

How to implement a turbulence model

How to implement your own turbulence model (1/3)

- The implementations of the turbulence models are located in \$FOAM_SRC/turbulenceModels
- Copy the source of the turbulence model that is most similar to what you want to do. In this case we will make our own copy of the kOmegaSST turbulence model and create a directory structure as in the OpenFOAM installation:

cd \$WM_PROJECT_DIR

CHALMERS

- cp -r --parents src/turbulenceModels/incompressible/RAS/kOmegaSST \
 \$WM_PROJECT_USER_DIR
- cd \$WM_PROJECT_USER_DIR/src/turbulenceModels/incompressible/RAS
- mv kOmegaSST mykOmegaSST

How to implement your own turbulence model (2/3)

- We also need a Make/files and a Make/options (c.f. \$FOAM_SRC/turbulenceModels/incompressible/RAS/Make)
- Create a Make directory:

mkdir Make

• Create Make/files (we are only *adding* mykOmegaSST):

```
echo "mykOmegaSST/mykOmegaSST.C
LIB = \$(FOAM_USER_LIBBIN)/libmyIncompressibleRASModels" > Make/files
```

• Create Make/options:

echo "EXE_INC = \\
 -I\\$(LIB_SRC)/turbulenceModels \\
 -I\\$(LIB_SRC)/transportModels \\
 -I\\$(LIB_SRC)/finiteVolume/lnInclude \\
 -I\\$(LIB_SRC)/meshTools/lnInclude \\
 -I\\$(LIB_SRC)/turbulenceModels/incompressible/RAS/lnInclude
LIB_LIBS =" > Make/options

(the last -I is needed since mykOmegaSST uses include-files in the original directory)

How to implement your own turbulence model (3/3)

• We need to modify the file names of our new turbulence model:

cd mykOmegaSST; rm kOmegaSST.dep mv kOmegaSST.C mykOmegaSST.C; mv kOmegaSST.H mykOmegaSST.H

• In mykOmegaSST.C and mykOmegaSST.H, change all occurances of kOmegaSST to mykOmegaSST so that we have a new class name:

sed -i s/kOmegaSST/mykOmegaSST/g mykOmegaSST.C
sed -i s/kOmegaSST/mykOmegaSST/g mykOmegaSST.H

• Introduce a small modification so that we can see if we use our new model. Add within the curly brackets of the constructor in mykOmegaSST.C:

Info << "Defining my own kOmegaSST model" << endl;</pre>

• Compile using:

cd ..; wmake libso

which will build a dynamic library.

Test on the simpleFoam/pitzDaily tutorial

We will use our turbulence model on the simpleFoam/pitzDaily tutorial:

run

cp -r \$FOAM_TUTORIALS/incompressible/simpleFoam/pitzDaily .
cd pitzDaily

blockMesh

continued...

How to use your own turbulence model

- Tell OpenFOAM to use your new library by adding a line to controlDict: libs ("libmyIncompressibleRASModels.so");
- You choose turbulence model in the constant/RASProperties dictionary:

RASModel mykOmegaSST;

• You also need to generate a O/omega file, and update fvSchemes and fvSolution

cp 0/epsilon 0/omega sed -i s/epsilon/omega/g 0/omega sed -i s/"0 2 -3 0 0 0 0"/"0 0 -1 0 0 0 0"/g 0/omega sed -i s/14.855/440.15/g 0/omega sed -i s/epsilon/omega/g system/fvSchemes sed -i s/epsilon/omega/g system/fvSolution

(here $\nu_t = \frac{k}{\omega} = C_{\mu} \frac{k^2}{\varepsilon}$ is kept the same in both cases)

- Now you can run the simpleFoam/pitzDaily tutorial with your new turbulence model. Try both kOmegaSST and mykOmegaSST and look for your write-statement in the log file.
- Simply add appropriate source terms to implement a variant of kOmegaSST....

A note on new libraries

- It is a common habit to make backup copies of directories when doing new implementations. This may cause problems when implementing libraries.
- One of the steps when compiling a library with wmake is to create the lnInclude directory. In that process all of the sub-directories, to the directory where the Make directory is located, are searched for files. If you have a backup copy of a directory, you have two files with the same name, and you thus do not know which one will be linked to in lnInclude.
- You can still do backups, but then pack up the directory with tar czf <directory>.tgz <directory> and remove the original directory.

