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Learning outcomes

The reader will learn:

How to use it:

• How to set-up boundary conditions for simulations of wind in an urban environment.

• How to apply and evaluate rough wall-functions for the atmospheric boundary layer.

The theory of it:

• How to model ground roughness consistently with inlet boundary conditions.

• How to represent tree canopy using a porosity model.

How it is implemented:

• How run-time selectable source-terms can be added using the fvOptions framework.

• How to implement a custom run-time selectable option for adding source-terms to the momen-
tum and turbulence equations.

• How to set a varying roughness length within a wall patch.
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Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• Basic boundary layer meteorology.

• Fundamentals of Computational Fluid Dynamics.

• Basic C++

• Run standard tutorials, e.g. the damBreak tutorial.

Suggested litterature for further reading:

• Franke J., Hellsten A., Schlunzen H., Carissimo B. Best practice guideline for the CFD simu-
lation of flows in the urban environment. Cost action 732. 1 May 2007.

• Hargreaves D.M., Wright N.G., On the use of the k-epsilon model in commercial CFD software
to model the neutral atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn. 95 (2007)
355-369.

• Dalpé B., Masson C., Nunmerical Simulation of wind flow near a forest edge. J. Wind Eng.
Ind. Aerodyn. 97 (2009) 228-241.
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Chapter 1

Introduction

This tutorial describes how to simulate a neutral ABL (Atmospheric Boundary Layer) in an urban
environment using the steady state incompressible solver simpleFoam. Wind flow in an urban
environment is typically affected by the buildings, varying topography, vegetation, varying surface
roughness and moving vehicles. We will here focus on how vegetation and surface roughness can be
described.

Several commercial CFD codes (e.g. CFX, Fluent) have been shown unable to maintain standard
atmospheric wind speed and turbulence profiles over a flat terrain with homogenious roughness (
using the standard k-Epsilon model and wall-functions (Hargreaves & Wright, 2006). This is due to
inconsistent formulations of the inlet boundary conditions and the wall functions used. A distance of
a few hundred meters upstream of the studied geometry is normally included in the computational
domain, which is enough for the original inlet profile to change and diverge from the intended before
reaching the center of the domain. A simple remedy for this is to use a shorter distance upstream of
the ostacle. However, for larger obstacles or domains with varying topografy this often not possible.
This can be a problem for example when comparing with measurements and trying to apply specific
approaching wind conditions. Also, it makes it difficult to separate changes in the flow caused by the
studied geometry, e.g. a building, from changes caused by this imbalance in boundary conditions.
OpenFOAM includes wall functions based on Hargreaves & Wright (2007) which should be consistent
with the inlet boundary conditions for atmospheric flow of Richards and Hoxey (1993), that are also
available in OpenFOAM. As part of the tutorial, we evaluate the ability of these boundary conditions
in OpenFOAM to maintain the inlet profiles over a longer distance.

The tutorial also contains a description of how flow through tree canopy can be described by
adding source-terms to momentum and turbulence transport equations. A complete implementation
of run-time selectable source-terms is presented and it is shown how they can be applied to represent
varying surface roughness and canopy source-terms in a flexible way.

For the evaluation of tree canopy source-terms, the results are compared to field measurements
by Irvine & Gardiner (1997). The measurements are made at a forest edge, with four meteorological
masts, carrying three anemometers each. For each mast, the anemometers are placed at heights 0.5
h, 1.0 h and 2.0 h, where h is the average tree height (h=7.5m). The masts are placed at x=-6.1h, at
the forest edge (x=0 h), x=3.6h and x=14.5h. Statistical profiles are provided for wind speed and
it’s standard deviation in the main horizontal wind direction, σu, and vertically σw. The profiles
are normalized by the friction velocity, u∗ at mast 1 on a height of 2h. There are no measurements
of standard deviation in the cross-wind direction. To allow calculation of turbulence intensity for
comparison with modelling results, a relation for neutral atmosphere, σv = 2.1u∗ is used following
Dalpé and Masson (2007).

The model geometry consists of a 1 km long and 500 m high rectangular 2D domain with flat
ground. In figure 1.1, the domain is presented together with the meteorological masts.

The value of the roughness length, z0, is estimated from statistical wind profiles given in Irvine &
Gardiner (1997). The statistical profiles represent 3 experiment runs, all close to neutral conditions
and with wind direction close to perpendicular to the forest edge. The roughness length is estimated
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CHAPTER 1. INTRODUCTION

to 0.06 m at mast 1, using the measurements at a height of 2h.

Figure 1.1: Geometry of the Irvine test case for tree canopy flow. The masts are marked m1-m4. The
green block represents the forest canopy.
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Chapter 2

Theory

In general, Large Eddy Simulation (LES) has been proven superior to RANS when describing the
ABL, but for many ps, RANS still remains more common. For some applications, such as pedestrian
wind comfort, RANS has been proven to capture the main flow features of interest, making the
considerably larger computational effort of LES hard to justify. In this tutorial, RANS and the
k − ε turbulence model are applied. The standard k − ε is still the most popular turbulence model
for describing the neutral ABL using RANS. The otherwise popular k-Omega SST model has not
been widely adopted for atmospheric flows. A reason might be that one of the main benefits of the
k-Omega model is the ability to describe the low Reynolds number flow very close to walls. The
ground surface in atmospheric flows is usually very rough, making it impossible to resolve the flow
in the near-wall region anyway.

The size of the modelling domain when studying wind flow in urban environments is typically
in the order of 1 km2 horizontally and has a height a few hundred meters up to 1 km. At this scale
it is impossible to resolve individual trees and small obstacles in the mesh, making it necessary to
parameterize their effect on the flow. The ground surface roughness is usually handled using wall
functions adapted for rough walls. Larger obstacles that are not resolved by the mesh, such as trees
and moving vehicles, are usually described as a porous media.

