
Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 18

A first look at applications

and the icoFoam/cavity work procedure

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 19

Applications: Solvers and Utilities

• OpenFOAM is first and foremost a C++ library, used primarily

to create executables, known as applications. The applications

fall into two categories: solvers, that are each designed to solve

a specific continuum mechanics problem; and utilities, that are de-

signed to perform tasks that involve data manipulation.

• Special applications for pre- and post-processing are included in

OpenFOAM. Converters to/from other pre- and post-processors are

available.

• OpenFOAM is distributed with a large number of applications, but

soon any advanced user will start developing new applications for

his/ her special needs. The basic way to do this is to find and copy

an application that almost does what is needed, and then to modify

it by copy/paste from other applications that has some features

that are needed.

We will now have a look at how to use this in practice. NOTE that the output of the commands

in the following slides might not be exactly the same in all versions of OpenFOAM, but the

general procedures are the same.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 20

Questions

• What are the sub-groups of OpenFOAM applications

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 21

The icoFoam/cavity tutorial

• Basic procedure when running a tutorial, in this case icoFoam/cavity:

cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity $FOAM_RUN

run

cd cavity

You have copied the cavity tutorial and moved to $FOAM_RUN/cavity

• The mesh is defined by a dictionary that is read by the blockMesh utility

blockMesh

You have now generated the grid in OpenFOAM format. Check the output from blockMesh!

• Check the mesh by

checkMesh

You see the grid size, the geometrical size and some grid checks (e.g. cell volumes).

• This is a case for the icoFoam solver, so run

icoFoam >& log&

You now ran the simulation in background using the settings in the case, and forwarded

the errors and standard output to the $FOAM_RUN/cavity/log file, where the Courant

numbers and the residuals are shown.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 22

Questions

• What does the alias run do?

• What sub-group of applications are blockMesh, checkMesh, and icoFoam?

• What do >& and the final & do in icoFoam >& log&

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 23

Application parameters

Most OpenFOAM applications take parameters. Use the -help flag to get info:

• blockMesh -help

yields (version dependent):

Usage: blockMesh [-dict dictionary] [-case dir]

[-blockTopology] [-region name] [-help] [-doc] [-srcDoc]

The [-case dir] is the most common one, and with that you can specify the path to

the case directory if you do not want to move to that case directory.

• checkMesh -help

yields (version dependent):

Usage: checkMesh [-noTopology] [-allTopology] [-latestTime]

[-time ranges] [-parallel] [-constant] [-noZero] [-allGeometry]

[-case dir] [-region name] [-help] [-doc] [-srcDoc]

• icoFoam -help

yields (version dependent):

Usage: icoFoam [-parallel] [-case dir] [-help] [-doc] [-srcDoc]

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 24

Questions

• Is the output of the -help commands updated in the slides? What is missing?

Additional:

Try to figure out how to use the other flags.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 25

Post-process the icoFoam/cavity tutorial

• View the results using paraFoam:

paraFoam

Click on ’Last Frame’:

Click Apply.

Color by Pressure using Display/Color by

Move, rotate and scale the visualization using the mouse

• We will learn how to use paraFoam more further on.

• Exit paraFoam: File/Exit

• The results may also be viewed using third-party products:

foamToEnsight etc., type: foamTo[TAB] to see alternatives.

There is also a direct reader for Ensight - see the UserGuide.

• For post-processing in Fluent, run:

foamMeshToFluent, and foamDataToFluent (controlDict is

used to specify the time step, and a foamDataToFluentDict dic-

tionary is required - see the UserGuide).

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 26

Questions

• Where is the paraFoam executable located?

• What sub-group of applications do the foamTo[TAB] and foam*ToFluent commands be-

long to?

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 27

icoFoam/cavity tutorial - What did we do?

• We will have a look at what we did when running the cavity

tutorial by looking at the case files.

• First of all it should be noted that icoFoam is a Transient solver

for incompressible, laminar flow of Newtonian fluids

• The case directory originally contains the following sub-directories:

0, constant, and system. After our run it also contains the out-

put 0.1, 0.2, 0.3, 0.4, 0.5, and log

• The 0* directories contain the values of all the variables at those

time steps. The 0 directory is thus the initial condition.

