to change how the master first sends out
the target and subarray data to the slaves. Use the MPI broadcast routines
to give each slave the target. Use the MPI scatter routine to give all pro-
cesses a section of the array b it will search.
When you use the standard MPI scatter routine you will see that the global
array b is now split up into four parts and the master process now has the
first fourth of the array to search. So you should add a search loop (similar
to the slaves’) in the master section of code to search for the target and
calculate the average and then write the result to the output file. This is
actually an improvement in performance since all the processes perform part
of the search in parallel. See parallel search collective.f for one solution.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 56

Outline

� Message Passing Fundamentals

� Getting Started with MPI
� Point-to-Point Communication

� Collective Communications

� Portability issues

� Further issues

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 57

Portability issues
MPI is a standard which is portable, but ...

� MPI is often implemented differently on different systems, which may
result in a program that behaves different on different systems.

� Buffering Assumptions. Standard mode blocking sends and receives
should not be assumed to be buffered, but synchronized.

� Barrier Synchronization Assumptions for Collective Calls. An MPI
implementation of collective communications may or may not have the
effect of barrier synchronization. One obvious exception to this is the
MPI BARRIER routine.

� Communication Ambiguities. When writing a program, you should
make sure that messages are matched by the intended receive call. Am-
biguities in the communication specification can lead to incorrect or non-
deterministic programs. Use the message tags and communicators pro-
vided by MPI to avoid these types of problems.

� MPI-2 is not available on all systems.

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 58

Outline

� Message Passing Fundamentals

� Getting Started with MPI
� Point-to-Point Communication

� Collective Communications

� Portability issues

� Further issues

Applied Mechanics / Fluid Dynamics

Håkan Nilsson 59

Further issues

� Derived Datatypes

� Communicators

� Virtual Topologies
� Parallel I/O - MPI-2

� Parallel Mathematical Libraries

� Program Performance

See the WebCT course, linked from the MPI-Support homepage.

Good luck!