A note on new turbulence models

- The RAS turbulence models in OpenFOAM are sub-classes to the virtual class RASModel.
- You are only allowed to use the same member function definitions as in the RASModel class. If you need other member functions you will have to add those to the RASModel class, which requires that you copy and modify all of \$FOAM SRC/turbulenceModels/incompressible/RAS.

You can recognize where the top-level of a class is located by locating the Make-directory.

We will now have a look at the implementation of the kOmegaSST model.

$k-\omega$ SST in OpenFOAM-1.6 (almost identical in newer)

From \$FOAM_SRC/turbulenceModels/incompressible/RAS/kOmegaSST/kOmegaSST.H:

- Menter, F., Esch, T.
 "Elements of Industrial Heat Transfer Prediction"
 16th Brazilian Congress of Mechanical Engineering (COBEM),
 Nov. 2001
- Note that this implementation is written in terms of alpha diffusion coefficients rather than the more traditional sigma (alpha = 1/sigma) so that the blending can be applied to all coefficients in a consistent manner. The paper suggests that sigma is blended but this would not be consistent with the blending of the k-epsilon and k-omega models.
- Also note that the error in the last term of equation (2) relating to sigma has been corrected.
- Wall-functions are applied in this implementation by using equations (14) to specify the near-wall omega as appropriate.
- The blending functions (15) and (16) are not currently used because of the uncertainty in their origin, range of applicability and that is y+ becomes sufficiently small blending u_tau in this manner clearly becomes nonsense.

CFD with OpenSource Software, 2015

$k - \omega$ SST: Equations

$$\begin{split} \frac{\partial k}{\partial t} &+ U_j \frac{\partial k}{\partial x_j} = P_k - \beta^* k \omega + \frac{\partial}{\partial x_j} \left[(\nu + \sigma_k \nu_l) \frac{\partial k}{\partial x_j} \right] \\ \frac{\partial \omega}{\partial t} &+ U_j \frac{\partial \omega}{\partial x_j} = \alpha S^2 - \beta \omega^2 + \frac{\partial}{\partial x_j} \left[(\nu + \sigma_\omega \nu_l) \frac{\partial \omega}{\partial x_j} \right] + 2(1 - F_1) \sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_i} \frac{\partial \omega}{\partial x_i} \\ \nu_t &= \frac{a_1 k}{\max(a_1 \omega, SF_2)}, \quad P_k = \min(G, 10\beta^* k \omega), \quad G = \nu_t \frac{\partial U_i}{\partial x_j} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \\ S^2 &= \left| \frac{1}{2} (\partial_j u_i + \partial_i u_j) \right|^2, \quad S = \sqrt{S^2} = \left| \frac{1}{2} (\partial_j u_i + \partial_i u_j) \right| \\ F_1 &= \tanh \left\{ \left\{ \min \left(\min \left[\max \left(\frac{\sqrt{k}}{\beta^* \omega y}, \frac{500\nu}{y^2 \omega} \right), \frac{4\sigma_{\omega 2} k}{CD_{k\omega}^* y^2} \right], 10 \right) \right\}^4 \right\} \\ F_2 &= \tanh \left[\left[\min \left(\max \left(\frac{2\sqrt{k}}{\beta^* \omega y}, \frac{500\nu}{y^2 \omega} \right), 100 \right) \right]^2 \right] \\ CD_{k\omega} &= 2\sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_i} \frac{\partial \omega}{\partial x_i} \end{split}$$

$k - \omega$ SST in OpenFOAM-1.6, ν_t

Source code:

\$FOAM_SRC/turbulenceModels/incompressible/RAS/kOmegaSST

Kinematic eddy viscosity:

 $\nu_t = \frac{a_1 k}{\max(a_1 \omega, SF_2)}$

kOmegaSST.C:

nut_ =
 a1_*k_/max(a1_*(omega_ + omegaSmall_), F2()*mag(symm(fvc::grad(U_))));

In kOmegaSST.C:

a1_(dimensioned<scalar>::lookupOrAddToDict("a1", coeffDict_, 0.31))

