
CFD with OpenSource software 2012
Project 3

Block coupled calculations in
OpenFOAM

0 200 400 600 800 1000
Iteration

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
si

d
u
a
ls

(- simpleFoam, -- pUCoupledFoam)

Turbulent energy
Velocity (x)
Pressure

Klas Jareteg

October 19, 2012

Block coupled calculations in OpenFOAM
Project within course: CFD with OpenSource software
Chalmers University of Techonology, 2012

Author:
Klas Jareteg
Department of Applied Physics
Division of Nuclear Engineering
Chalmers University of Technology
Email: klas.jareteg@chalmers.se
WWW: http://klas.nephy.chalmers.se

Abstract

This report describes the basic formulation and the OpenFOAM implementation of
a block coupled solver strategy for finite volume calculations. In order to understand
the implemented solvers, the existing block matrix class in OpenFOAM 1.6-ext is
explained and exemplified, including the preserved sparsity structure, block matrix
assembling and block matrix solvers.

The possibilities of the block coupled solution strategy is exemplified with the
implementation of a pressure-velocity incompressible coupled steady-state solver.
The newly implemented solver corresponds to the existing segregated solver sim-

pleFoam. The implementation of the coupled solver requires not only a theoretical
model but also a deeper insight in to the discretization procedure of OpenFOAM,
which is described briefly and is of interest not only for the purpose of the block
coupled solver, but also for general OpenFOAM knowledge.

The newly implemented solver is compared to the existing solver simpleFoam.
The two dimensional version of the solver shows a major convergence rate increase
both considering convergence per iteration and convergence per elapsed CPU time.
The three dimensional solver is less beneficial, which is however partly an effect of
the segregated turbulence model.

Cover: Pressure and velocity solution of the pitzDaily case with a comparative graph
for the convergence of the coupled solver as compared to simpleFoam.

1

http://klas.nephy.chalmers.se

Project report - CFD with open source - 2012

Contents

1 Introduction and overview 3

2 Block coupled systems 4
2.1 Formulation . 4
2.2 Non-linear dependencies . 5

3 5
3.1 Advantages and drawbacks . 5

4 OpenFOAM matrix structure, assembling and solving 7
4.1 polyMesh . 7
4.2 lduMatrix format . 7
4.3 fvMatrix . 8
4.4 fvm and fvc discretization . 8
4.5 Discretization of boundary conditions . 9

5 OpenFOAM block coupling implementation 11
5.1 Classes related to block coupling . 11
5.2 Example solver blockCoupledScalarTransport 13
5.3 Alternative approach for equations of equal structure 16

6 Implementing pressure and velocity coupling 17
6.1 Coupled model . 17
6.2 OpenFOAM implementation . 18

7 Results of pUCoupledFoam 28
7.1 2D coupled solver for pitzDaily . 28
7.2 2D coupled solver for pitzDaily no turbulence 30
7.3 Sensitivity analysis of nDirections and maxIter of block GMRES 30
7.4 Using 3D solver for 2D problems . 31
7.5 Internal flow 3D case . 32
7.6 motorBike 3D case . 34

8 Conclusions and outlook 36

A Other sources on OpenFOAM block coupling 38

B Tutorial case for blockCoupledScalarTransportFoam 39

C Complete code for pUCoupledFoam 40

D Case specifications for benchmarks 50

Klas Jareteg 2

Project report - CFD with open source - 2012

1 Introduction and overview

Many type of fluid mechanics problems and other partial differential equation (PDE)
problems requires the solution of multiple coupled equations. Examples includes the
Navier-Stokes equations, multi-group neutron kinetics and many more. Such problems
have traditionally been solved in a segregated manner, resolving the couplings iteratively.

Alternative to the segregated solvers more integrated solvers, with implicit coupling
between different variables, possibly allows faster convergence and faster algorithms.
The coupled solver can potentially avoid resolving the coupled equations in an iterative
manner. The general formulation block coupled system is given in section 2.

In order to utilize a such approach, solver routines and structures for a block coupled
matrix format is necessary. One such coupled framework is the block coupled solver
available with OpenFOAM 1.6-ext (BlockLduMatrix). This report is aimed at describing
the idea and theory behind the block coupled solver available in OpenFOAM 1.6-ext,
complemented by an example of an implementation of a pressure-velocity coupled solver.
The basic structure of the block coupling in OpenFOAM is given in section 5.

In order not to duplicate the code existing in OpenFOAM, the use of the block
coupled solver strategy should be complemented by the use of the existing OpenFOAM
operators (including discretizations and mathematical operators) which can still be used
for the major parts of the matrix assembling and discretization. Not least, the existing
boundary conditions are general enough to serve for the implementation of the block
coupled approach. Some notes on the OpenFOAM matrix structure, discretization,
assembling and solving used in the implementation is described in section 4.

The previous mentioned parts are the foundation for the implementation of the
pressure-velocity coupled solver which is the major focus in this work and described
in section 6. A steady-state incompressible solver, utilizing existing turbulence modeling
structure, has been implemented using the block coupling approach. The solver is bench-
marked against the existing simpleFoam solver. The comparisons and benchmarking are
described in section 7.

Final conclusions and outlook are given in section 8 where ideas of parallelization
and further developments are discussed.

