
CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 1

How to implement a turbulence model

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 2

How to implement your own turbulence model (1/3)

• The implementations of the turbulence models are located in

$FOAM_SRC/turbulenceModels

• Copy the source of the turbulence model that is most similar to what you want to do. In this

case we will make our own copy of the kOmegaSST turbulence model and create a directory

structure as in the OpenFOAM installation:

cd $WM_PROJECT_DIR

cp -r --parents src/turbulenceModels/incompressible/RAS/kOmegaSST \

$WM_PROJECT_USER_DIR

cd $WM_PROJECT_USER_DIR/src/turbulenceModels/incompressible/RAS

mv kOmegaSST mykOmegaSST

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 3

How to implement your own turbulence model (2/3)

• We also need a Make/files and a Make/options

(c.f. $FOAM_SRC/turbulenceModels/incompressible/RAS/Make)

• Create a Make directory:

mkdir Make

• Create Make/files (we are only adding mykOmegaSST):

echo "mykOmegaSST/mykOmegaSST.C

LIB = \$(FOAM_USER_LIBBIN)/libmyIncompressibleRASModels" > Make/files

• Create Make/options:

echo "EXE_INC = \\

-I\$(LIB_SRC)/turbulenceModels \\

-I\$(LIB_SRC)/transportModels \\

-I\$(LIB_SRC)/finiteVolume/lnInclude \\

-I\$(LIB_SRC)/meshTools/lnInclude \\

-I\$(LIB_SRC)/turbulenceModels/incompressible/RAS/lnInclude

LIB_LIBS =" > Make/options

(the last -I is needed since mykOmegaSST uses include-files in the original directory)

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 4

How to implement your own turbulence model (3/3)

• We need to modify the file names of our new turbulence model:

cd mykOmegaSST; rm kOmegaSST.dep

mv kOmegaSST.C mykOmegaSST.C; mv kOmegaSST.H mykOmegaSST.H

• In mykOmegaSST.C and mykOmegaSST.H, change all occurances of kOmegaSST to

mykOmegaSST so that we have a new class name:

sed -i s/kOmegaSST/mykOmegaSST/g mykOmegaSST.C

sed -i s/kOmegaSST/mykOmegaSST/g mykOmegaSST.H

• Introduce a small modification so that we can see if we use our new model. Add within the

curly brackets of the constructor in mykOmegaSST.C:

Info << "Defining my own kOmegaSST model" << endl;

• Compile using:

cd ..; wmake libso

which will build a dynamic library.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 5

Test on the simpleFoam/pitzDaily tutorial

We will use our turbulence model on the simpleFoam/pitzDaily tutorial:

run

cp -r $FOAM_TUTORIALS/incompressible/simpleFoam/pitzDaily .

cd pitzDaily

blockMesh

continued...

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 6

How to use your own turbulence model

• Tell OpenFOAM to use your new library by adding a line to controlDict:

libs ("libmyIncompressibleRASModels.so");

• You choose turbulence model in the constant/RASProperties dictionary:

RASModel mykOmegaSST;

• You also need to generate a 0/omega file, and update fvSchemes and fvSolution

cp 0/epsilon 0/omega

sed -i s/epsilon/omega/g 0/omega

sed -i s/"0 2 -3 0 0 0 0"/"0 0 -1 0 0 0 0"/g 0/omega

sed -i s/14.855/440.15/g 0/omega

sed -i s/epsilon/omega/g system/fvSchemes

sed -i s/epsilon/omega/g system/fvSolution

(here νt =
k
ω = Cµ

k2

ε is kept the same in both cases)

• Now you can run the simpleFoam/pitzDaily tutorial with your new turbulence model.

Try both kOmegaSST and mykOmegaSST and look for your write-statement in the log file.

• Simply add appropriate source terms to implement a variant of kOmegaSST....

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 7

A note on new libraries

• It is a common habit to make backup copies of directories when doing new implementations.

This may cause problems when implementing libraries.

• One of the steps when compiling a library with wmake is to create the lnInclude directory.

In that process all of the sub-directories, to the directory where the Make directory is located,

are searched for files. If you have a backup copy of a directory, you have two files with the

same name, and you thus do not know which one will be linked to in lnInclude.