In kOmegaSST.C (S =sqrt(S2)):

volScalarField S2 = magSqr(symm(fvc::grad(U_)));

i.e. $S^2 = \left|\frac{1}{2}(\partial_j u_i + \partial_i u_j)\right|^2$ and $S = \sqrt{S^2} = \left|\frac{1}{2}(\partial_j u_i + \partial_i u_j)\right|^2$

F2() is a blending function, which is described on the next slide

$k - \omega$ SST in OpenFOAM-1.6, F2()

F2() is a blending function:

$$F_2 = \tanh\left[\left[\min\left(\max\left(\frac{2\sqrt{k}}{\beta^*\omega y}, \frac{500\nu}{y^2\omega}\right), 100\right)\right]^2\right]$$

In kOmegaSST.C:

}

```
tmp<volScalarField> kOmegaSST::F2() const
```

```
{
    volScalarField arg2 = min
    (
        max
        (
            (scalar(2)/betaStar_)*sqrt(k_)/(omega_*y_),
            scalar(500)*nu()/(sqr(y_)*omega_)
        ),
        scalar(100)
);

return tanh(sqr(arg2));
```

```
return tanh(sqr(arg2));
```

CFD with OpenSource Software, 2015

C³SE

 $k - \omega$ SST in OpenFOAM-1.6, Turbulence kinetic energy eq.

$$\frac{\partial k}{\partial t} + U_j \frac{\partial k}{\partial x_j} = P_k - \beta^* k \omega + \frac{\partial}{\partial x_j} \left[\left(\nu + \sigma_k \nu_t \right) \frac{\partial k}{\partial x_j} \right], \quad P_k = \min(G, 10\beta^* k \omega), \quad G = \nu_t \frac{\partial U_i}{\partial x_j} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right)$$

In kOmegaSST.C:

```
tmp<fvScalarMatrix> kEqn
```

fvm::ddt(k_)

- + fvm::div(phi_, k_)
- fvm::Sp(fvc::div(phi_), k_)
- fvm::laplacian(DkEff(F1), k_)

```
==
```

```
min(G, c1_*betaStar_*k_*omega_)
```

```
- fvm::Sp(betaStar_*omega_, k_)
```

);

The effective diffusivity for k, (DkEff(F1)), is described on a later slide.

F1 is obtained from F1(), which is a blending function for σ_k , and is described on the next slide,

```
where CD_{k\omega} = 2\sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_i} \frac{\partial \omega}{\partial x_i}
volScalarField CDkOmega =
(2*alphaOmega2_)*(fvc::grad(k_) & fvc::grad(omega_))/omega_;
```


F1() is a blending function, kOmegaSST.C (compressed here):

$$F_{1} = \tanh\left\{\left\{\min\left(\min\left(\min\left(\max\left(\frac{\sqrt{k}}{\beta^{*}\omega y}, \frac{500\nu}{y^{2}\omega}\right), \frac{4\sigma_{\omega 2}k}{CD_{k\omega}^{+}y^{2}}\right], 10\right)\right\}^{4}\right\}$$

tmp<volScalarField> kOmegaSST::F1(const volScalarField& CDkOmega) const
{ volScalarField CDkOmegaPlus = max

```
( CDkOmega,
```

```
dimensionedScalar("1.0e-10", dimless/sqr(dimTime), 1.0e-10)
```

 $F_1 = 0$ in the freestream ($k - \varepsilon$ model) and $F_1 = 1$ in the boundary layer ($k - \omega$ model)

$k-\omega$ SST in OpenFOAM-1.6, Effective diffusivity for k

```
The effective diffusivity for k, (DkEff(F1)), kOmegaSST.H:
```

```
tmp<volScalarField> DkEff(const volScalarField& F1) const
{
    return tmp<volScalarField>
    (
        new volScalarField("DkEff", alphaK(F1)*nut_ + nu())
    );
}
```

Blend alphaK1 and alphaK2 using blend function F1, kOmegaSST.H:

```
tmp<volScalarField> alphaK
(
        const volScalarField& F1
) const
{
        return blend(F1, alphaK1_, alphaK2_);
}
```

In kOmegaSST.C:

CHALMERS

alphaK1_(dimensioned<scalar>::lookupOrAddToDict("alphaK1",coeffDict_,0.85034))
alphaK2_(dimensioned<scalar>::lookupOrAddToDict("alphaK2",coeffDict_,1.0))