Throughout the report discussions of the OpenFOAM library is exemplified with
code snippets. This is meant to encourage the interested reader to continue study the
code, to get a deeper understanding of the discussed structures and implementations.
Studying the code is the way to understand and be able to use the code, and also the
way to get new ideas of what could be used for the work at hands.1

1In general the code snippets are taken from a late (2012) Git version of OpenFOAM-1.6-ext, and
thus the included line numbers are primarily valid for this version of the code

Klas Jareteg 3

Project report - CFD with open source - 2012

2 Block coupled systems

To understand the basic idea of a block coupled solver, consider the analogy with even
more basic CFD procedures. In general, fluid dynamics systems are described by PDEs
with one ore more unknown fields (e.g. pressure) to be determined in some vector space
(for pressure: four coordinates, including position (x,y,z) and time (t)). In order to
determine the unknown field in a computational manner the vector space is discretized.
For the positional coordinates this corresponds to a discretized mesh with cells. The
differential equation is then discretized on this mesh, giving a set of coupled linear
or non-linear equations. In the case of linear or linearized systems, such systems are
usually not solved equation by equation but in a matrix system. This often allows a
faster convergence through the use of more sophisticated mathematical techniques (as
compared to direct solution using e.g. Jacobi iteration).

In the same manner, facing a problem described by multiple field equations we can
instead of solving a matrix for one variable at a time solve multiple matrix systems
describing the solution of all variables through all equations at once. Solving the equa-
tions one at a time (segregated approach) forces explicit coupling between the variables,
and thus some iteration technique must be applied to resolve the coupling between the
fields. If instead assembling a single matrix with all fields and all equations, implicit
dependencies between the coupled equations are allowed.

2.1 Formulation

In mathematical notation let us consider a problem with two coupled unknown scalar
fields. In the segregated solver we would solve two problems:

A(y)x = a (1)

B(x)y = b (2)

where A and B corresponds to matrices with sources a and b for unknowns x and y.
Since the system is coupled A will depend on the present values of y even though y is
not solved for, and vice versa for B. Solving the system both equations at once would
correspond to: [

A(y) 0
0 B(x)

] [
x
y

]
=

[
a
b

]
(3)

This would however not help, as there is still no coupling between the equations in the
formed matrix system. What is interesting in the coupled approach is the off-diagonal
matrix positions (0 in eq. (3)). By removing the explicit linear dependencies of y from
A and placing it in the off-diagonal position, an implicit dependence on y is achieved.
Such that: [

A′ Ay

Bx B′

] [
x
y

]
=

[
a
b

]
(4)

where A′ is the A matrix with the explicit linear y-dependence removed. Instead the
matrix Ay is used to implicitly resolve the dependence on y.

Klas Jareteg 4

Project report - CFD with open source - 2012

Another way to formulate this system is:

Cz = c (5)

where instead each element of the matrix C and the vectors c and z consist of a tensor
of four elements and vectors of two elements respectively, i.e. in tensor notation:

C = Ci,j =

[
ca,ai,j ca,bi,j

cb,ai,j cb,bi,j

]
i,j

(6)

c = ci =
[
ai bi

]>
(7)

z = zi =
[
xi yi

]>
(8)

In this way a system equivalent to eq. (4) can be formed. The structure of eq. (5) is
what will be referred to as a block coupled system, as each element in the vectors and
matrices consists of a block of elements.

2.2 Non-linear dependencies

At this point it must be noticed that a coupled approach formulated through the use
of a block structure, although resolving linear couplings between the equations, still not
resolves the non-linear couplings. One important example of this includes the momentum
equation in the Navier-Stokes equations:

∇ · (UU)−∇(ν∇U) = −1

ρ
∇p (9)

If one considers this as an equation for velocity it is seen that there is a linear dependence
(although through the gradient operator) on the pressure field. The linear dependence
on the pressure can, and will in

3

6.1, be taken care of by the block coupling. However, there is also a non-linearity in
the equation through the convective term which can not be resolved by the linear block
coupling approach. In order to get a fully implicit method for this kind of linearity a
non-linear solution strategy must be applied, which is not usually done in CFD.

3.1 Advantages and drawbacks

The primer benefit sought with a coupled equation system as exemplified above is to
achieve faster convergence of the problem. As the newly formed coupled matrix will be
larger the system will take longer time to solve, but if less (or no) iterations are needed
the larger system can still be beneficial.

Klas Jareteg 5

Project report - CFD with open source - 2012

One major advantage of the block coupled approach as shown in eq. (5) is that
the matrix sparsity structure will not change. That is the matrix will not have more
elements, although each element consists of a vector (or more general a tensor).

The new formulation might change the matrix conditioning and the convergence
properties other than the convergence rate. It is thus not given that the approach will
work for all kinds of problems and space discretizations.

Klas Jareteg 6

Project report - CFD with open source - 2012

4 OpenFOAM matrix structure, assembling and solving

As already stated in the introduction it is a primary aim of this work to use as much of the
existing OpenFOAM structure as possible. Thus, some notes on the existing matrix and
discretization framework in OpenFOAM is given to help the reader with the background
necessary for the implementation of the pressure-velocity coupled solver, described in
section 6. Some of what is described is also described in the programmer’s guide[1],
which is the recommended starting point for learning the internals of OpenFOAM. The
below description of OpenFOAM code is by no means meant to be complete, rather aimed
at pointing out some needed parts of the OpenFOAM structure, as well as directions to
basic classes studied for this work. The experienced foamer can likely skip this section.