2.1 Boundary conditions

2.1.1 Inlet boundary conditions

The approaching wind profile for a neutral ABL is often modelled using boundary conditions sug-
gested by Richards and Hoxey (1993). In the formulation of their boundary conditions Richards and
Hoxey assume

1. zero vertical velocity.

2. pressure is constant in vertical and streamwise directions.

3. constant shear stress in the boundary layer.

4. the turbulent kinetic energy, k and dissipation rate, ε, satisfy their transport equations.

The velocity and turbulence profiles are

u =
u∗
κ
ln

(
z + z0
z0

)
(2.1)

k =
u2∗√
Cµ

(2.2)
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2.2. INFLUENCE OF TREE CANOPY CHAPTER 2. THEORY

ε =
u3∗

κ (z + z0)
(2.3)

where κ is von Karmans constant, u∗ is friction velocity [ms1] and z0 is the roughness length
[m]. The k and ε conservation equations, under the assumptions listed above, are satisfied when

σε =
κ2

(Cε2 − Cε1)
√
Cµ

where σε, Cε2, Cε1 and Cµ are coefficients of the k − ε model. Using the standard values of the k-ε
model, apart from σε, which is given the value 1.11 according to Hargreaves & Wright (2007).

2.1.2 Rough wall functions for the ABL

Wall-functions adapted for rough walls are usually applied to represent different types of ground
surfaces. There are a couple of different wall functions available for rough walls in OpenFOAM. The
rough wall functions often used in industrial applications describes the roughness elements using the
equivalent sandgrain roughness, ks (Nikuradse, 1933), which refers to the diameter of sand-grains
resulting in the same effect on flow as the real roughness. This wall-function formulation is developed
for pipe-flow, with small homogenious roughness elements. To describe the much larger roughness
elements encountered in atmospheric flow, it can be necessary to use a ks of more than 2 meters (it
can be shown that ks = 20z0). Since the wall-function formulation requires the distance from the
wall to the first cell-center to be larger than ks, this makes it impossible to resolve flow at pedestrian
level. For atmospheric flows, the roughness is instead parameterized using the z0 roughness length,
which is a parameter of the standard logarithmic wind profile (WMO, 2008). The roughness length
is the height at which the logathimic wind profile reaches zero. It is a length scale that is related to
the roughness height by approximately a factor 0.1.

A difference in the formulation is that the boundary condition is applied at at height z0 above
ground and not exactly at the surface (the ground distance is given by z0 + z), making it possible
to represent larger roughness elements.

In OpenFOAM, rough wall-functions for the ABL are available using the nutkAtmRoughWall-
Function for νt (tubulent viscosity), kqRWallFunction for k and epsilonWallFunction for ε. The
main reference of the implementation is Hargreaves & Wright (2007).

It should be mentioned that the y+ range of 30-300 that is usually required for a successful usage
of wall-functions does not hold when simulating the ABL using this methodology. According to best
practice guidelines for describing flow in the built environment (Franke et al. 2007) the height of
the first cell should instead be a few decimeters ( 0.2 m).

2.1.3 Top boundary condition

In order to maintain the inlet profiles over a longer distance, a fixed shear stress should be applied
at the top boundary (Richards & Hoxey, 1993). There is a fixedShear boundary condition available
in OpenFOAM, but since this mainly affect the profile at the top of the domain, which is not of
primary interest in this tutorial, a slip boundary condition is used at the top boundary.

2.2 Influence of tree canopy

The effect of vegetation on the flow is usually modelled by treating the canopy by adding source-
terms to momentum and turbulence equations. There are several models available for this purpose,
e.g. Dalpé and Masson (2007) and Svensson & Häggkvist (1990). The model by Dalpé and Masson
(2007) is presented in equations 2.4-2.6:

Su = −ρCdα|U |U (2.4)
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Sk = ρCdα
(
βp|U |3 − βdk|U |

)
(2.5)

Sε = ρCdα
ε

k

(
Cε4βp|U |3 − Cε5βdk|U |

)
(2.6)

where Su, Sk and Sε are source-terms on the right-hand side of transport-equations for momen-
tum, k and ε respectively, α is LAD (Leaf Area Density) and Cd is the tree canopy drag coefficient.
The βp (=1.0), βd (=5.03), Cε4 (=0.78) and Cε5 (=0.78) are empirical coefficients. In the incompress-
ible solver simpleFoam, the density has been eliminated from the equations (the dynamic pressure
p/ρ is used). In this case density is removed from the source-terms.

LAD [m−1] represents the total leaf area per m3 and varies within the tree canopy. Typically,
different tree species have different vertical profiles of LAD. It can be difficult to find values on LAD
for a specific type of tree. A more common value is LAI (Leaf Area Index), which is the integral of
LAD from ground to the canopy height. The drag coefficient of a tree also varies between species.
Dalpé & Masson (2007) uses a value of 0.2, which is applied here also.
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Chapter 3

Implementation

3.1 The fvOption framework

Source-terms, constraints and corrections can be added to solvers in OpenFOAM without customis-
ing and recompiling the solver. This is made using the fvOptions framework. This framework will
be used to create a custom option for canopy related source-terms. Options are activated and con-
figured through the dictionary fvOptions which is found in the constant directory of the case. The
fvOtions framework was introduced in OpenFOAM 2.2. Before, almost every solver of OpenFOAM
used to have multiple versions to allow for example MRF (Moving Reference Frames) and porous
flow. There are a number of options included with OpenFOAM, a few examples are:

• semiImplicitSource

• actuationDiscSource

• meanVelocitySource

• explicitPorositySource

• buoyancyForce

3.1.1 The options and optionList classes

Examples of run-time selectable options available in OpenFOAM are found in

$FOAM_SRC/fvOptions/sources.