• The constant directory contains the mesh and a transportProperties

dictionary for the kinematic viscosity.

• The system directory contains settings for the run, discretization

schemes, and solution procedures.

• The icoFoam solver reads the files in the case directory and runs

the case according to those settings.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 28

Questions

• See later

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 29

icoFoam/cavity tutorial - The constant directory

• The constant/transportProperties file is a dictionary for the dimen-

sioned scalar nu.

• The polyMesh directory originally contains the blockMeshDict dictio-

nary for the blockMesh grid generator, and now also the mesh in Open-

FOAM format.

• We will now have a quick look at the blockMeshDict dictionary in order

to understand what grid we have used.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 30

icoFoam/cavity tutorial - blockMeshDict dictionary

• The blockMeshDict dictionary first of all contains a number of vertices:

convertToMeters 0.1;

vertices

(

(0 0 0)

(1 0 0)

(1 1 0)

(0 1 0)

(0 0 0.1)

(1 0 0.1)

(1 1 0.1)

(0 1 0.1)

);

• There are eight vertices defining a 3D block. OpenFOAM always uses 3D

grids, even if the simulation is 2D.

• convertToMeters 0.1; multiplies the coordinates by 0.1.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 31

icoFoam/cavity tutorial - blockMeshDict dictionary

• The blockMeshDict dictionary secondly defines a block and the mesh from

the vertices:

blocks

(

hex (0 1 2 3 4 5 6 7) (20 20 1) simpleGrading (1 1 1)

);

• hex means that it is a structured hexahedral block.

• (0 1 2 3 4 5 6 7) is the vertices used to define the block. The order

of these is important - they should form a right-hand system! See the

UserGuide.

• (20 20 1) is the number of grid cells in each direction.

• simpleGrading (1 1 1) is the expansion ratio, in this case equidis-

tant. The numbers are the ratios between the end cells along three edges.

See the UserGuide.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 32

icoFoam/cavity tutorial - blockMeshDict dictionary

• The blockMeshDict dictionary finally defines three patches:

patches //boundaries, in 2.2.x, and slightly different syntax

(

wall movingWall

(

(3 7 6 2)

)

wall fixedWalls

(

(0 4 7 3)

(2 6 5 1)

(1 5 4 0)

)

empty frontAndBack

(

(0 3 2 1)

(4 5 6 7)

)

);

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 33

icoFoam/cavity tutorial - blockMeshDict dictionary

• Each patch defines a type, a name, and a list of boundary faces

• Let’s have a look at the fixedWalls patch:

wall fixedWalls

(

(0 4 7 3)

(2 6 5 1)

(1 5 4 0)

)

• wall is the type of the boundary.

• fixedWalls is the name of the patch.

• The patch is defined by three sides of the block according to the list, which

refers to the vertex numbers. The order of the vertex numbers is such that

they are marched clock-wise when looking from inside the block. This is

important, and unfortunately checkMesh will not find such problems.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 34

icoFoam/cavity tutorial - blockMeshDict dictionary

• There are two empty sub-dictionaries in the icoFoam/cavity tutorial:

edges();

mergePatchPairs();

• edges(); is used to define shapes of the edges if they are not straight

- polySpline, polyLine, line, simpleSpline, arc. We will use arc

later on.

• mergePatchPairs(); is used to stitch two blocks that are not connected,

but share the same physical surface at a patch of each block. This means

that both blocks have a patch which is defined with four vertices in the

same location as the corresponding patch in the neighbouring block, but

the vertices are not the same in both blocks. It should be possible to stitch

non-conformal meshes so the number of nodes and the distribution of the

nodes do not have to be the same on both sides. This can also be done for

two separate meshes, using the stitchMesh utility.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 35

icoFoam/cavity tutorial - blockMeshDict dictionary

• To sum up, the blockMeshDict dictionary generates a block with:

x/y/z dimensions 0.1/0.1/0.01

20×20×1 cells

wall fixedWalls patch at three sides

wall movingWall patch at one side

empty frontAndBack patch at two sides

• The type empty tells OpenFOAM that it is a 2D case, i.e. the equations

will not be solved for in the direction of the empty patches.

• Read more about blockMesh yourself in the UserGuide.