4.1 polyMesh

The OpenFOAMmesh class polyMesh contains basic data of the mesh. The finite volume
implementation in OpenFOAM is strictly face based, meaning that the computational
cell consists of two cells (owner and neighbour), sharing a face, as is shown in figure 1.
This is of importance to understand the discretization schemes, which will accordingly
work on face shared by a cell pair.

OWNER
NEIGHBOUR

Sf

face fcell i cell j

Figure 1: The computational cell of OpenFOAM, two cells sharing one face.

The polyMesh is inherited by the fvMesh which contains extra parts needed for the
finite volume schemes including functions as:

V() Volumes of the cells. Numbered according to cell numbering.

Sf() Surface normals with magnitude equal to the area. Numbered according to face
numbers.

Further general information is found in the programmers guide [1, section 2.3].

4.2 lduMatrix format

The lduMatrix is a basic square sparse matrix format used in OpenFOAM[2]. The
matrix is stored in three arrays: the diagonal, the upper and the lower part. Each is
stored as a scalarField as can be seen lduMatrix.H

85 //− Co e f f i c i e n t s (not i n c l ud ing i n t e r f a c e s)
86 scalarField ∗lowerPtr_ , ∗diagPtr_ , ∗upperPtr_ ;

Klas Jareteg 7

Project report - CFD with open source - 2012

Listing 1: lduMatrix.H

where the pointers for the scalarFields are setup. Following the structure of the mesh,
the diagonal elements are numbered according to the cell numbers, and the off-diagonal
elements are numbered according to faces. For each off-diagonal element, corresponding
to the discretization of a face, the owners, neighbours and face normals can be found by
the call:

1 const surfaceVectorField& Sf = p . mesh () . Sf () ;
2 const unallocLabelList& owner = mesh . owner () ;
3 const unallocLabelList& neighbour = mesh . neighbour () ;

Listing 2: Surface normal, owner and neighbour for each face

Considering the sparse matrix:
A = Ai,j (10)

the upper part of the sparse matrix (i > j) corresponds to the contribution from cell j
on cell i, and vice versa for the lower part. The element Ai,j for i > j is stored in the list
of upper elements, and its index is the same as the face number the face shared between
i and j. Further examples of the lduMatrix format can be found in [3].

4.3 fvMatrix

The fvMatrix inherits the lduMatrix and is the OpenFOAM matrix specialization for
the finite volume method. The fvMatrix contains not only the diagonal, upper and
lower elements as inherited from the lduMatrix but also a source (a right hand side of
the equation) and a reference to the field to be solved for. Further there are a set of
operators which are used in the solver implementations. Examples are seen e.g. in the
velocity equation of the incompressible, turbulent, steady-state solver simpleFoam:

3 volScalarField AU = UEqn () . A () ;
4 U = UEqn () . H ()/ AU ;

Listing 3: Part of pEqn.H in simpleFoam

where the A-operator corresponds to the diagonal coefficient of the lduMatrix divided by
the volume for the corresponding cell. Further the fvMatrix class adds helper functions
for taking care of the contributions from the boundary conditions. This will be discussed
and used in section 6.

4.4 fvm and fvc discretization

In general a discretization scheme in the finite volume methodology can be described as
implicit and explicit. In OpenFOAM separation of the two is implemented as two differ-
ent namespaces; fvm for an implicit discretization and fvc for an explicit discretization.
Not all operators are found in both namespaces, e.g. there is no implicit discretization
scheme for the divergence operator implemented in OpenFOAM. In general the use of

Klas Jareteg 8

Project report - CFD with open source - 2012

such operator would lead to an undesirable matrix, ill-conditioned[4]. However, for the
implementation of a block coupled pressure-velocity solver such operator will be needed.

The discretizations are used in the definition of the equations, as for example for the
implementation of the pressure equation in simpleFoam:

12 fvScalarMatrix pEqn

13 (
14 fvm : : laplacian (1 . 0/ AU , p) == fvc : : div (phi)
15) ;

Listing 4: Part of pEqn.H in simpleFoam

where the LHS is an implicit discretization of a Laplacian operator of the pressure and the
RHS is an explicit discretization of the divergence of the flux. The explicit discretiza-
tions will in general give fields corresponding to the cell structure (volScalarField-
/volVectorField) or face structure (surfaceScalarField/surfaceVectorField). This
is added to the implicit part of the matrix via the mathematical operators (+,-,*,/) as
defined in the matrix classes.

A complete list of the existing operators and more elaborate discussion of the dis-
cretization procedures is given in the programmer’s guide [1, section 2.4]. In order to
understand the code implemented in the present work, it must be recognized that an
explicit discretization will end as a source term, and any explicit dependencies will be
taken as of the previous iteration, not updated during the solving of the matrix.

4.5 Discretization of boundary conditions

The OpenFOAM boundary conditions are defined on the patches, the set of faces, making
up the external faces. In general the boundary conditions will be taken care of in the
discretization operator implementations. The application programmer will merely have
to specify that the boundary conditions should be corrected, i.e. re-calculated.