To understand how options are created it is valuable to study the base classes options, and
optionList. The options and optionList classes take care of the run-time selection and in-
statiation of the different options. The classes are found in

$FOAM_SRC/finiteVolume/cfdTools/general/fvOptions

Each solver using the fvOptions framework includes the file createFvOptions.H where an object
named fvOptions is created as

fv::options& fvOptions(fv::options::New(mesh));

The New function is a static member of the class options, defined in

$FOAM_SRC/finiteVolume/cfdTools/general/fvOptions/fvOptions.C

From this function, the constructor of the options class is called, which in turn calls the constructor
of the base class optionList. In the optionList constructor, the member function named reset is
called. In this function the individual options are instantiated by calling the static member-function
New of the option class, which identifies and calls the constructors of the different options defined in
the constant/fvOptions dictionary. The order in which the functions are called is shown in figure
3.1. The inheritance graph of the options class is given in figure 3.2.
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Figure 3.1: Base class functions called when creating the fvOptions object.

Figure 3.2: Inheritance graph of the options class.

3.1.2 The option class

The option class is an abstract base class with virtual functions for adding source-terms, constraints
and corrections. This class defines how solvers and turbulence models should call the option to add
source-terms or apply constraints and corrections. The inheritance graph of the options class is given
in figure 3.3. As seen from this graph, the option class is the base for a few of the options included
in OpenFOAM. For options that need to be applied for a cell-set instead of all cells or only for a
given duration, the class cellSetOption that inherits the option class serves as the base class.

Figure 3.3: Inheritance graph of the option class.
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3.2. CREATING A NEW OPTION CHAPTER 3. IMPLEMENTATION

3.2 Creating a new option

Tree canopy is described using a porosity concept. There are different porosity models for industrial
applications implemented into OpenFOAM, but the models used for tree canopy are quite different
from these and there is little to gain from basing an implementation on the existing porosity models.
Instead we choose to implement a completely new option type.

The desired features of the new option are:

• allow a spatially varying landuse1

• each type of landuse should allow specifying a roughness length and a vertical LAD-profile

• each type of landuse should be applicable for varying tree canopy height

• allow specifying landuse patch-wise or via a separate GIS raster file

• allow specifying tree canopy-height per landuse or via a separate GIS raster file

• allow writing fields to disk for visualization

• allow parallel calculations

3.2.1 Object oriented design

The following classes are defined:

• canopySource is defined to handle initialization of fields and variables required to describe the
landuse. This class inherits the option base class.

• landuseClass is defined to represent properties of a landuse type and to provide some member
functions to process and access the different landuse parameters.

• Raster is provided to handle the reading of landuse type and canopy height from the ESRI
ascii grid raster format.

• groundDist is provided for estimation of distance to specified patches.

• dalpeMassonCanopySource inherits the canopySource class and defines source-terms for tur-
bulence according to Dalpé & Masson (2009).

By creating a separate class containing only the source-term definitions, different models can
easily be added. All source-code is provided together with this report. The different classes are also
described below.

3.2.2 The landuseClass class

A separate class named landuseClass is implemented to represent a specific type of landuse. The
header file of the class is given on the following page.

1Landuse refers to the land cover, e.g. crops, forest, water or similar.
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#ifndef landuseClass_H

#define landuseClass_H

#include "label.H"

#include "scalar.H"

#include "dimensionedScalar.H"

#include "dimensionSet.H"

namespace Foam

{

/*---------------------------------------------------------------------------*\

Class landuseClass Declaration

\*---------------------------------------------------------------------------*/

class landuseClass {

private:

label code_; // unique id of the landuse class

word name_; // name of the landuse class

scalar Cd_; // drag coefficient

scalar LAI_; // Leaf Area Index (used if LADmax is not specified)

scalar z0_; // roughness length

scalar height_; // canopy height

scalar LADmax_; // max of Leaf Area Density

scalarList LADProfile_; // normalized profile of LAD

public:

// Constructors

landuseClass();

landuseClass(const dictionary &dict, word name);

// Destructor

~landuseClass();

// member functions

const scalarList& LADProfile() {

return LADProfile_;

}

scalar LAD(scalar z, scalar treeHeight);

void LADmaxFromLAI();

scalar integrateLAD();

// access

const word& name() { return name_; }

const label& code() { return code_; }

const scalar& Cd() { return Cd_; }

const scalar& LAI() { return LAI_; }

const scalar& z0() { return z0_; }

const scalar& height() { return height_; }

const scalar& LADmax() { return LADmax_; }

};

}

#endif /*landuseClass_H*/
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The code attribute is an scalar (an integer) unique for each landuse class. This is used later
to allow specifying landuse classes in a scalarField. The class also contains member functions to
calculate LAI by integrating the vertical LAD profile and to set LADmax based on LAI. This is
included since often only LAI is known for a type of vegetation, allowing LADmax to be calculated
if a normalized vertical LAD profile is assumed. There is also a function to calculate LAD for a
given height, using the normalized LAD profile and the LADmax value. To facilitate instatiation of
landuse classes from settings in the fvOptions dict, a constructor is implemented that reads required
parameters from a sub-dictionary with a given name:

landuseClass::landuseClass(const dictionary& dict, word name) {

dictionary landuseClassDict(dict.subDict(name));

landuseClassDict.lookup("code") >> code_;

name_ = name;

Cd_ = landuseClassDict.lookupOrDefault("Cd", 0.2, false, false);

height_ = landuseClassDict.lookupOrDefault("height", 0.0, false, false);

z0_ = landuseClassDict.lookupOrDefault("z0", 0.001, false, false);

LAI_ = landuseClassDict.lookupOrDefault("LAI", 0.0, false, false);

LADmax_ = landuseClassDict.lookupOrDefault("LADmax", -1.0, false, false);

if (landuseClassDict.found("LADProfile"))

landuseClassDict.lookup("LADProfile", false, false) >> LADProfile_;

if (LADmax_ == -1.0) {

LADmaxFromLAI();

}

}

At the end of the constructor, LADmax is estimated from LAI if it has not been set (has the
initial value -1). This is made by incrementing LADmax gradually, until the integral of the vertical
profile matches the provided LAI.