• You can also convert mesh files from third-party products - see the User-

Guide. If you use ICEM, a good procedure is to write a Fluent mesh file

(*.msh) and convert it with fluentMeshToFoam or fluent3DMeshToFoam.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 36

icoFoam/cavity tutorial - the mesh

• blockMesh uses the blockMeshDict to generate some files in the

constant/polyMesh directory:

boundary faces neighbour owner points

• boundary shows the definitions of the patches, for instance:

movingWall

{

type wall;

nFaces 20;

startFace 760;

}

• The other files defines the points, faces, and the relations between the

cells.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 37

icoFoam/cavity tutorial - The system directory

• The system directory consists of three set-up files:

controlDict fvSchemes fvSolution

• controlDict contains general instructions on how to run the case.

• fvSchemes contains instructions on which discretization schemes that

should be used for different terms in the equations.

• fvSolution contains instructions on how to solve each discretized lin-

ear equation system. It also contains instructions for the PISO pressure-

velocity coupling.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 38

icoFoam/cavity tutorial - The controlDict dictionary

• The controlDict dictionary consists of the following lines:

application icoFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 0.5;

deltaT 0.005;

writeControl timeStep;

writeInterval 20;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression uncompressed; //on/off in 2.2.x

timeFormat general;

timePrecision 6;

runTimeModifiable yes; //true/false in 2.2.x

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 39

icoFoam/cavity tutorial - The controlDict dictionary

• application icoFoam;

Was previously used to tell the GUI FoamX in OpenFOAM-1.4.1 (and ear-

lier) to use the set-up specifications of the icoFoam solver. Is used for

the Allrun scripts in the tutorials directory, but it will not influence the

solution as long as you manually start the case with the correct solver.

• The following lines tells icoFoam to start at startTime=0, and stop at

endTime=0.5, with a time step deltaT=0.005:

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 0.5;

deltaT 0.005;

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 40

icoFoam/cavity tutorial - The controlDict dictionary

• The following lines tells icoFoam to write out results in separate di-

rectories (purgeWrite 0;) every 20 timeStep, and that they should

be written in uncompressed ascii format with writePrecision 6.

timeFormat and timePrecision are instructions for the names of the

time directories.

writeControl timeStep;

writeInterval 20;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression uncompressed; //on/off in 2.2.x

timeFormat general;

timePrecision 6;

I recommend the use of compressed ascii format, which does not fill up

your hard drive, and you can still open the files with vim.

• runTimeModifiable yes; allows you to make modifications to the case

while it is running. (true/false in 2.2.x)

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 41

Specifying a maximum Courant number and varying time steps

• Some solvers, like the interFoam solver allows a varying time step, based

on a maximum Courant number. Some extra entries should then be added

to the controlDict dictionary:

adjustTimeStep yes; //on/off in 2.2.x

maxCo 0.5;

maxDeltaT 1;

In 2.2.x also:

maxAlphaCo 0.2;

• The solver is told to adjust the time step so that the output still occurs at

specific times using:

writeControl adjustableRunTime;

writeInterval 0.05;

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 42

icoFoam/cavity tutorial - A dictionary hint

• If you don’t know which entries are available for a specific key word in a

dictionary, just use a dummy and the solver will list the alternatives, for

instance:

stopAt dummy;

When running icoFoam you will get the message:

dummy is not in enumeration

4

(

endTime

writeNow

noWriteNow

nextWrite

)

and you will know the alternatives.

This does not work for all entries for some reason.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 43

icoFoam/cavity tutorial - More dictionary hints

• You may also use C++ commenting in the dictionaries:

// This is my comment

/* My comments, line 1

My comments, line 2 */

• Dictionary expansion mechanism:

- Include another file:

#include "boundaryConditions"

- Define parameters:

velocity1 1;

- Use parameters:

$velocity1

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 44

icoFoam/cavity tutorial - The fvSchemes dictionary

• The fvSchemes dictionary defines the discretization schemes,

in particular the time marching scheme and the convections schemes:

ddtSchemes

{

default Euler;

}

divSchemes

{

default none;

div(phi,U) Gauss linear;

}

• Here we use the Euler implicit temporal discretization, and the linear

(central-difference) scheme for convection.