To understand how the contributions from the boundary conditions are included
in the fvMatrix assembling, consider the access functions of the Dirichlet boundary
condition fixedValue:

139 //− Return the matrix d iagona l c o e f f i c i e n t s cor re spond ing to the
140 // eva lua t i on o f the value o f t h i s patchFie ld with given weights
141 v i r t u a l tmp<Field<Type> > valueInternalCoeffs

142 (
143 const tmp<scalarField>&
144) const ;
145

146 //− Return the matrix source c o e f f i c i e n t s cor re spond ing to the
147 // eva lua t i on o f the value o f t h i s patchFie ld with given weights
148 v i r t u a l tmp<Field<Type> > valueBoundaryCoeffs

149 (
150 const tmp<scalarField>&
151) const ;
152

153 //− Return the matrix d iagona l c o e f f i c i e n t s cor re spond ing to the
154 // eva lua t i on o f the g rad i ent o f t h i s patchFie ld
155 v i r t u a l tmp<Field<Type> > gradientInternalCoeffs () const ;
156

Klas Jareteg 9

Project report - CFD with open source - 2012

157 //− Return the matrix source c o e f f i c i e n t s cor re spond ing to the
158 // eva lua t i on o f the g rad i ent o f t h i s patchFie ld
159 v i r t u a l tmp<Field<Type> > gradientBoundaryCoeffs () const ;

Listing 5: Part of fixedValueFvPatchField.H

As explained in the comments, the four functions are aimed to give the value and gradient
contributions to the diagonal and source terms for each cell neighbouring a face in
the presently described patch. Thus, when implementing a boundary condition the
contribution of the boundary conditions can be included by calling these functions. E.g.
in the matrix assembling in the implementation of a Gaussian convection scheme:

92 forAll (fvm . psi () . boundaryField () , patchI)
93 {
94 const fvPatchField<Type>& psf = fvm . psi () . boundaryField () [patchI] ;
95 const fvsPatchScalarField& patchFlux = faceFlux . boundaryField () [patchI] ;
96 const fvsPatchScalarField& pw = weights . boundaryField () [patchI] ;
97

98 fvm . internalCoeffs () [patchI] = patchFlux∗psf . valueInternalCoeffs (pw) ;
99 fvm . boundaryCoeffs () [patchI] = −patchFlux∗psf . valueBoundaryCoeffs (pw) ;

100 }

Listing 6: Part of gaussConvectionScheme.C

the contributions from the boundary is added to the diagonal and the source using
the value functions. For comparison in the implementation of the Gaussian Laplacian
scheme:

70 forAll (fvm . psi () . boundaryField () , patchI)
71 {
72 const fvPatchField<Type>& psf = fvm . psi () . boundaryField () [patchI] ;
73 const fvsPatchScalarField& patchGamma =
74 gammaMagSf . boundaryField () [patchI] ;
75

76 fvm . internalCoeffs () [patchI] = patchGamma∗psf . gradientInternalCoeffs () ;
77 fvm . boundaryCoeffs () [patchI] = −patchGamma∗psf . gradientBoundaryCoeffs () ;
78 }

Listing 7: Part of gaussianLaplacianScheme.C

where instead the gradient functions are used, as a gradient is left in the expression
after applying Gauss theorem on the Laplacian term.

Klas Jareteg 10

Project report - CFD with open source - 2012

5 OpenFOAM block coupling implementation

This far, the basic idea of the block coupled matrix formulation has been given in theory
and some OpenFOAM general discretization procedure and matrix assembling notas
have been given. In this section the block coupled solver is studied. Section 5.1 discusses
the implemented classes allowing the block coupled solver in general. In section 5.2, an
example solver as implemented in OpenFOAM is discussed in detail.

5.1 Classes related to block coupling

In OpenFOAM 1.6-ext a block matrix class has been implemented. Except for the block
coupled matrix class itself, a number of other classes have been implemented to enable
templated matrix elements and solution vectors of other dimension than one (scalar)
and three (vector).

BlockLduMatrix

The class BlockLduMatrix is a block matrix class, allowing templated matrix ele-
ments (as compared to lduMatrix which can ony have scalar elements). The class
basically contains similar matrix elements as lduMatrix:

115 //− L i s t o f coupled i n t e r f a c e s
116 typename BlockLduInterfaceFieldPtrsList<Type > : : Type interfaces_ ;
117

118 //− Coupled i n t e r f a c e c o e f f i c i e n t s , upper
119 FieldField<CoeffField , Type> coupleUpper_ ;
120

121 //− Coupled i n t e r f a c e c o e f f i c i e n t s , lower
122 FieldField<CoeffField , Type> coupleLower_ ;

Listing 8: BlockLduMatrix.H

Instead of scalarField, templated CoeffField are used for the matrix elements.
At construction a standard lduMesh must be provided. The lduMesh addressing is
used also for the block coupled matrix, and thus the sparsity structure is conserved.

CoeffField

The templated coefficient field allows a generic field, which is needed for the coupled
matrix. Mathematical operators are implemented for the templated type. The
CoeffField allows access to the elements of the field in multiple formats, among
other:

182 //− Return as s c a l a r f i e l d
183 scalarTypeField& asScalar () ;
184

185 //− Return as l i n e a r f i e l d
186 linearTypeField& asLinear () ;
187

188 //− Return as square f i e l d
189 squareTypeField& asSquare () ;

Listing 9: CoeffField.H

Klas Jareteg 11

Project report - CFD with open source - 2012

This gives different possibilities for the programmer to access references to the
coefficients for assembling purposes.