The function scalar LAD(scalar z, scalar treeHeight) scales the provided LAD-profile to
match the specified tree height and LADmax and then extracts LAD at the height z.

3.2.3 The Raster class

To enable reading landuse and canopy height from GIS rasters a separate class representing the
ESRI Ascii raster format is provided. The implementation does not make use of the OpenFOAM
libraries and the implementation is therefore not described in this tutorial.

3.2.4 The canopySource base class

The canopySource class will serve as a base class for various implementations of tree canopy source
terms, but can also be used by itself to only include source terms for momentum. These are similar
for most canopy models and are therefore implemented in the base class. For solvers not including
density the source term is given below

void Foam::fv::canopySource::addSup

(

fvMatrix<vector>& eqn,

const label fieldi

)

{

const volVectorField& U = eqn.psi();

const volScalarField& canopy = canopy_;

14



3.2. CREATING A NEW OPTION CHAPTER 3. IMPLEMENTATION

fvMatrix<vector> S_canopy

(

fvm::Sp(canopy * mag(U), U)

);

eqn -= S_canopy;

}

For turbulence source terms, there are several different variants that have been published and
two of them are implemented here: Svensson & Häggkvist (1990) and Dalpé & Masson (2007). Since
these inherit the canopySource base class, the only functionality they contain is the implementation
of the source-terms. The Svensson & Häggkvist (1990) model is only provided to demonstrate the
extendability of the design, this model is not further described in this tutorial.

As a starting-point for our custom option, the tabulatedAccelerationSource was copied and
renamed to

$WM_PROJECT_USER_DIR/applications/src/fvOptions/sources/canopySource

The files in the directory were renamed to canopySource.H and canopySource.C. The content
of canopySource.H is given on the next two pages.

15



3.2. CREATING A NEW OPTION CHAPTER 3. IMPLEMENTATION

#ifndef canopySource_H

#define canopySource_H

#include "fvOption.H"

#include "dimensionedTypes.H"

#include "DynamicList.H"

#include "landuseClass.H"

#include "Raster.H"

#include "nutkAtmRoughWallFunctionFvPatchScalarField.H"

#include "groundDist.H"

#include "wallFvPatch.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam

{

namespace fv

{

/*---------------------------------------------------------------------------*\

Class canopySource Declaration

\*---------------------------------------------------------------------------*/

class canopySource

:

public option

{

protected:

// member data for landuse

wordList sourcePatches_;

autoPtr<volScalarField> canopy_;

HashTable<landuseClass, label> landuseTable_;

HashTable<landuseClass, label> patchLanduseTable_;

// read landuse, z0 and LAD from disk if they are present

Switch readFromDisk_;

// read landuse from raster instead of specifying per patch

Switch readLanduseFromRaster_;

Raster landuseRaster_;

// read canopy height from raster instead of specifying per landuse class

Switch readCanopyHeightFromRaster_;

Raster canopyHeightRaster_;

// translation vector from coordiantes in raster to coordinates in mesh

vector translateRaster;

Switch writeFields_;

// if variables are present on disk, they are read instead of calculated

// this allows setting the data with external programs

bool LAD_from_disk_;

bool landuse_from_disk_;

bool z0_from_disk_;

//- Source terms to momentum equation

// (for solvers with and without explicit density)

16
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void addSup

(

const volScalarField& rho,

fvMatrix<vector>& eqn,

const label fieldi

);

void addSup

(

fvMatrix<vector>& eqn,

const label fieldi

);

//- Disallow default bitwise copy construct

canopySource(const canopySource&);

//- Disallow default bitwise assignment

void operator=(const canopySource&);

void checkData() const;

// Member Functions

Raster readRaster(fileName rasterPath);

void calculatePatchDistance(label patch, volScalarField &d);

void setPatchLanduse(label patch, volScalarField &landuse,

volScalarField &LAD, volScalarField &z0,

volScalarField &nut, volScalarField &d);

void calculateCanopy();

void readLanduseClasses();

public:

//- Runtime type information

TypeName("canopySource");

// Constructors

canopySource

(

const word& name,

const word& modelType,

const dictionary& dict,

const fvMesh& mesh

);

//- Destructor

virtual ~canopySource()

{}

// Member Functions

//- Read dictionary

bool read(const dictionary& dict);

};

}

}

#endif
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The definition of canopySource is more than 500 lines, making it too long to include as a whole
in this document. Instead, only the most interesting parts are described and the rest of the code is
provided separately.

3.2.5 Initializing the canopySource option

The run-time selection mechanism used for fvOptions end up calling the constructor of the selected
option type. In the initialization of the canopySource, the constructor of the option base class is
called, which initializes some basic attributes. One important example is the active attribute, which
is read from the fvOptions dictionary. This attribute, which can be used to switch the effect of tree
canopy on or off, is accessed through the active() member function and determines if the source
term is active or not. Before reading further data, this is checked in the constructor. Thereafter,
the member variable fieldNames of the option base class, that specifies for which fields the option
should be applied, is set. The constructor is given below.