• default none; means that schemes must be explicitly specified.

• Find the available convection schemes using a ’dummy’ dictionary entry.

There are 58 alternatives, and the number of alternatives are increasing!

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 45

icoFoam/cavity tutorial - The fvSolution dictionary

• The fvSolution dictionary defines the solution procedure.

• The solutions of the p linear equation systems is defined by:

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-06;

relTol 0;

}

• The p linear equation system in solved using the Conjugate Gradient

solver PCG, with the preconditioner DIC.

• The solution is considered converged when the residual has reached the

tolerance, or if it has been reduced by relTol at each time step.

• relTol is here set to zero since we use the PISO algorithm. The PISO al-

gorithm only solves each equation once per time step, and we should thus

solve the equations to tolerance 1e-06 at each time step. relTol 0;

disables relTol.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 46

icoFoam/cavity tutorial - The fvSolution dictionary

• The solutions of the U linear equation systems is defined by:

U

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-05;

relTol 0;

}

• The U linear equation system in solved using the Conjugate Gradient

solver PBiCG, with the preconditioner DILU.

• The solution is considered converged when the residual has reached the

tolerance 1e-05 for each time step.

• relTol is again set to zero since we use the PISO algorithm. relTol 0;

disables relTol.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 47

icoFoam/cavity tutorial - The fvSolution dictionary

• The settings for the PISO algorithm are specified in the PISO entry:

PISO

{

nCorrectors 2;

nNonOrthogonalCorrectors 0;

pRefCell 0;

pRefValue 0;

}

• nCorrectors is the number of PISO correctors. You can see this in the

log file since the p equation is solved twice, and the pressure-velocity cou-

pling is thus done twice.

• nNonOrthogonalCorrectors adds corrections for non-orthogonal grids,

which may sometimes influence the solution.

• The pressure is set to pRefValue 0 in cell number pRefCell 0. This

is over-ridden if a constant pressure boundary condition is used for the

pressure.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 48

icoFoam/cavity tutorial - The 0 directory

• The 0 directory contains the dimensions, and the initial and boundary

conditions for all primary variables, in this case p and U. U-example:

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{ movingWall

{

type fixedValue;

value uniform (1 0 0);

}

fixedWalls

{

type fixedValue;

value uniform (0 0 0);

}

frontAndBack

{

type empty;

}}

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 49

icoFoam/cavity tutorial - The 0 directory

• dimensions [0 1 -1 0 0 0 0]; states that the dimension of U is m/s.

We will have a further look at this later on.

• internalField uniform (0 0 0); sets U to zero internally.

• The boundary patches movingWall and fixedWalls are given the

type fixedValue; value uniform (1 0 0); and (0 0 0) respec-

tively, i.e. Ux = 1m/s, and U = 0m/s respectively.

• The frontAndBack patch is given type empty;, indicating that no so-

lution is required in that direction since the case is 2D.

• You should now be able to understand 0/p also.

• The resulting 0.* directories are similar but the internalField is now

a nonuniform List<vector> containing the results. Some boundary

condition types also give nonuniform List. There is also a phi file, con-

taining the resulting face fluxes that are needed to give a perfect restart.

There is also some time information in 0.*/uniform/time. The 0.*/uniform

directory can be used for uniform information in a parallel simulation.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 50

Questions, related to icoFoam/cavity

• Which directories and files are needed to run the icoFoam solver?

• What does the blockMesh utility do?

• Which files are generated by the blockMesh utility, and what do they contain?

• Which directories and files are generated by the icoFoam solver?

• What is the dimensioned scalar nu? Hint: see dimensions.

• What is meant by vertices, blocks, patches and edges in the blockMeshDict?

• What kind of cells are generated by the blockMesh utility?

• What does simpleGrading mean and what other alternatives are listed in the UserGuide?

• What do the integer lists mean when defining patches in blockMeshDict? In what order

should they be listed?

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 51

Questions, related to icoFoam/cavity

• What is an empty patch, and how does it affect the solver?

• Why isn’t there a file named cells in constant/polyMesh?

• What is the effect of setting purgeWrite 2; in system/controlDict?

• What is the difference between tolerance and relTol in system/fvSolution?