VectorN

In order to construct other solution vectors than scalar or vector fields a class
with arbitrary number of components is introduced. Using the basic VectorN class,
specializations are done for the desired dimensions, e.g. for vector4:

50 typede f VectorN<scalar , 4> vector4 ;
51

52

53 //− Spec i f y data a s s o c i a t ed with vector4 type i s cont iguous
54 template<>
55 i n l i n e bool contiguous<vector4>() { r e turn true ;}

Listing 10: vector4.H

Note that vector3 has not been specialized, as this is supposed to be the same as
the inherent vector. This is however not really the case as the access to the compo-
nents of vectors is done by .x(),.y(),.z() for the vector and .(0),.(1),.(2)

for a potential vector3. It is thus recommended to implement vector3, which is
straightforward looking at e.g. the vector4 class. Such implementation is needed
e.g. for the two dimensional pressure-velocity coupled solver presented below.

Klas Jareteg 12

Project report - CFD with open source - 2012

5.2 Example solver blockCoupledScalarTransport

To establish an idea of the possibilities of the block matrix implementation in Open-
FOAM, the solver blockCoupledScalarTransportFoam is studied. The accompanying
tutorial case blockCoupledSwirlTest is presented briefly in Appendix B.

5.2.1 Theory

The theory behind the solver is a coupled two phase heat transfer problem described by
[5, 6]:

∇ · (UT)−∇(D∇T) = α(Ts − T) (11)

−∇(DTs∇Ds) = α(T − Ts) (12)

where the velocity field U is not solved for but prescribed, and T and Ts are the fluid
and solid temperature respectively. The coupling between the equations is obvious.

5.2.2 Implementation

Considering the solver directory2, it is seen that two temperature fields are constructed in
the createFields.H corresponding to T and Ts. Further a combined block temperature
field is created:

31 Info<< ”Creat ing f i e l d blockT\n” << endl ;
32 volVector2Field blockT

33 (
34 IOobject

35 (
36 ”blockT ” ,
37 runTime . timeName () ,
38 mesh ,
39 IOobject : : NO_READ ,
40 IOobject : : NO_WRITE
41) ,
42 mesh ,
43 dimensionedVector2 (word () , dimless , vector2 : : zero)
44) ;

Listing 11: createFields.H

The values from the two separate temperature fields are inserted in to the volVec-

tor2Field such that:

51 {
52 vector2Field& blockX = blockT . internalField () ;
53

54 blockMatrixTools : : blockInsert (0 , T . internalField () , blockX) ;
55 blockMatrixTools : : blockInsert (1 , Ts . internalField () , blockX) ;
56 }

Listing 12: createFields.H

2
$WM_PROJECT_DIR/applications/solvers/coupled/blockCoupledScalarTransportFoam

Klas Jareteg 13

Project report - CFD with open source - 2012

such that an element ai in blockT consists of:

ai =

[
Ti

Ts,i

]
(13)

The internal field of blockT is initiated using the read values of T and T_s. This is done
using the utilities found in the class blockMatrixTools. Furthermore, the velocity field
and thermal diffusivities are read together with α (not shown above).

Considering now the solver itself, the first part consists of all the includes and the
start of an iteration in SIMPLE style (not shown), followed by the creation of two
standard equations:

74 fvScalarMatrix TEqn

75 (
76 fvm : : div (phi , T)
77 − fvm : : laplacian (DT , T)
78 ==
79 alpha∗Ts
80 − fvm : : Sp (alpha , T)
81) ;
82

83 TEqn . relax () ;
84

85 fvScalarMatrix TsEqn

86 (
87 − fvm : : laplacian (DTs , Ts)
88 ==
89 alpha∗T
90 − fvm : : Sp (alpha , Ts)
91) ;
92

93 TsEqn . relax () ;

Listing 13: Part of blockCoupledScalarTransportFoam.C

The equations are constructed with the coupling introduced in an explicit, segregated
manner, as is seen from the first term on the right hand side. This is followed by the
creation of a block coupled matrix:

95 // Prepare block system
96 BlockLduMatrix<vector2> blockM (mesh) ;
97

98 // Grab block d iagona l and s e t i t to zero
99 Field<tensor2>& d = blockM . diag () . asSquare () ;

100 d = tensor2 : : zero ;
101

102 // Grab l i n e a r o f f−d iagona l and s e t i t to zero
103 Field<vector2>& u = blockM . upper () . asLinear () ;
104 Field<vector2>& l = blockM . lower () . asLinear () ;
105 u = vector2 : : zero ;
106 l = vector2 : : zero ;
107

108 vector2Field& blockX = blockT . internalField () ;
109 // vec to r2F i e l d blockX (mesh . nCe l l s () , vec tor2 : : ze ro) ;
110 vector2Field blockB (mesh . nCells () , vector2 : : zero) ;
111

112 //− I n s e t equat ions in to block Matrix
113 blockMatrixTools : : insertEquation (0 , TEqn , blockM , blockX , blockB) ;

Klas Jareteg 14

Project report - CFD with open source - 2012

114 blockMatrixTools : : insertEquation (1 , TsEqn , blockM , blockX , blockB) ;

Listing 14: Part of blockCoupledScalarTransportFoam.C

The introduced block matrix is templated, and thus the type is given; vector2. The
equations can be inserted in its segregated form in to the block matrix using the utilities
in blockMatrixTools. Note that also a source is constructed, again templated as a
vector2.