Foam::fv::canopySource::canopySource

(

const word& name,

const word& modelType,

const dictionary& dict,

const fvMesh& mesh

)

:

option(name, modelType, dict, mesh)

{

if (active()) {

fieldNames_.setSize(3);

fieldNames_[0] = word("U");

fieldNames_[1] = word("k");

fieldNames_[2] = word("epsilon");

applied_.setSize(fieldNames_.size(), false);

read(dict);

}

}

At the end of the constructor, the read function is called. This function contains more specific
input and processing of data. The complete source code of the read function is too long to present
here but is included in the source code included with this tutorial. The main steps are

1. read list of source patches for which landuse (tree canopy and roughness length) will be defined

2. determine if landuse and canopy height should be specified patch wise in the dictionary or
read from a separate GIS raster file.

3. the function readLanduseClasses is run. This function reads all landuse classes defined in
constant/fvOptions and stores them in a hash table with the landuse code as hash key.

4. If reading from rasters is chosen, raster objects for landuse and/or canopy height are instanti-
ated and stored as member variables of the canopySource object.

5. if not reading from rasters, landuse should be specified for each source patch. These are stored
in a hash table to facilitate quick lookups.

6. read all landuse classes defined in the fvOptions dictionary

7. check data validity

8. run calculateCanopy, which creates and sets fields used to describe the landuse.

18



3.2. CREATING A NEW OPTION CHAPTER 3. IMPLEMENTATION

The calculateCanopy member function creates the volScalarFields landuse, LAD and z0. If
the fields already exist, they are read from disk. A reference to the nut field is also retrieved from
the object registry. The landuse field contains landuse codes corresponding to the landuse class in
each grid cell. For patches that are not specified as source patches (non-ground patches) and for
internal cells above the tree canopy, the value is initialized to -1. The LAD field contains the leaf area
density within the tree canopy and zero otherwise. The z0 field contains the roughness length for the
source patches and -1 otherwise. It should be remembered that the z0 field is only created to allow
visualization. After the fields have been created, the member functions calculatePatchDistance

and setPatchLanduse are called for each of the source patches defined in constant\fvOptions. The
member function calculatePatchDistance is described in the next section. The setPatchLanduse
member function sets the values for fields landuse, z0 and LAD at a patch and for the internal cells
up to canopy height of the landuse applied at each patch face. The roughness length that is used in
the calculations is set on the z0 parameter of the nutkAtmRoughWallFunction patch field. As a last
step, the member variable canopy_ is calculated as the product of LAD and Cd of the corresponding
landuse class. Since this product is constant, calculating it beforehand saves some computations.

3.2.6 Calculating patch distance

The distance to a specific patch is calculated using a so called meshWave. The algorithms for
calculating distances are part of the OpenFOAM core library and can be found in directories

$FOAM_SRC/finiteVolume/fvMesh/wallDist/wallDist

$FOAM_SRC/finiteVolume/fvMesh/wallDist/patchDistMethods/meshWave

The provided code (grounddistance.H and groundDistance.C) has been modified from an
earlier version of OpenFOAM and the implementation is not described in this tutorial.

3.2.7 Defining a canopySource

An example of the dictionary defining a canopySource is given below.

canopy

{

type canopySource;

active on;

writeFields on; // write to disk

readLanduseFromRaster on; // read from raster

readCanopyHeightFromRaster on;

translateRaster (0 0 0); // translate raster

sourcePatches (ground forest); // patches to process

// if landuse is not set from raster

patchLanduse (0 1); // landuse code per patch

LADProfile (0.05 0.1 0.15 0.35 1.1 0.9 0.5 0.2 0.15 0.05 0.01); // default

landuse

{

low_birch // name of landuse class

{

code 1; // id of landuse class

Cd 0.2; // drag coefficient

LADmax 1.2; // Maximum Leaf Area Density [m^-1]

z0 0.06; // roughness length [m]
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// used if LADmax is not specified

LAI 2.15; // Leaf Area Index

// if not read from raster

height 7.5; // tree canopy height

// Vertical profile of Leaf Area Density

// first value is closest to ground

// each value represents an equal share of the tree height

// e.g. for a 4 m tree and 4 values, each value will represent 1 m

// values are scaled so that the highest will correspond to LADMax

LADProfile ( 0.05 0.1 0.15 0.35 1.1 0.9 0.5 0.2 0.15 0.05 0.01 );

};

grass

{

code 0;

Cd 0.2;

LAI 0;

z0 0.06;

height 0;

};

};

}

3.2.8 Adding source terms

The option base class implements a few virtual functions defining the interface with solvers making
use of the option. For source terms, the virtual functions all have the name addSup.

Source terms can either be implicit or explicit. Implicit means that they are added to the
coefficient matrix on the left-hand side of the linearized equation system, while explicit means they
are added to the right-hand side. For improved convergence it beneficial to add an as large part as
possible implicitly. However, when the source-term is linearized as S = SC + SPTP , where SC and
SP are constants and TP is the variable that is solved for, the rule is that SP should always be less
than or equal to zero or stability will be reduced (Patankar, 1980).

In OpenFOAM an implicit source-term is added using the fvm::Sp( ) function. There is also a
function fvm::SuSp that tries to determine if source term on the right-hand side can be linearized
with a negative SP . If so, the source term is added to the diagonal of the coefficient matrix and
otherwise it’s directly added to the right-hand side as an explicit source-term.

The member function addSup exists in a few different flavors to allow being called for incom-
pressible and compressible solvers (with or without rho (density) among the arguments) as well
as for different types of fields (fvMatrix$<scalar>$, fvMatrix<vector>, etc.). In this case we
implement addSup for incompressible and compressible flow and for both vector fields and scalar
fields following Dalpé and Masson (2007). The momentum source term is defined the same way
for most canopy models and is therefore added to the canopySource base class. The mathematical
formulation is given in 2.1. Since the product before U is negative, we can safely use fvm::Sp to
add the source-term implicitly.

