
Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 189

Basics of C++ in OpenFOAM

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 190

Basics of C++ in OpenFOAM

• To begin with: The aim of this part of the course is not to teach all of C++,

but to give a short introduction that is useful when trying to understand

the contents of OpenFOAM.

• After this introduction you should be able to recognize and make minor

modifications to most C++ features in OpenFOAM.

• Some books:

• C++ direkt by Jan Skansholm (ISBN 91-44-01463-5)

• C++ how to Program by Paul and Harvey Deitel

• Object Oriented Programming in C++ by Robert Lafore

• C++ from the Beginning by Jan Skansholm

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 191

C++ basics – types

• Variables can contain data of different types, for instance:

int myInteger;

for a declaration of an integer variable named myInteger, or

const int myConstantInteger = 10;

for a declaration of an constant integer variable named myConstantInteger with value

10.

• Variables can be added, substracted, multiplied and divided as long as they have the same

type, or if the types have definitions on how to convert between the types.

• In C++ it is possible to define special types (classes), and there are many types defined for

you in OpenFOAM.

• User-defined types must have the required conversions defined. Some of the types in Open-

FOAM can be used together in arithmetic expressions, but not all of them.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 192

C++ basics – Namespace

• When using pieces of C++ code developed by different programmers there is a risk that the

same name has been used for different things.

• By associating a declaration with a namespace, the declaration will only be visible if that

namespace is used. The standard declarations are used by starting with:

using namespace std;

• OpenFOAM declarations belong to namespace Foam, so in OpenFOAM we use:

using namespace Foam;

to make all declarations in namespace Foam visible.

• Explicit naming in OpenFOAM:

Foam::function();

where function() is a function defined in namespace Foam. This must be used if any other

namespace containing a declaration of another function() is also visible.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 193

C++ basics – input/output

• Input and output can be done using the standard library iostream, using:

cout << "Please type an integer!" << endl;

cin >> myInteger;

where << and >> are output and input operators, and endl is a manipulator that generates

a new line (there are many other manipulators).

• In OpenFOAM a new output stream Info is however defined, and it is recommended to use

that one instead since it takes care of write-outs for parallel simulations.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 194

C++ basics, main function

• All C++ codes must have at least one function:

int main()

{

return 0;

}

in this case, main takes no arguments, but it may (as in OpenFOAM applications).

• The main function should always return an integer, and default is 0, so for the main function

it is allowed to write only:

main()

{

}

• Code appearing after the return statement is not executed!!!

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 195

C++ basics, Example code

In file basic1.C:

#include <iostream>

using namespace std;

main()

{

int myInteger;

const int constantInteger=5;

const float constantFloat=5.1;

cout << "Please type an integer!" << endl;

cin >> myInteger;

cout << myInteger << " + " << constantInteger << " = "

<< myInteger+constantInteger << endl;

cout << myInteger << " + " << constantFloat << " = "

<< myInteger+constantFloat << endl;

}

Compile and run with:

g++ basic1.C -o basic1;

./basic1

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 196

C++ basics – operators

• +, -, * and / are operators that define how the operands should be used.

• Other standard operators are:

% (integer division modulus)

++ (add 1)

-- (substract 1)

+= (i+=2 adds 2 to i)

-= (i-=2 subtracts 2 from i)

= (i=2 multiplies i by 2)

/= (i/=2 divides i by 2)

etc. User-defined types should define its operators.

• Comparing operators: < > <= >= == != Generates bool (boolean)

• Logical operators: && || ! (or, for some compilers: and or not). Generates

bool (boolean)

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 197

C++ basics – functions

• Mathematic standard functions are available in standard libraries. They are thus not part

of C++ itself.