169 vector2Field& blockX = blockT . internalField () ;
170 // vec to r2F i e l d blockX (mesh . nCe l l s () , vec tor2 : : ze ro) ;
171 vector2Field blockB (mesh . nCells () , vector2 : : zero) ;
172

173 //− I n s e t equat ions in to block Matrix
174 blockMatrixTools : : insertEquation (0 , TEqn , blockM , blockX , blockB) ;
175 blockMatrixTools : : insertEquation (1 , TsEqn , blockM , blockX , blockB) ;

Listing 15: blockCoupledScalarTransportFoam.C part 3

At this stage the blocked equation blockM corresponds to the equation system (3), no
implicit coupling has yet been utilized. Considering the implementation of the equations,
the explicit terms alpha*T and alpha*Ts need to be subtracted from the source (blockB)
and the coefficient (α) transfered to the diagonal block of the matrix:

116 //− Add o f f−d iagona l terms and remove from Block source
117 forAll (d , i)
118 {
119 d [i] (0 , 1) = −alpha . value ()∗ mesh . V () [i] ;
120 d [i] (1 , 0) = −alpha . value ()∗ mesh . V () [i] ;
121

122 blockB [i] [0] −= alpha . value ()∗ blockX [i] [1] ∗ mesh . V () [i] ;
123 blockB [i] [1] −= alpha . value ()∗ blockX [i] [0] ∗ mesh . V () [i] ;
124 }

Listing 16: Part of blockCoupledScalarTransportFoam.C

What now remains of the assembling is to take care of special boundaries, e.g. allowing
the cyclic boundaries to be implicitly given in the block coupled system:

126 //− Trans fe r the coupled i n t e r f a c e l i s t f o r p ro c e s s o r / c y c l i c / e t c . boundar ies
127 blockM . interfaces () = blockT . boundaryField () . blockInterfaces () ;
128

129 //− Trans fe r the coupled i n t e r f a c e c o e f f i c i e n t s
130 forAll (mesh . boundaryMesh () , patchI)
131 {
132 i f (blockM . interfaces () . set (patchI))
133 {
134 Field<vector2>& coupledLower = blockM . coupleLower () [patchI] . asLinear () ;
135 Field<vector2>& coupledUpper = blockM . coupleUpper () [patchI] . asLinear () ;
136

137 const scalarField& TLower = TEqn . internalCoeffs () [patchI] ;
138 const scalarField& TUpper = TEqn . boundaryCoeffs () [patchI] ;
139 const scalarField& TsLower = TsEqn . internalCoeffs () [patchI] ;
140 const scalarField& TsUpper = TsEqn . boundaryCoeffs () [patchI] ;
141

142 blockMatrixTools : : blockInsert (0 , TLower , coupledLower) ;
143 blockMatrixTools : : blockInsert (1 , TsLower , coupledLower) ;
144 blockMatrixTools : : blockInsert (0 , TUpper , coupledUpper) ;

Klas Jareteg 15

Project report - CFD with open source - 2012

145 blockMatrixTools : : blockInsert (1 , TsUpper , coupledUpper) ;
146 }
147 }

Listing 17: Part of blockCoupledScalarTransportFoam.C

Finally the matrix system is solved using a block coupled solver. The calculated values
of the temperatures are then transferred back to the original fields T and Ts and after
finishing the correction iterations data is written and the SIMPLE loop is completed
(not shown below):

149 //− Block coupled s o l v e r c a l l
150 BlockSolverPerformance<vector2> solverPerf =
151 BlockLduSolver<vector2 > : : New
152 (
153 word (”blockVar ”) ,
154 blockM ,
155 mesh . solver (”blockVar ”)
156)−>solve (blockX , blockB) ;
157

158 solverPerf . print () ;
159

160 // Ret r i eve s o l u t i o n
161 blockMatrixTools : : blockRetrieve (0 , T . internalField () , blockX) ;
162 blockMatrixTools : : blockRetrieve (1 , Ts . internalField () , blockX) ;
163

164 T . correctBoundaryConditions () ;
165 Ts . correctBoundaryConditions () ;

Listing 18: Part of blockCoupledScalarTransportFoam.C

A few points are worth notice considering the above excursion of blockCoupled-

ScalarTransportFoam:

• The templating of BlockCoupLduMatrix allows an arbitrary sized tensor at each
matrix element. There are no limitations on the number of equations that could
be coupled in this manner.

• The block matrix assembling can be simplified by the utilities in blockMatrix-

Tools, also giving a starting point for implementing other black matrix operations.

• A set of special solvers has been implemented, allowing templating of the size of
the tensor used for an element also in the solvers.

5.3 Alternative approach for equations of equal structure

Clifford [6] outlines another way to use the block coupled solver, utilizing regularities of
the coupled system. In the given example N coupled equations of exact same structure is
outlined, using discretization operators aimed for the block matrix class. This approach,
although only useful for problems with equally structured equations, can give a cleaner
and simpler assembling of the system.

Klas Jareteg 16

Project report - CFD with open source - 2012

6 Implementing pressure and velocity coupling

Solving the pressure-velocity coupling is relevant for the majority of all calculations
performed by CFD. A large number of algorithms has been proposed for this purpose,
including SIMPLE[7] and variations thereof.