As mentioned in the description of the calculateCanopy member function, the product Cdα
always appear together in the calculations. Therefore, this product is calculated once and then
stored as a member variable of the option with the name canopy_ with units [m−1]. Also, for the
incompressible version, rho is excluded.

void Foam::fv::dalpeMassonCanopySource::addSup
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(

fvMatrix<vector>& eqn,

const label fieldi

)

{

const volVectorField& U = eqn.psi();

const volScalarField& canopy = canopy_;

fvMatrix<vector> S_canopy

(

fvm::Sp(canopy * mag(U), U)

);

eqn -= S_canopy;

}

The mathematical formulation of source-terms for k and ε are given in 2.2 and 2.3. Both source-
terms are implemented in the same addSup function and the choice of which term to apply is made
depending on the name of the variable that is solved for.
For the k equation source-term, the first part should be added explicitly. For the second part, the
coefficient before the k will allways be negative, allowing us to add this part implicitly.

For the epsilon equation, the sign of the expression within the bracket depends on the magnitude
of U and k and it is therefore not evident if the source term should be added implicitly or explicitly.
However, testing reveals that stability is significantly improved when the term is added implicitly.
The implementation is given below.

void Foam::fv::dalpeMassonCanopySource::addSup

(

fvMatrix<scalar>& eqn,

const label fieldi

)

{

const volScalarField& canopy = canopy_;

if (eqn.psi().name() == word("k")) {

const volScalarField& k = eqn.psi();

const volVectorField& U = mesh_.lookupObject<volVectorField>("U");

fvMatrix<scalar> Sk

(

betaP_*canopy*pow(mag(U),3) - fvm::Sp(betaD_*canopy*mag(U), k)

);

eqn += Sk;

}

else if (eqn.psi().name() == word("epsilon")) {

const volScalarField& epsilon = eqn.psi();

const volScalarField& k = mesh_.lookupObject<volScalarField>("k");

const volVectorField& U = mesh_.lookupObject<volVectorField>("U");

fvMatrix<scalar> Sepsilon

(

fvm::Sp(canopy/k*(C4_*betaP_*pow(mag(U),3) - C5_*betaD_*k*mag(U)), epsilon)
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);

eqn += Sepsilon;

}

}

3.2.9 Implementation of non-uniform roughness

When specifying the nutkAtmRoughWallFunction boundary condition that is applied at the ground
patch of the nut field, the roughness length z0 is a required parameter. The type of this parameter
in the nutkAtmRoughWallFunction class is a scalarField, meaning that different values can be
applied for the cell faces of a patch. However, there is no way to specify a scalarField for a parameter
in the boundary condition subdictionary using the standard utilities. An intuitive way to allow non-
uniform roughness to be applied at the ground patch, would be to create a new wall boundary
condition with customized functionality to read roughness from a separate file. However, in order
to keep all landuse properties at the same place and apply them using the same framework, the
non-uniform roughness length is instead set from the custom option.

In the function setPatchLanduse, the fields landuse, LAD, z0, are set for a specific patch (see
description under section ”Initializing the canopySource option”). Landuse classes are either speci-
fied per patch, using the patchLanduse entry in the fvOptions dictionary, or read from a separate
georeferenced raster file that is specified using the landuseRasterFileName entry in the same dic-
tionary. There is also a switch called readLanduseFromRaster to determine which method to use.
Reading from raster is supported since this is a commonly used format for landuse data. A class
named Raster to describe the raster format is provided but not described in this tutorial.

In the function setPatchLanduse, the z0 parameter (scalarField) of the nut field at the ground
patch is accessed by:

Foam::nutkAtmRoughWallFunctionFvPatchScalarField& wallNut =

refCast<Foam::nutkAtmRoughWallFunctionFvPatchScalarField>(nut.boundaryFieldRef()[patch]);

scalarField& nutZ0 = wallNut.z0(); // creating a reference to the z0 parameter

The nut.boundaryFieldRef()[patch] returns the base class fvPatchScalarField. Therefore,
to be able to access the specific attributes of the nutkAtmRoughWallFunctionFvPatchScalarField,
a cast is necessary. The scalarField nutZ0 can then be modified freely and the parameter value will
be written to disk when the nut field is written.

3.3 Compile library and solver

The same directory structure as for derived fvOptions in the OpenFOAM source code is used. The
directory layout and source-files are

$WM PROJECT USER DIR/applications/src

fvOptions

sources

canopySource

canopySource.H

canopySource.C

landuseClass.H

landuseClass.C

Raster.H

Raster.C

groundDist.H

groundDist.C

dalpeMassonCanopySource
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dalpeMassonCanopySource.H

dalpeMassonCanopySource.C

senssonHaggkvistCanopySource

svenssonHaggvistCanopySource.H

svenssonHaggkvistCanopySource.C

Make

options

files

The user src-directory is here placed under the applications directory to allow having all the user
source code in the same repository for version-control. To compile the library:

cd $WM_PROJECT_USER_DIR/applications/src/fvOptions

wmake

The library is named libABLFvOptions, meaning that for the solvers to find it, the row

libs ("libABLFvOptions.so");

should be added to the controlDict.
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Chapter 4

Tutorial

4.1 Pre-processing

As a basis for the test-case we will use the tutorial turbineSiting. We will then modify solvers,
schemes and boundary conditions to comply with best practice guidelines for urban wind flow by
Franke et al.(2007). The turbineSiting tutorial is a simple setup for incompressible RANS on a small
hill with a turbine. We will replace the geometry with a 2D domain with flat ground.

4.1.1 Getting started

Copy the turbineSiting tutorial to the run directory and name it irvineForestEdge (the name is
refering to the measurement data used to evaluate the tree canopy influence).

cp -r $FOAM_TUTORIALS/incompressible/simpleFoam/turbineSiting \

$FOAM_RUN/irvineForestEdge

cd $FOAM_RUN/irvineForestEdge

4.1.2 Meshing

The mesh is generated using blockMesh. The blockMeshDict is not included in this report but can
be found in the system directory of the included test-case. Since it’s a 2D domain, the back and
front of the domain are set as empty in the blockMeshDict. The coordinate system will be set to
x=0 at the forest edge. This means that the domain inlet will be at x=-300 and the outlet at x=700.
The ground will be at z=0.