• You can still do backups, but then pack up the directory with

tar czf <directory>.tgz <directory> and remove the original directory.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 8

A note on new turbulence models

• The RAS turbulence models in OpenFOAM are sub-classes to the virtual class RASModel.

• You are only allowed to use the same member function definitions as in the RASModel class.

If you need other member functions you will have to add those to the RASModel class, which

requires that you copy and modify all of

$FOAM_SRC/turbulenceModels/incompressible/RAS.

You can recognize where the top-level of a class is located by locating the Make-directory.

We will now have a look at the implementation of the kOmegaSST model.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 9

k − ω SST in OpenFOAM-1.6 (almost identical in newer)

From $FOAM_SRC/turbulenceModels/incompressible/RAS/kOmegaSST/kOmegaSST.H:

- Menter, F., Esch, T.

"Elements of Industrial Heat Transfer Prediction"

16th Brazilian Congress of Mechanical Engineering (COBEM),

Nov. 2001

- Note that this implementation is written in terms of alpha diffusion

coefficients rather than the more traditional sigma (alpha = 1/sigma)

so that the blending can be applied to all coefficients in a

consistent manner. The paper suggests that sigma is blended but this

would not be consistent with the blending of the k-epsilon and

k-omega models.

- Also note that the error in the last term of equation (2) relating to

sigma has been corrected.

- Wall-functions are applied in this implementation by using equations

(14) to specify the near-wall omega as appropriate.

- The blending functions (15) and (16) are not currently used because of

the uncertainty in their origin, range of applicability and that is y+

becomes sufficiently small blending u_tau in this manner clearly

becomes nonsense.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 10

k − ω SST: Equations
∂k

∂t
+ Uj

∂k

∂xj
= Pk − β∗kω +

∂

∂xj

[

(ν + σkνt)
∂k

∂xj

]

∂ω

∂t
+ Uj

∂ω

∂xj
= αS2 − βω2 +

∂

∂xj

[

(ν + σωνt)
∂ω

∂xj

]

+ 2(1− F1)σω2
1

ω

∂k

∂xi

∂ω

∂xi

νt =
a1k

max(a1ω, SF2)
, Pk = min(G, 10β∗kω), G = νt

∂Ui

∂xj

(

∂Ui

∂xj
+

∂Uj

∂xi

)

S2 =

∣

∣

∣

∣

1

2
(∂jui + ∂iuj)

∣

∣

∣

∣

2

, S =
√
S2 =

∣

∣

∣

∣

1

2
(∂jui + ∂iuj)

∣

∣

∣

∣

F1 = tanh







{

min

(

min

[

max

(√
k

β∗ωy
,
500ν

y2ω

)

,
4σω2k

CD+

kωy
2

]

, 10

)}4






F2 = tanh





[

min

(

max

(

2
√
k

β∗ωy
,
500ν

y2ω

)

, 100

)]2




CDkω = 2σω2
1

ω

∂k

∂xi

∂ω

∂xi

Parameters that are

blended using F1:

σk, σω, α, β

Constants:

β∗, σk1, σk2, σω1, σω2,

α1, α2, β1, β2, a1

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 11

k − ω SST in OpenFOAM-1.6, νt
Source code:

$FOAM_SRC/turbulenceModels/incompressible/RAS/kOmegaSST

Kinematic eddy viscosity:

νt =
a1k

max(a1ω, SF2)

kOmegaSST.C:

nut_ =

a1_*k_/max(a1_*(omega_ + omegaSmall_), F2()*mag(symm(fvc::grad(U_))));

In kOmegaSST.C:

a1_(dimensioned<scalar>::lookupOrAddToDict("a1",coeffDict_,0.31))

In kOmegaSST.C (S = sqrt(S2)):

volScalarField S2 = magSqr(symm(fvc::grad(U_)));

i.e. S2 =
∣

∣

1

2
(∂jui + ∂iuj)

∣

∣

2
and S =

√
S2 =

∣

∣

1

2
(∂jui + ∂iuj)

∣

∣

F2() is a blending function, which is described on the next slide

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 12

k − ω SST in OpenFOAM-1.6, F2()
F2() is a blending function:

F2 = tanh





[

min

(

max

(

2
√
k

β∗ωy
,
500ν

y2ω

)

