
Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 128

High-level programming in OpenFOAM

– and a first glance at C++

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 129

Solving PDEs with OpenFOAM

• The PDEs we wish to solve involve derivatives of tensor fields with

respect to time and space

• The PDEs must be discretized in time and space before we solve

them

• We will start by having a look at algebra of tensors in OpenFOAM

at a single point

• We will then have a look at how to generate tensor fields from

tensors

• Finally we will see how to discretize PDEs and how to set boundary

conditions using high-level coding in OpenFOAM

• For further details, see the ProgrammersGuide

We will use 2.1.x, since we will use the test directory

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 130

Basic tensor classes in OpenFOAM

• Pre-defined classes for tensors of rank 0-3, but may be extended indefinitely

Rank Common name Basic name Access function

0 Scalar scalar

1 Vector vector x(), y(), z()

2 Tensor tensor xx(), xy(), xz(), ...

Example:

A tensor T =

11 12 13

21 22 23

31 32 33

 is defined line-by-line:

tensor T(11, 12, 13, 21, 22, 23, 31, 32, 33);

Info << "Txz = " << T.xz() << endl;

Outputs to the screen:

Txz = 13

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 131

Algebraic tensor operations in OpenFOAM

• Tensor operations operate on the entire tensor entity instead of a

series of operations on its components

• The OpenFOAM syntax closely mimics the syntax used in written mathematics,

using descriptive functions or symbolic operators

Examples:

Operation Comment Mathematical Description

description in OpenFOAM

Addition a + b a + b

Outer product Rank a, b ≥ 1 ab a * b

Inner product Rank a, b ≥ 1 a · b a & b

Cross product Rank a, b = 1 a × b a ˆ b

Operations exclusive to tensors of rank 2

Transpose T
T T.T()

Determinant detT det(T)

Operations exclusive to scalars

Positive (boolean) s ≥ 0 pos(s)

Hyperbolic arc sine asinh s asinh(s)

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 132

Examples of the use of some tensor classes

• In $FOAM_APP/testwe can find examples of the use of some classes.

• Tensor class examples:

run

cp -r $FOAM_APP/test .

cd test/tensor

wmake

Test-tensor >& log

• Have a look inside Test-tensor.C to see the high-level code.

• You see that tensor.H is included, which is located in

$FOAM_SRC/OpenFOAM/primitives/Tensor/tensor. This de-

fines how to compute eigenvalues. In tensor.H, Tensor.H is in-

cluded (located in $FOAM_SRC/OpenFOAM/primitives/Tensor),

which defines the access functions and includes TensorI.H, which

defines the tensor operations.

• See also vector, symmTensorField, sphericalTensorField

and many other examples.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 133

Dimensional units in OpenFOAM

• OpenFOAM checks the dimensional consistency

Declaration of a tensor with dimensions:

dimensionedTensor sigma

(

"sigma",

dimensionSet(1, -1, -2, 0, 0, 0, 0),

tensor(1e6, 0, 0, 0, 1e6, 0, 0, 0, 1e6)

);

The values of dimensionSet correspond to the powers of each SI unit:
No. Property Unit Symbol

1 Mass kilogram kg

2 Length metre m

3 Time second s

4 Temperature Kelvin K

5 Quantity moles mol

6 Current ampere A

7 Luminous intensity candela cd

sigma then has the dimension
[

kg/ms2
]

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 134

Dimensional units in OpenFOAM

• Add the following to Test-tensor.C:

Before main():

#include "dimensionedTensor.H"

Before return(0):

dimensionedTensor sigma

(

"sigma",

dimensionSet(1, -1, -2, 0, 0, 0, 0),

tensor(1e6, 0, 0, 0, 1e6, 0, 0, 0, 1e6)

);

Info<< "Sigma: " << sigma << endl;

• Compile, run again, and you will get:

Sigma: sigma [1 -1 -2 0 0 0 0] (1e+06 0 0 0 1e+06 0 0 0 1e+06)

You see that the object sigma that belongs to the dimensionedTensor class

contains both the name, the dimensions and values.

• See $FOAM_SRC/OpenFOAM/dimensionedTypes/dimensionedTensor

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 135

Dimensional units in OpenFOAM

• Try some member functions of the dimensionedTensor class:

Info<< "Sigma name: " << sigma.name() << endl;

Info<< "Sigma dimensions: " << sigma.dimensions() << endl;

Info<< "Sigma value: " << sigma.value() << endl;

• You now also get:

Sigma name: sigma

Sigma dimensions: [1 -1 -2 0 0 0 0]

Sigma value: (1e+06 0 0 0 1e+06 0 0 0 1e+06)

• Extract one of the values:

Info<< "Sigma yy value: " << sigma.value().yy() << endl;

Note here that the value() member function first converts the expression to a

tensor, which has a yy() member function. The dimensionedTensor class

does not have a yy() member function, so it is not possible to do sigma.yy().