After generating the mesh using blockMesh, we will split the bottom patch to create a separate
area named forest (see figure 1.1). This is done using two standard utilities of OpenFOAM: topoSet
and createPatch. The topoSet utility is used to select the faces that will be part of the new forest
patch and the createPatch utility defines a new patch from the set. Each of the utilities requires
settings in dictionaries with the corresponding names (topoSetDict and createPatchDict). The
topoSet utility allows the creation and manipulation of cellSets or faceSets using different operators.
Here the operator boxToFace is used that selects cell faces using a bounding box. In order to select
all faces of the ground patch (z<0.01) where there is forest (0<x<700), the topoSetDict should
contain
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actions

(

{

name forest; // name of the set to be created

type faceSet; // type of set

action new; // create a new set

source boxToFace; // type of method to select faces

sourceInfo // bounding box within which faces will be selected

{

box (0 -100 -100) (1000 100 0.01);

}

}

);

and the createPatchDict should contain

pointSync false;

patches

(

{

name forest; // name of the new patch

patchInfo

{

type wall; // type of the new patch

}

constructFrom set; // how the patch should be constructed

set forest; // name of the set to construct the patch from

}

);

All three steps are run by issuing:

blockMesh

topoSet

createPatch -overwrite

4.1.3 Boundary and initial conditions

The boundary conditions of the original turbineSiting tutorial must be modified for the new geom-
etry. The original boundary conditions are copied to a 0 time directory:

cp -r 0.orig 0

The boundary conditions from the original turbineSiting case are manually modified for each
variable by:

1. Copying the bc entry for the terrain patch to the ground patch.

2. Renaming the terrain patch to forest.

The inlet boundary conditions should now be set according to table ??. The side and top
boundaries are the same for all fields and are therefore also included from a separate file: 0/in-
clude/sideAndTopPatches. The outlet conditions are set to inletOutlet for k, epsilon and U. For p,
the outlet condition is uniformFixedValue (0). The boundary condition for the ground and forest
patches for the different fields are given in 4.2.
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Table 4.1: Inlet boundary conditions.

Field Boundary condition
U atmBoundaryLayerInletVelocity

epsilon atmBoundaryLayerInletEpsilon

k atmBoundaryLayerInletK

p zeroGradient

Table 4.2: Ground boundary conditions.

Field Boundary condition
U atmBoundaryLayerInletVelocity

epsilon atmBoundaryLayerInletEpsilon

k atmBoundaryLayerInletK

p zeroGradient

nut nutkAtmRoughWallFunction

In the turbineTutorial, to make sure parameters are set consistently for the different fields, the
parameters are specified separately in 0/include/ABLconditions and then included for relevant
patches. The parameters are set according to data provided by Irvine & Gardiner (1997). Instead
of using the roughness length reported it is calculated from the measured wind profiles a mast 1, on
a height of 2h. Only the second and third run is used, since they are closer to neutral conditions.

z0 0.06; // roughness length [m]

Uref 6.17; // reference wind speed [m/s]

zRef 15; // height of reference wind speed [m]

zGround 0; // ground height [m]

flowDir (1 0 0); // direction vector of wind velocity

zDir (0 0 1); // vertical direction vector

Finally, the constant/fvOptions dictionary should be edited to remove the entries for actuationDiskSource
named disk1 and disk2. In this file we will later add out own custom option for canopy.

4.1.4 Discretization and solver settings

The system/controlDict is modified to perform 2500 iterations, writing results every 500 iterations
and cleaning away previous timesteps. The system/fvSchemes is modified to apply the second-
order limitedLinear divergence schemes. Tolerance for solvers are reduced to 1e-12 and the relative
tolerance to 0.01, to ensure that the solver does not finish before sufficient convergence is reached.

4.1.5 Monitoring residuals

To activate monitoring of the residuals for the case:

cp -r $FOAM_ETC/caseDicts/postProcessing/numerical/residuals system

Then edit the ’fields’ entry in the file to also display residuals for k and ε and add the following
entry to system/controlDict:

functions {

#includeFunc residuals

};
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4.1.6 Sampling

To compare with measurements from Irvine et al (1997), a function object is used to sample data
from the converged solution. A starting point for the dictionary is copied by:

cp -r $FOAM_ETC/caseDicts/postProcessing/graphs/singleGraph system/verticalProfiles

The file is then edited as below:

h 7.5; // tree height

z1 0; // vertical profile start z

z2 500; // vertical profile end z

y 0.5;

// mast locations relative to the forest edge

mast1_dist #calc "-6.1*$h";

mast2_dist 0;

mast3_dist #calc "3.6*$h";

mast4_dist #calc "14.5*$h";

setConfig

{

type uniform;

axis distance;

nPoints 2000;

}

fields (U p k epsilon);

interpolationScheme cellPoint;

setFormat raw;

type sets;

libs ("libsampling.so");

writeControl writeTime;

sets

(

inlet_profile

{

$setConfig;

start (-295 $y $z1);

end (-295 $y $z2);

}

outlet_profile

{

$setConfig;

start (690 $y $z1);

end (690 $y $z2);

}

mast1

{

$setConfig;

start ($mast1_dist $y $z1);

end ($mast1_dist $y $z2);

}

mast2

{

27



4.2. RUNNING THE CASE CHAPTER 4. TUTORIAL

$setConfig;

start ($mast2_dist $y $z1);

end ($mast2_dist $y $z2);

}

mast3

{

$setConfig;

start ($mast3_dist $y $z1);

end ($mast3_dist $y $z2);

}

mast4

{

$setConfig;

start ($mast4_dist $y $z1);

end ($mast4_dist $y $z2);

}

);

4.2 Running the case

The case is decomposed into 4 domains and calculations are then started in the background.

decomposePar

foamJob -parallel simpleFoam >& log &

Residuals are monitored using (see figure 4.1):

foamMonitor -l -r 2 postProcessing/residuals/0/residuals.dat

Figure 4.1: Monitoring residuals.