• What variables are solved for in the icoFoam solver, looking at the available files?

• How are initial and boundary conditions set in OpenFOAM? Which files must be visited?

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 52

icoFoam/cavity tutorial - The log file

• If you followed the earlier instructions you should now have a log file. That file contains

mainly the Courant numbers and residuals at all time steps:

Time = 0.09

Courant Number mean: 0.116099 max: 0.851428

DILUPBiCG: Solving for Ux, Initial residual = 0.000443324,

Final residual = 8.45728e-06, No Iterations 2

DILUPBiCG: Solving for Uy, Initial residual = 0.000964881,

Final residual = 4.30053e-06, No Iterations 3

DICPCG: Solving for p, Initial residual = 0.000987921,

Final residual = 5.57037e-07, No Iterations 26

time step continuity errors : sum local = 4.60522e-09,

global = -4.21779e-19, cumulative = 2.97797e-18

DICPCG: Solving for p, Initial residual = 0.000757589,

Final residual = 3.40873e-07, No Iterations 26

time step continuity errors : sum local = 2.81602e-09,

global = -2.29294e-19, cumulative = 2.74868e-18

ExecutionTime = 0.08 s ClockTime = 0 s

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 53

icoFoam/cavity tutorial - The log file

• Looking at the Ux residuals

DILUPBiCG: Solving for Ux, Initial residual = 0.000443324,

Final residual = 8.45728e-06, No Iterations 2

• We see that we used the PBiCG solver with DILU preconditioning.

• The Initial residual is calculated before the linear equation system is solved, and

the Final residual is calculated afterwards.

• We see that the Final residual is less than our tolerance in fvSolution

(tolerance 1e-05;).

• The PBiCG solver used 2 iterations to reach convergence.

• We could also see in the log file that the pressure residuals and continuity errors were

reported twice each time step. That is because we specified nCorrectors 2; for the

PISO entry in fvSolution.

• The ExecutionTime is the elapsed CPU time, and the ClockTime is the elapsed wall

clock time for the latest time step (approximate!!!).

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 54

Questions

• How can you change the word DILUPBiCG in the output (log-file) when running icoFoam?

• How does relTol influence the output, by default in the cavity tutorial?

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 55

icoFoam/cavity tutorial - The log file

• It is of interest to have a graphical representation of the residual development.

• The foamLog utility is basically a script using grep, awk and sed to extract values from

a log file. See $WM_PROJECT_DIR/bin/foamLog for the source code.

• foamLog uses a database (foamLog.db) to know what to extract. The foamLog.db

database can be modified if you want to extract any other values that foamLog doesn’t

extract by default. (find $WM_PROJECT_DIR -iname "*foamLog.db*", or see the

top of the output of foamLog, and make your own copy to modify in

$HOME/.OpenFOAM/2.2.x/foamLog.db, which will be used automatically. Instruc-

tions are available in the foamLog.db file.)

• foamLog is executed on the cavity case with log-file log by:

foamLog log

• A directory logs has now been generated, with extracted values in ascii format in two

columns. The first column is the Time, and the second column is the value at that time.

• Type foamLog -h for more information.

• The graphical representation is then given by Matlab, xmgrace -log y Ux_0 p_0 or

gnuplot: set logscale y, plot "Ux_0","Uy_0","p_0".

• You can also use the user-contributed pyFoam to plot residuals on-the-fly (later).

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 56

icoFoam/cavity tutorial - The log file

An example of how to plot data from the log file directly with Gnuplot:

Make a script, logPlot.gplt:

set logscale y

set title "Residuals"

set ylabel ’Residual’

set xlabel ’Iteration’

plot "< cat log | grep ’Solving for Ux’ | cut -d’ ’ -f9" title ’Ux’ with

lines,\

"< cat log | grep ’Solving for Uy’ | cut -d’ ’ -f9" title ’Uy’ with lines,\

"< cat log | grep ’Solving for Uz’ | cut -d’ ’ -f9" title ’Uz’ with lines,\

"< cat log | grep ’Solving for p’ | cut -d’ ’ -f9" title ’p’ with lines

pause 1

reread

Plot with:

gnuplot logPlot.gplt

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 57

Questions

• How can you use foamLog to plot the ClockTime?