 $k-\omega$ SST in OpenFOAM-1.6, Specific dissipation rate eq.

$$\frac{\partial \omega}{\partial t} + U_j \frac{\partial \omega}{\partial x_j} = \alpha S^2 - \beta \omega^2 + \frac{\partial}{\partial x_j} \left[\left(\nu + \sigma_\omega \nu_t \right) \frac{\partial \omega}{\partial x_j} \right] + 2(1 - F_1) \sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_i} \frac{\partial \omega}{\partial x_i}$$

In kOmegaSST.C:

```
tmp<fvScalarMatrix> omegaEqn
    fvm::ddt(omega_)
  + fvm::div(phi_, omega_)
  - fvm::Sp(fvc::div(phi_), omega_)
  - fvm::laplacian(DomegaEff(F1), omega)
 ==
    qamma(F1) * 2 * S2
  - fvm::Sp(beta(F1) *omega, omega)
  - fvm::SuSp
        (F1 - scalar(1)) *CDkOmega/omega_,
        omega_
);
```

Modify our mykOmegaSST model into kOmegaSSTF

- Gyllenram, W. and Nilsson, H., Design and Validation of a Scale-Adaptive Filtering Technique for LRN Turbulence Modeling of Unsteady Flow, JFE, May 2008, Vol.130.
- Upper limit (Δ_f or 1t below) to the modelled length scale (L_t or Lt below), applied to ν_t :

$$\Delta_f = \alpha \max\left\{ \left| \vec{U} \right| \delta t, \Delta^{1/3} \right\}, \quad \alpha = 3 \quad (\alpha > 1), \quad \hat{\nu}_t = \left(\frac{\min(L_t, \Delta_f)}{L_t} \right)^{4/3} \frac{k}{\omega}$$

kOmegaSST:

kOmegaSSTF: (implementation can be improved)

Modify our mykOmegaSST model into kOmegaSSTF

cd \$WM_PROJECT_USER_DIR/src/turbulenceModels/incompressible/RAS/mykOmegaSST/

Find in mykOmegaSST.C the lines saying:

```
// Re-calculate viscosity
nut_ = a1_*k_/max(a1_*omega_, F2()*sqrt(S2));
```

Exchange those lines with:

Modify the pitzDaily case for pimpleFoam

Make sure that you are in the pitzDaily case, and delete the previous results:

run ; cd pitzDaily ; rm -r [1-9]*

Modify the files in system, for use with pimpleFoam:

cp \$FOAM_TUTORIALS/incompressible/pimpleFoam/TJunction/system/{fvSolution,fvSchemes} system

sed -i s/epsilon/omega/g system/fvSchemes

- sed -i s/epsilon/omega/g system/fvSolution
- sed -i s/simpleFoam/pimpleFoam/g system/controlDict
- sed -i s/1000/0.3/g system/controlDict
- sed -i s/"1;"/"0.0001;"/g system/controlDict
- sed -i s/uncompressed/compressed/g system/controlDict

Add to system/controlDict:

adjustTimeStep no;

maxCo

pimpleFoam needs one more dictionary:

5;

cp \$FOAM_TUTORIALS/incompressible/pimpleFoam/TJunction/constant/turbulenceProperties constant

We can re-use the same O directory that we modified before. Make sure that you still specify mykOmegaSST in constant/RASproperties Run the case with pimpleFoam -noFunctionObjects and make a nice movie of the results.

kOmegaSSTF

The kOmegaSSTF turbulence model is available for OpenFOAM-1.5 at OpenFOAM-extend:

http://openfoam-extend.svn.sourceforge.net/viewvc/openfoam-extend/trunk/\
Breeder_1.5/OSIG/Turbulence/src/turbulenceModels/RAS/incompressible/kOmegaSSTF

There is a pitzDaily tutorial for the turbFoam solver (no longer in OpenFOAM-1.6 and newer versions), and a utility for viewing the filter function.

It is also used in the Dellenback Abrupt Expansion case-study, which is described in the Turbulence Working Group Wiki:

http://openfoamwiki.net/index.php/Sig_Turbulence_/_Dellenback_Abrupt_Expansion