, 100

)]2




In kOmegaSST.C:

tmp<volScalarField> kOmegaSST::F2() const

{

volScalarField arg2 = min

(

max

(

(scalar(2)/betaStar_)*sqrt(k_)/(omega_*y_),

scalar(500)*nu()/(sqr(y_)*omega_)

),

scalar(100)

);

return tanh(sqr(arg2));

}

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 13

k − ω SST in OpenFOAM-1.6, Turbulence kinetic energy eq.
∂k

∂t
+ Uj

∂k

∂xj
= Pk − β∗kω +

∂

∂xj

[

(ν + σkνt)
∂k

∂xj

]

, Pk = min(G, 10β∗kω), G = νt
∂Ui

∂xj

(

∂Ui

∂xj
+

∂Uj

∂xi

)

In kOmegaSST.C:

tmp<fvScalarMatrix> kEqn

(

fvm::ddt(k_)

+ fvm::div(phi_, k_)

- fvm::Sp(fvc::div(phi_), k_)

- fvm::laplacian(DkEff(F1), k_)

==

min(G, c1_*betaStar_*k_*omega_)

- fvm::Sp(betaStar_*omega_, k_)

);

The effective diffusivity for k, (DkEff(F1)), is described on a later slide.

F1 is obtained from F1(), which is a blending function for σk, and is described on the next slide,

where CDkω = 2σω2
1

ω

∂k

∂xi

∂ω

∂xi
volScalarField CDkOmega =

(2*alphaOmega2_)*(fvc::grad(k_) & fvc::grad(omega_))/omega_;

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 14

F1() is a blending function, kOmegaSST.C (compressed here):

F1 = tanh







{

min

(

min

[

max

(√
k

β∗ωy
,
500ν

y2ω

)

,
4σω2k

CD+

kωy
2

]

, 10

)}4






tmp<volScalarField> kOmegaSST::F1(const volScalarField& CDkOmega) const

{ volScalarField CDkOmegaPlus = max

(CDkOmega,

dimensionedScalar("1.0e-10", dimless/sqr(dimTime), 1.0e-10)

);

volScalarField arg1 = min

(min

(max

((scalar(1)/betaStar_)*sqrt(k_)/(omega_*y_),

scalar(500)*nu()/(sqr(y_)*omega_)

),

(4*alphaOmega2_)*k_/(CDkOmegaPlus*sqr(y_))

),

scalar(10)

);

return tanh(pow4(arg1));}

F1 = 0 in the freestream (k − ε model) and F1 = 1 in the boundary layer (k − ω model)

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 15

k − ω SST in OpenFOAM-1.6, Effective diffusivity for k
The effective diffusivity for k, (DkEff(F1)), kOmegaSST.H:

tmp<volScalarField> DkEff(const volScalarField& F1) const

{

return tmp<volScalarField>

(

new volScalarField("DkEff", alphaK(F1)*nut_ + nu())

);

}

Blend alphaK1 and alphaK2 using blend function F1, kOmegaSST.H:

tmp<volScalarField> alphaK

(

const volScalarField& F1

) const

{

return blend(F1, alphaK1_, alphaK2_);

}

In kOmegaSST.C:

alphaK1_(dimensioned<scalar>::lookupOrAddToDict("alphaK1",coeffDict_,0.85034))

alphaK2_(dimensioned<scalar>::lookupOrAddToDict("alphaK2",coeffDict_,1.0))

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 16

k − ω SST in OpenFOAM-1.6, Specific dissipation rate eq.

∂ω

∂t
+ Uj

∂ω

∂xj
= αS2 − βω2 +

∂

∂xj

[

(ν + σωνt)
∂ω

∂xj

]

+ 2(1− F1)σω2
1

ω

∂k

∂xi

∂ω

∂xi

In kOmegaSST.C:

tmp<fvScalarMatrix> omegaEqn

(

fvm::ddt(omega_)

+ fvm::div(phi_, omega_)

- fvm::Sp(fvc::div(phi_), omega_)

- fvm::laplacian(DomegaEff(F1), omega_)

==

gamma(F1)*2*S2

- fvm::Sp(beta(F1)*omega_, omega_)

- fvm::SuSp

(

(F1 - scalar(1))*CDkOmega/omega_,

omega_

)

);

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 17

Modify our mykOmegaSST model into kOmegaSSTF

• Gyllenram, W. and Nilsson, H., Design and Validation of a Scale-Adaptive Filtering

Technique for LRN Turbulence Modeling of Unsteady Flow, JFE, May 2008, Vol.130.