• Standard library cmath contains trigonometric functions, logaritmic functions and square

root. (use #include cmath; if you need them)

• Standard library cstdlib contains general functions, and some of them can be used for

arithmetics. (use #include cstdlib; if you need them)

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 198

C++ basics – if, for and while-statements

• if-statements:

if (variable1 > variable2) {...CODE...} else {...CODE...}

• for-statements:

for (init; condition; change) {...CODE...}

• while-statements:

while (...expression...) {...CODE...}

break; breaks the execution of while

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 199

C++ basics, Example code
In file basic2.C:

#include <iostream>

#include <cmath>

using namespace std;

main()

{

float myFloat;

cout << "Please type a float!" << endl;

cin >> myFloat;

cout << "sin(" << myFloat << ") = " << sin(myFloat) << endl;

if (myFloat < 5.5){cout << myFloat << " is less than 5.5" << endl;} else

{cout << myFloat << " is not less than 5.5" << endl;};

for (int i=0; i<3; i++) {cout << "For-looping: " << i << endl;}

int j=0;

while (j<3) {cout << "While-looping: " << j << endl; j++;}

}

Compile and run with:

g++ basic2.C -o basic2; ./basic2

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 200

C++ basics – arrays

• Arrays:

double f[5]; (Note: components numbered from 0!)

f[3] = 2.75; (Note: no index control!)

int a[6] = {2, 2, 2, 5, 5, 0}; (declaration and initialization)

The arrays have strong limitations, but serve as a base for array templates

• Array templates (example vector. other: list, deque):

#include <vector>

using namespace std

The type of the vector must be specified upon declaration:

vector<double> v2(3); gives {0, 0, 0}

vector<double> v3(4, 1.5); gives {1.5, 1.5, 1.5, 1.5}

vector<double> v4(v3); Constructs v4 as a copy of v3 (copy-constructor)

• Array template operations: The template classes define member functions that can be used

for those types, for instance: size(), empty(), assign(), push_back(), pop_back(),

front(), clear(), capacity() etc.

v.assign(4, 1.0); gives {1.0, 1.0, 1.0, 1.0}

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 201

C++ basics, Example code
In file basic3.C:

#include <iostream>

#include <vector>

using namespace std;

main()

{

vector<double> v2(3);

vector<double> v3(4, 1.5);

vector<double> v4(v3);

cout << "v2: (" << v2[0] << "," << v2[1] << "," << v2[2] << ")" << endl;

cout << "v3: (" << v3[0] << "," << v3[1] << "," << v3[2] << "," << v3[3] << ")" << endl;

cout << "v4: (" << v4[0] << "," << v4[1] << "," << v4[2] << "," << v4[3] << ")" << endl;

cout << "v2.size(): " << v2.size() << endl;

}

Compile and run with:

g++ basic3.C -o basic3; ./basic3

Note that the standard vector class is not implemented to be able to execute:

cout << "v2: " << v2 << endl;

Such functionality is available in OpenFOAM.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 202

C++ basics – function implementation

• Example function named average

double average (double x1, double x2)

{

int nvalues = 2;

return (x1+x2)/nvalues;

}

takes two arguments of type double, and returns type double. The variable nvalues is a

local variable, and is only visible inside the function. Note that any code after the return

statement will not be executed.

• A function doesn’t have to take arguments, and it doesn’t have to return anything (the

output type is then specified as void).

• There may be several functions with the same names, as long as there is a difference in the

arguments to the functions - the number of arguments or the types of the arguments.

• Functions must be declared before they are used.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 203

C++ basics, Example code

In file basic4.C:

#include <iostream>

using namespace std;

double average (double x1, double x2)

{

int nvalues = 2;

return (x1+x2)/nvalues;

}

main()

{

double d1=2.1;

double d2=3.7;

cout << "Average: " << average(d1,d2) << endl;

}

Compile and run with:

g++ basic4.C -o basic4; ./basic4

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 204

C++ basics – declaration and definition of functions

• The function declaration must be done before it is used, but the function definition can

be done after it is used. Example:

double average (double x1, double x2); //Declaration

main ()

{

mv = average(value1, value2)

}

double average (double x1, double x2) //Definition

{

return (x1+x2)/2;

}

The argument names may be omitted in the declaration.

