
Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 284

pyFoam, a user contribution, for managing cases and simulations

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 285

pyFoam, a user contribution, for managing cases and simulations

• Described in the OpenFOAM Wiki:

http://openfoamwiki.net/index.php/Contrib_PyFoam

(openfoamwiki.net, Find 4.2 Forge, “BCs, physics models, other”,

Libraries for other languages, PyFoam)

• pyFoam is NOT in the OpenFOAM distribution! You will have to install it separately!

• Features (some examples):

− Uses OpenFOAM libraries to connect to OpenFOAM.

− Execute applications, and analyse and modify their output.

− Run lots of parameter variations of the same case.

− Manipulate OpenFOAM dictionaries, such as for setting up new cases.

− Plot residuals on the fly using Gnuplot.

− View the block structure of a blockMeshDict (requires VTK).

• We will now use pyFoam to set up dictionaries and to plot information in the log file.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 286

Activate at Chalmers

At Chalmers, just open a new window and type (<TAB> refers to the tab key):

OF22x

PF057

pyFoam<TAB><TAB>

You will see numerous pyFoam commands that can be used to help you use OpenFOAM effi-

ciently.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 287

Setting up a case from scratch

Basic method:

• Find out which solver you need to use for the specific problem.

• Copy a tutorial for that specific solver to your run directory:

cp -r $FOAM_TUTORIALS/incompressible/simpleFoam/pitzDaily $FOAM_RUN/simpleElbow

cd $FOAM_RUN/simpleElbow

• Modify all the dictionaries according to how you want to run your case (keep default

now).

• Modify the mesh by editing blockMeshDict and running blockMesh, or use a third-

party mesh-generator and a converter utility (fluentMeshToFoam usually works). Here:

cp $FOAM_TUTORIALS/incompressible/icoFoam/elbow/elbow.msh .

fluentMeshToFoam elbow.msh

• Now, the patch names in the time directory is probably not in accordance with the ones

in constant/polyMesh/boundary

• Edit all the dictionaries in the time directory so that all the patch names in

constant/polyMesh/boundary are present. Also set the appropriate boundary con-

dition for each patch. This is a lot of work! There is however an option...

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 288

pyFoamCreateBoundaryPatches.py

• We will use the pyFoamCreateBoundaryPatches.py to set up the time dictionaries.

• For help:

pyFoamCreateBoundaryPatches.py --help

• Modify the 0/U,p,k,epsilon and controlDict dictionaries (get at course homepage):

pyFoamCreateBoundaryPatches.py --verbose --clear-unused 0/U

pyFoamCreateBoundaryPatches.py --verbose --overwrite --filter="wall.+" \

--default="{’type’:’fixedValue’,’value’:’uniform (0 0 0)’}" 0/U

pyFoamCreateBoundaryPatches.py --verbose --overwrite --filter="velocity-inlet-5" \

--default="{’type’:’fixedValue’,’value’:’uniform (1 0 0)’}" 0/U

pyFoamCreateBoundaryPatches.py --verbose --overwrite --filter="velocity-inlet-6" \

--default="{’type’:’fixedValue’,’value’:’uniform (0 3 0)’}" 0/U

pyFoamCreateBoundaryPatches.py --verbose --clear-unused 0/p

pyFoamCreateBoundaryPatches.py --verbose --overwrite --clear-unused --filter="pressure.+" \

--default="{’type’:’fixedValue’,’value’:’uniform 0’}" 0/p

pyFoamCreateBoundaryPatches.py --verbose --clear-unused 0/k

pyFoamCreateBoundaryPatches.py --verbose --overwrite --filter="velocity-inlet.+" \

--default="{’type’:’turbulentIntensityKineticEnergyInlet’,’intensity’:’0.1’, \

’value’:’uniform 0.375’}" 0/k

pyFoamCreateBoundaryPatches.py --verbose --clear-unused 0/epsilon

pyFoamCreateBoundaryPatches.py --verbose --overwrite --filter="velocity-inlet.+" \

--default="{’type’:’turbulentMixingLengthDissipationRateInlet’, \

’mixingLength’: ’0.05’, ’value’:’uniform 14.855’}" 0/epsilon

pyFoamWriteDictionary.py system/controlDict endTime 500

• This also seems quite complicated, but if you use consistent naming, this can be re-used

for other cases.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 289

Clean up, run and plot residuals on the fly

• We did not update 0/nuTilda since we will use the kEpsilon model, which does not

use it. Delete it:

rm 0/nuTilda

• We did not update 0/nut, since it will be re-generated if it is not there (with correct

patches), so instead delete it:

rm 0/nut

• Run simpleFoam on the case and plot residuals on-the-fly:

pyFoamPlotRunner.py simpleFoam

• You will now have plots of residuals, continuity error and bounding for the initial 500

iterations. In the terminal window where you ran the plotter you will have the entire

log file printed.

• There is now a PyFoam.simpleFoam.logfile with the log, for future use.

• Type pyFoamPlotRunner.py --help for additional information.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 290

Plot a running case

• First re-run the case, sending output to a log file:

rm -rf [1-9]*

Set startFrom latestTime;, and endTime 5000;

simpleFoam > log&

• Start a plotter:

pyFoamPlotWatcher.py log

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 291

Close down the plotter

• Kill the plotter by doing CTRL-c in the plotter terminal window.

If it doesn’t work you will have to kill the process. Find the PID (Process ID) from the

terminal window where you started simpleFoam by typing:

ps -ef | grep pyFoamPlotWatcher.py

This will give something similar to:

hani 22729 25593 0 11:06 pts/235 00:00:00 /usr/bin/python \

/chalmers/sw/unsup/OpenFOAM/ThirdParty/PyFoam/bin/pyFoamPlotWatcher.py log

hani 31269 12789 0 11:15 pts/254 00:00:00 grep pyFoamPlotWatcher.py

The PID of the plotter is the first number of the line with pyFoamPlotWatcher.py log,

in this case: 22729. Kill it by typing:

kill 22729

(or kill -9 22729 if the first attempt doesn’t work)

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 292

Find other installed pyFoam scripts

• Find out which file you are actually running by typing:

which pyFoamPlotWatcher.py

This should make you aware of a directory named:

$WM_PROJECT_INST_DIR/PyFoam-0.5.7/bin

where you can find all the pyFoam scripts in the pyFoam distribution. NOTE that this

location was decided by myself, as I installed pyFoam separate from the OpenFOAM

installation!

• You can also type:

pyFoam[TAB]

To see the alternatives. Here [TAB] means: press the TAB key.

• Use the --help flag to get more information on each script.

• Read more at: http://openfoamwiki.net/index.php/Contrib_PyFoam, or in the

slides of the fourth OpenFOAM workshop:

http://www.openfoamworkshop.org/2009/4th_Workshop/0_Feature_Presentations/OFW4_2009_Gschaider_PyFoam.pdf

• pyFoam is OpenSource, so you can modify it according to your needs.

• At the same time as you dig into pyFoam, you will also learn how to do Python script

programming.