The SIMPLEmethod basically solves the pressure-velocity coupling by estimating the
velocity based on the present pressure field, followed by a pressure correction equation
formulated through the continuity equation, and finally a momentum corrector step
based on the new pressure field. Such algorithm segregates the solution of the pressure
and velocity field, in many cases resulting in slow convergence.

For the purpose of potentially faster convergence more implicit solver procedures has
been proposed. Such solver model will be discussed in 6.1. The OpenFOAM implemen-
tation will be outlined in section 6.2.

6.1 Coupled model

The theory proposed in this report is based primarily on the work by Darwish. et al[8].
The continuity and momentum equations will for the restriction of laminar, constant
density and imcompressible flow read:

∇ · (U) = 0 (14)

∇ · (UU)−∇(ν∇U) = −1

ρ
∇p (15)

Considering a general discretization of the different terms in a finite volume manner we
can write the above equations in the general form:∑

faces

Uf · Sf = 0 (16)

∑
faces

[UU− µ∇U]f · Sf = −
∑
faces

PfSf (17)

where the Gauss theorem has been applied, allowing the gradient and divergence terms
to be written in terms of surface integrals discretized to a sum over the control volume
surfaces. This is equivalent to the OpenFOAM discretizations[1]. Note that the density
has been included in the pressure such that:

p

ρ
= P (18)

In the SIMPLE algorithm, a pressure correction equation is retrieved from the mo-
mentum predictor inserted in to the continuity equation (for OpenFOAM specific imple-
mentation outline see [9]). In order to get a coupled equation system another approach
must be used.

Klas Jareteg 17

Project report - CFD with open source - 2012

Using Rhie-Chow interpolation[10] in the semi-distretized form of the continuity
equation (16) gives a second dependence for the pressure:∑

faces

[
Uf −Df

(
∇Pf −∇Pf] · Sf = 0 (19)

where the overline indicates a value retrieved from interpolation of face values. For the
pressure term ∇P cell gradient values should be interpolated to the face. Tannehill et
al[11] states that the Rhie-Chow interpolation can somehow be seen as local correction
of the pressure gradient used to calculate the face flux (i.e. the face velocity), which is
how it will be used in this work.

The Df operator corresponds to ratio of the cell volume and the central (diagonal)
coefficient of the discretized version of the left hand side of the momentum equation
(17), such that:

Df =

ΩP
axp

0 0

0 ΩP

ayp
0

0 0 ΩP
azp

 (20)

where aip corresponds to the i:th central component of the momentum equation left hand
discretization. Simply rewriting eq. (19):∑

faces

−Df∇Pf · Sf +
∑
faces

Uf · Sf =
∑
faces

−Df∇Pf · Sf (21)

and treating the right hand side as a source term, and combining it with eq. (17) a
coupled set of four equations (for 3D case) has been retrieved.

6.2 OpenFOAM implementation

In order to implement the coupled equation system (17) and (21) in an OpenFOAM style,
the different terms will be considered separately. The structured equation approach as
discussed briefly in section 5.3 can be immediately out-ruled as the system of equations
are not having the same general structure. Instead, an approach similar to the discussed
tutorial solver (section 5.2) is designed. First the setting up of the block matrix and the
fields necessary is discussed, followed by the discretization of each term in eqs. (17) and
(21).

The code, with same line numbering, can be seen in its complete in Appendix C.
The discussed solver is aimed at three dimensional calculations. This means that the
tensor elements in the block matrix will be of length 4 (three velocity components and
pressure), with rank 2.

The three dimensional solver will be used also for two dimensional cases. The third
dimension velocity residual will then immediately be very small. The drawback with this
is that unnecessary calculations will be performed for the third direction, not leading to
any valuable result. Thus, for high performance issues it is better to implement a specific
2D solver. Such implementation is in its self straightforward using a block matrix with

Klas Jareteg 18

Project report - CFD with open source - 2012

tensor elements of length 3 (two velocity components and pressure), and the code is thus
not presented within this work.

6.2.1 Block matrix and source term

For the coupled calculation the solution vector xP will consist of the three velocity
components and the pressure such that:

xP = xPl =

uP

vP

wP

PP

 (22)

A solution vector corresponding to the mesh with each element consisting of a block with
four elements is constructed after the construction of the pressure and velocity field:

117 // Block vec to r f i e l d f o r the p r e s su r e and v e l o c i t y f i e l d to be so lved f o r
118 volVector4Field pU

119 (
120 IOobject

121 (
122 ”pU” ,
123 runTime . timeName () ,
124 mesh ,
125 IOobject : : NO_READ ,
126 IOobject : : NO_WRITE
127) ,
128 mesh ,
129 dimensionedVector4 (word () , dimless , vector4 : : zero)
130) ;

In order to get the initial values from the existing (separate) pressure and velocity fields
the initial conditions are transferred to the new solution vector:

132 // I n s e r t the p r e s su r e and v e l o c i t y i n t e r n a l f i e l d s in to the vo lVec to r2F ie ld
133 {
134 vector4Field blockX = pU . internalField () ;
135

136 // Separate ly add the three v e l o c i t y components
137 f o r (i n t i=0; i<3;i++)
138 {
139 tmp<scalarField> tf = U . internalField () . component (i) ;
140 scalarField& f = tf () ;
141 blockMatrixTools : : blockInsert (i , f , blockX) ;
142 }
143