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 136

Construction of a tensor field in OpenFOAM

• A tensor field is a list of tensors

• The use of typedef in OpenFOAM yields readable type definitions:

scalarField, vectorField, tensorField, symmTensorField, ...

• Algebraic operations can be performed between different fields,

and between a field and a single tensor, e.g. Field U, scalar 2.0:

U = 2.0 * U;

• Add the following to Test-tensor:

Before main():

#include "tensorField.H"

Before return(0):

tensorField tf1(2, tensor::one);

Info<< "tf1: " << tf1 << endl;

tf1[0] = tensor(1, 2, 3, 4, 5, 6, 7, 8, 9);

Info<< "tf1: " << tf1 << endl;

Info<< "2.0*tf1: " << 2.0*tf1 << endl;

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 137

Discretization of a tensor field in OpenFOAM

• FVM (Finite Volume Method)

• No limitations on the number of faces bounding each cell

• No restriction on the alignment of each face

• The mesh class polyMesh can be used to construct a polyhedral

mesh using the minimum information required

• The fvMesh class extends the polyMesh class to include additional

data needed for the FV discretization (see test/mesh)

• The geometricField class relates a tensor field to an fvMesh (can

also be typedef volField, surfaceField, pointField)

• A geometricField inherits all the tensor algebra of its correspond-

ing field, has dimension checking, and can be subjected to specific

discretization procedures

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 138

Examine an fvMesh

• Let us examine an fvMesh:

run

rm -rf cavity

cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity .

cd cavity

sed -i s/"20 20 1"/"2 2 1"/g constant/polyMesh/blockMeshDict

blockMesh

• Run Test-mesh (first compile it: wmake $FOAM_RUN/test/mesh)

• C() gives the center of all cells and boundary faces.

V() gives the volume of all the cells.

Cf() gives the center of all the faces.

• Try also adding in Test-mesh.C, before return(0):

Info<< mesh.C().internalField()[1][1] << endl;

Info<< mesh.boundaryMesh()[0].name() << endl;

• See $FOAM_SRC/finiteVolume/fvMesh

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 139

Examine a volScalarField

• Read a volScalarField that corresponds to the mesh. Add in Test-mesh.C,

before return(0):

volScalarField p

(

IOobject

(

"p",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

Info<< p << endl;

Info<< p.boundaryField()[0] << endl;

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 140

Equation discretization in OpenFOAM

• Converts the PDEs into a set of linear algebraic equations, Ax=b, where x and b are volFields

(geometricFields). A is an fvMatrix, which is created by a discretization of a geometricField and

inherits the algebra of its corresponding field, and it supports many of the standard algebraic

matrix operations

• The fvm (Finite Volume Matrix) and fvc (Finite Volume Calculus) classes contain static func-

tions for the differential operators, and discretize any geometricField. fvm returns an fvMatrix,

and fvc returns a geometricField (see $FOAM_SRC/finiteVolume/finiteVolume/fvc

and fvm)

Examples:

Term description Mathematical expression fvm::/fvc:: functions

Laplacian ∇ · Γ∇φ laplacian(Gamma,phi)

Time derivative ∂φ/∂t ddt(phi)

∂ρφ/∂t ddt(rho, phi)

Convection ∇ · (ψ) div(psi, scheme)

∇ · (ψφ) div(psi, phi, word)

div(psi, phi)

Source ρφ Sp(rho, phi)

SuSp(rho, phi)

φ: vol<type>Field, ρ: scalar, volScalarField, ψ: surfaceScalarField

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 141

Example

A call for solving the equation

∂ρ~U

∂t
+∇ · φ~U −∇ · µ∇~U = −∇p

has the OpenFOAM representation

solve

(

fvm::ddt(rho, U)

+ fvm::div(phi, U)

- fvm::laplacian(mu, U)

==

- fvc::grad(p)

)

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 142

Example: laplacianFoam, the source code

Solves ∂T/∂t−∇ · k∇T = 0 (see $FOAM_SOLVERS/basic/laplacianFoam)

#include "fvCFD.H" // Include the class declarations

int main(int argc, char *argv[])

{

include "setRootCase.H" // Set the correct path

include "createTime.H" // Create the time

include "createMesh.H" // Create the mesh

include "createFields.H" // Temperature field T and diffusivity DT

while (runTime.loop()) // Time loop

{

include "readSIMPLEControls.H" // Read solution controls

for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)

{

solve(fvm::ddt(T) - fvm::laplacian(DT, T)); // Solve eq.

}

include "write.H" // Write out results at specified time instances}

}

return 0; // End with ’ok’ signal

}

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 143

Example: laplacianFoam, discretization and boundary conditions

See $FOAM_TUTORIALS/basic/laplacianFoam/flange

Discretization:

dictionary fvSchemes, read from file:

ddtSchemes

{

default Euler;

}

laplacianSchemes

{

default none;

laplacian(DT,T) Gauss linear corrected;

}

Boundary conditions:

Part of class volScalarField object T, read from file:

boundaryField{

patch1{ type zeroGradient;}

patch2{ type fixedValue; value uniform 273;}}