• Declarations are often included from include-files:

#include "file.h"

#include <standardfile>

• A good way to program C++ is to make files in pairs, one with the declaration, and one

with the definition. This is done throughout OpenFOAM.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 205

C++ basics, Example code

In file basic5.C:

#include <iostream>

#include "basic5.H"

using namespace std;

main()

{

double d1=2.1;

double d2=3.7;

cout << "Average: " << average(d1,d2) << endl;

}

double average (double x1, double x2)

{

int nvalues = 2;

return (x1+x2)/nvalues;

}

In file basic5.H:

double average (double, double);

Compile and run with: g++ basic5.C -o basic5; ./basic5

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 206

C++ basics – function parameters / arguments

reference and default value

• If an argument variable should be changed inside a function, the type of the argument must

be a reference, i.e.

void change(double& x1)

The reference parameter x1 will now be a reference to the argument to the function in-

stead of a local variable in the function. (standard arrays are always treated as reference

parameters).

• Reference parameters can also be used to avoid copying of large fields when calling a func-

tion. To avoid changing the parameter in the function it can be declared as const, i.e.

void checkWord(const string& s)

This often applies for parameters of class-type, which can be large.

• Default values can be specified, and then the function may be called without that parameter,

i.e.

void checkWord(const string& s, int nmbr=1)

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 207

C++ basics, Example code

In file basic6.C:

#include <iostream>

using namespace std;

double average (double& x1, double& x2, int nvalues=2)

{

x1 = 7.5;

return (x1+x2)/nvalues;

}

main()

{

double d1=2.1;

double d2=3.7;

cout << "Modified average: " << average(d1,d2) << endl;

cout << "Half modified average: " << average(d1,d2,4) << endl;

cout << "d1: " << d1 << ", d2: " << d2 << endl;

}

Compile and run with: g++ basic6.C -o basic6; ./basic6

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 208

C++ basics – Pointers

• Pointers point at a memory location (while a reference is referring to another variable, as

shown before, i.e. they are different).

• A pointer is recognized by its definition (*):

int *pint;

double *pdouble;

char *pchar;

• Turbulence models are treated with the turbulence pointer in OpenFOAM.

In file:$FOAM_SOLVERS/incompressible/simpleFoam/createFields.H:

autoPtr<incompressible::RASModel> turbulence

(

incompressible::RASModel::New(U, phi, laminarTransport)

);

In file $FOAM_SOLVERS/incompressible/simpleFoam/simpleFoam.C:

turbulence->correct();

• We will not discuss pointers any further at the moment.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 209

C++ basics – Types

• Types define what values a variable may obtain, and what operations may be made on the

variable.

• Pre-defined C++ types are:

signed char unsigned int

short int unsigned long int

int float

unsigned char double

unsigned short int long double

• User defined types can be defined in classes. OpenFOAM provides many types/classes that

are useful for solving partial differential equations.

• OpenFOAM classes are used by including the class declarations in the header of the code,

and linking to the corresponding compiled OpenFOAM library at compilation.

• The path to included files that are in another path than the current directory must be

specified by -I

• The path to libraries that are linked to is specified with -L

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 210

C++ basics, Example code

In file basic7.C:

#include <iostream> //Just for cout

using namespace std; //Just for cout

#include "tensor.H" //From OpenFOAM

#include "symmTensor.H" //From OpenFOAM

using namespace Foam; //From OpenFOAM

int main()

{ tensor t1(1, 2, 3, 4, 5, 6, 7, 8, 9); //From OpenFOAM

cout << "t1[0]: " << t1[0] << endl;

symmTensor st1(1, 2, 3, 4, 5, 6); //From OpenFOAM

cout << "st1[5]: " << st1[5] << endl;

return 0;}

Compile and run with (some trial-and-error, looking at output from wmake for test/tensor):

g++ basic7.C -DWM_DP -I$FOAM_SRC/OpenFOAM/lnInclude \

-L$WM_PROJECT_DIR/lib/$WM_OPTIONS/libOpenFOAM.so -o basic7; ./basic7

Here, -DWM_DP is a declaration for the compiler to use double precision.

We include header files (declarations) from $FOAM_SRC/OpenFOAM/lnInclude

We link to library (definitions) $WM_PROJECT_DIR/lib/$WM_OPTIONS/libOpenFOAM.so