After calculations are finished, the case is reconstructed:

reconstructPar -latestTime

4.3 Verifying horizontal homogenity

An evaluation is performed to check if the inlet, ground and top boundary conditions are consistent.
A simulation is run through the empty domain and the vertical profile at the inlet is then compared

28



4.3. VERIFYING HORIZONTAL HOMOGENITY CHAPTER 4. TUTORIAL

to the vertical profile at the outlet. Vertical profiles are extracted by executing the functionObject
verticalProfiles as:

simpleFoam -postProcess -func verticalProfiles -latestTime

A simple plotting script called plot_horizontal_homogenity.py is provided together with the
tutorial. The plotting program is executed directly in the terminal and automatically reads the
vertical profiles at inlet and outlet from the postProcessing directory. The profiles plotted are
shown in figure 4.2. For wind speed and turbulence dissipation rate, the inlet profiles are preserved
well throughout the domain. However, for k, the inlet profile seems over-estimated in comparison
to the profile from Richards & Hoxey (1993). Also, the profiles changes significantly along the
domain. Hargreaves & Wright (1993) shows similar deviations using standard wall-functions in
Fluent and CFX. However, given that the implementation in OpenFOAM is based on their findings, it
is surprising that the inlet profiles for k are not better preserved in OpenFOAM. More investigations
are required to identify the exact reason for this.

Figure 4.2: Evolution of inlet profiles through the 1km domain.
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4.4 Modeling the effect of canopy

4.4.1 Applying the custom option

The dictionary constant/fvOptions should be created with the following content:

canopy

{

type dalpeMassonCanopySource;

active off;

writeFields on;

readLanduseFromRaster off;

readCanopyHeightFromRaster off;

canopyHeightRasterFileName "constant/canopy_height.asc";

translateRaster (0 0 0);

sourcePatches (ground forest);

patchLanduse (0 1);

landuse

{

low_birch

{

code 1;

Cd 0.2;

LAI 2.15;

z0 0.06;

height 7.5;

LADProfile ( 0.05 0.1 0.15 0.35 1.1 0.9 0.5 0.2 0.15 0.05 0.01 );

};

grass

{

code 0;

Cd 0.2;

LAI 0;

z0 0.06;

height 0;

};

};

}

4.4.2 Running the case

Remove the results from the previous run and re-run the case the same way as before. After the
run has finished, the case is reconstructed and the sampling function object is executed to generate
new data for the vertical profiles.

4.4.3 Checking the result

Since writeFields was set to ”on” for the canopy source in constant/fvOptions, the landuse, z0
and LAD fields are written to disk when they are created. They only get written once, so they will
be located in the 0-directory.

Visualization of LAD using paraView shows that it has been successfully set (see figure 4.3). The
U field is shown in figure 4.4 and indicates a reduction in speed downstream of the forest edge. For

30



4.4. MODELING THE EFFECT OF CANOPY CHAPTER 4. TUTORIAL

k, a clear increase is instead seen (see figure 4.5).

Figure 4.3: The field for Leaf Area Density at the forest edge seen from
the south.

Figure 4.4: The magnitude of U along the 2D-domain.

4.4.4 Comparison with measurements

To compare the results with measurements, the plotting script plot_vertical_profiles.py is
provided in the tutorial case directory. This script is executed without any arguments. Besides
the vertical profiles from the simulations it also reads a csv-file with statistical profiles for wind
speed and standard deviations from Irvine & Gardiner (1997). The statistical profiles are made
dimensionless by dividing with friction velocity calculated at mast 1, on a height of 2 h. They are
provided in constant/measurements_irvine_1997.csv.

The result from the plotting is shown in figure 4.6. It can bee seen in the figure that the velocity
profile is well described. The largest deviation is seen at the first mast, indicating that the inlet
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Figure 4.5: The turbulent kinetic energy along the 2D domain.

profile does not fully match the measured flow at mast 1. To some extent, this might be caused by
the problems to maintain the inlet profiles as demonstrated in figure 4.2. Also, the meteorological
conditions do not perfectly fulfill the assumption on which the applied inlet profiles are based.

4.4.5 Non-uniform canopy height

Irvine & Gardiner (1997) provides a height profile of the forest starting from the edge. This profile
has been formatted as a raster file, allowing LAD to follow the variations. To make use of the raster,
the entry for the canopy source in constant/fvOptions dictionary is modified to include:

readCanopyHeightFromRaster on;

canopyHeightRasterFileName "constant/canopy_height.asc";

By removing the LAD, landuse and z0 fields from the 0-directory and re-running simpleFoam
for a few time-steps, the fields are rewritten using the raster as input. The varying LAD-profile is
shown in figure 4.7.
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Figure 4.6: Comparison of calculated (lines) and measured (markers) profiles of wind speed and turbulence
intensity.

Figure 4.7: Varying height of LAD at the forest edge.
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Chapter 6

Study questions

1. Why can it be difficult to apply common rough wall functions using the Nikuradse sand-grain
roughness for atmospheric flow?

2. How can the effect from tree canopy on the flow be modelled without resolving the tree canopy
in detail?

3. How can any OpenFOAM solver add source-terms from a run-time selectable option without
knowing any details of the implementation?

4. Which functions does OpenFOAM provide to linearize source-terms?
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