• Upper limit (∆f or lt below) to the modelled length scale (Lt or Lt below), applied to νt:

∆f = αmax
{∣

∣

∣

~U
∣

∣

∣
δt,∆1/3

}

, α = 3 (α > 1), ν̂t =

(

min(Lt,∆f)

Lt

)4/3
k

ω

kOmegaSST:

// Re-calculate viscosity

nut_ = a1_*k_/max(a1_*omega_, F2()*sqrt(S2));

kOmegaSSTF: (implementation can be improved)

// Compute Filter

scalar alph = 3.0; //Should be in a dictionary

scalarField Lt = sqrt(k_)/(betaStar_*omega_);

scalarField lt = alph*Foam::max(Foam::pow(mesh_.V().field(), 1.0/3.0),

(mag(U_)*runTime_.deltaT())->internalField());

// Re-calculate viscosity

nut_.internalField() = Foam::min(Foam::pow(lt/Lt,4.0/3.0), 1.0)*

(a1_*k_/max(a1_*omega_, F2()*sqrt(S2)))->internalField();

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 18

Modify our mykOmegaSST model into kOmegaSSTF

cd $WM_PROJECT_USER_DIR/src/turbulenceModels/incompressible/RAS/mykOmegaSST/

Find in mykOmegaSST.C the lines saying:

// Re-calculate viscosity

nut_ = a1_*k_/max(a1_*omega_, F2()*sqrt(S2));

Exchange those lines with:

// Compute Filter

scalar alph = 3.0; //Should be in a dictionary

scalarField Lt = sqrt(k_)/(betaStar_*omega_);

scalarField lt = alph*Foam::max(Foam::pow(mesh_.V().field(), 1.0/3.0),

(mag(U_)*runTime_.deltaT())->internalField());

// Re-calculate viscosity

nut_.internalField() = Foam::min(Foam::pow(lt/Lt,4.0/3.0), 1.0)*

(a1_*k_/max(a1_*omega_, F2()*sqrt(S2)))->internalField();

Compile with cd ..; wmake libso

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 19

Modify the pitzDaily case for pimpleFoam
Make sure that you are in the pitzDaily case, and delete the previous results:

run ; cd pitzDaily ; rm -r [1-9]*

Modify the files in system, for use with pimpleFoam:

cp $FOAM_TUTORIALS/incompressible/pimpleFoam/TJunction/system/{fvSolution,fvSchemes} system

sed -i s/epsilon/omega/g system/fvSchemes

sed -i s/epsilon/omega/g system/fvSolution

sed -i s/simpleFoam/pimpleFoam/g system/controlDict

sed -i s/1000/0.3/g system/controlDict

sed -i s/"1;"/"0.0001;"/g system/controlDict

sed -i s/uncompressed/compressed/g system/controlDict

Add to system/controlDict:

adjustTimeStep no;

maxCo 5;

pimpleFoam needs one more dictionary:

cp $FOAM_TUTORIALS/incompressible/pimpleFoam/TJunction/constant/turbulenceProperties constant

We can re-use the same 0 directory that we modified before.

Make sure that you still specify mykOmegaSST in constant/RASproperties

Run the case with pimpleFoam -noFunctionObjects and make a nice movie of the results.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 20

kOmegaSSTF
The kOmegaSSTF turbulence model is available for OpenFOAM-1.5 at OpenFOAM-extend:

http://openfoam-extend.svn.sourceforge.net/viewvc/openfoam-extend/trunk/\

Breeder_1.5/OSIG/Turbulence/src/turbulenceModels/RAS/incompressible/kOmegaSSTF

There is a pitzDaily tutorial for the turbFoam solver (no longer in OpenFOAM-1.6 and

newer versions), and a utility for viewing the filter function.

It is also used in the Dellenback Abrupt Expansion case-study, which is described in the
Turbulence Working Group Wiki:

http://openfoamwiki.net/index.php/Sig_Turbulence_/_Dellenback_Abrupt_Expansion