144 // Pressure i s the 2nd component
145 scalarField& f = p . internalField () ;
146 blockMatrixTools : : blockInsert (3 , f , blockX) ;
147 }

The coupled solver will be formulated through the assembled block matrix system:

APxP +
∑

F∈{N}

AFxF = bP (23)

Klas Jareteg 19

Project report - CFD with open source - 2012

which corresponds to the fully discretized versions of eqs. (17) and (21). Each matrix
element AP or AF is a tensor of rank 2 and length 4, with P a cell with neighbours F
and with:

AX =
[
aXk,l

]
i

k,l ∈ {u,v,w,p}, X ∈ {P,F} (24)

In general aXk,l gives the contribution from field component k to l.
Considering the general structure of the OpenFOAMmatrix (lduMatrix, section 4.2),

the diagonal coefficients will correspond to the AP elements and the off-diagonal to the
AF elements.

The block matrix is constructed using:

188 // Matrix block
189 BlockLduMatrix<vector4> B (mesh) ;

and the diagonal and off-diagonal matrix elements can be retrieved in tensor form as:

191 // Diagonal i s s e t s epa r a t e l y
192 Field<tensor4>& d = B . diag () . asSquare () ;
193

194 // Off−d iagona l a l s o as square
195 Field<tensor4>& u = B . upper () . asSquare () ;
196 Field<tensor4>& l = B . lower () . asSquare () ;

Similar to the lduMatrix the BlockLduMatrix does not contain any source, and will
thus be constructed separately:

198 // Source term f o r the block matrix
199 Field<vector4> s (mesh . nCells () , vector4 : : zero) ;

At this point the general block structure is finished. The next step consists in construct-
ing the matrix elements coefficients.

6.2.2 Discretizing the momentum equation

The momentum equation (17) will be discretized in two parts.

LHS The LHS is recognized from the implementation of simpleFoam such that:

182 tmp<fvVectorMatrix> UEqnLHS

183 (
184 fvm : : div (phi , U)
185 + turbulence−>divDevReff (U)
186) ;

Note that as compared to eq. (15) turbulence is introduced by calling the divDivReff(U)
in the turbulence model. As the previous part is already formulated as a fvVectorMatrix
the diagonal, upper, and lower coefficients can be immediately retrieved from the matrix:

202 tmp<scalarField> tdiag = UEqnLHS () . D () ;
203 scalarField& diag = tdiag () ;
204 scalarField& upper = UEqnLHS () . upper () ;
205 scalarField& lower = UEqnLHS () . lower () ;

Klas Jareteg 20

Project report - CFD with open source - 2012

Usin the function D(), the boundary diagonal contribution will be automatically in-
cluded, but for the source the the boundary contribution will need to be added:

211 // Add source boundary con t r i bu t i on
212 vectorField& source = UEqnLHS () . source () ;
213 UEqnLHS () . addBoundarySource (source , f a l s e) ;

RHS The RHS is less straightforward. In the segregated implementation of simple-
Foam the RHS is taken explicitly. This is not feasible in the coupled approach as an
implicit coupling is desired. Thus an implicit gradient operator (i.e in namespace fvm)
is needed. As earlier stated such does not exist.

Considering the RHS as a separate problem:∑
faces

PfSf = 0 (25)

it is seen that the pressure is desired at the faces. In order to get this OpenFOAM uses
run-time chosen interpolation schemes. By setting up a such interpolation scheme:

218 // I n t e r p o l a t i o n scheme f o r the p r e s su r e weights
219 tmp<surfaceInterpolationScheme<scalar> >
220 tinterpScheme_

221 (
222 surfaceInterpolationScheme<scalar > : : New
223 (
224 p . mesh () ,
225 p . mesh () . interpolationScheme (”grad (p) ”)
226)
227) ;

weights based on the present mesh can be calculated:

218 tmp<surfaceScalarField> tweights = tinterpScheme_ () . weights (p) ;
219 const surfaceScalarField& weights = tweights () ;

A specific weight is calculated for each face, and the value of the weight corresponds to
the weight to be used for the owner cell of that face. The neighbour cell weight is simply
found as:

wN = 1− wP (26)

In order to compute an implicit discretization of the pressure gradient, vector fields
equivalent to diagonal, lower, upper and the source of such matrix is needed:

229 // Pressure g rad i en t c on t r i bu t i on s − corresponds to an imp l i c i t
230 // grad i en t operator
231 tmp<vectorField> tpUv = tmp<vectorField>
232 (
233 new vectorField (upper . size () , pTraits<vector > : : zero)
234) ;
235 vectorField& pUv = tpUv () ;
236 tmp<vectorField> tpLv = tmp<vectorField>
237 (
238 new vectorField (lower . size () , pTraits<vector > : : zero)
239) ;
240 vectorField& pLv = tpLv () ;

Klas Jareteg 21

Project report - CFD with open source - 2012

241 tmp<vectorField> tpSv = tmp<vectorField>
242 (
243 new vectorField (source . size () , pTraits<vector > : : zero)
244) ;
245 vectorField& pSv = tpSv () ;
246 tmp<vectorField> tpDv = tmp<vectorField>
247 (
248 new vectorField (diag . size () , pTraits<vector > : : zero)
249) ;
250 vectorField& pDv = tpDv () ;

The matrix coefficients can then be calculated according to the weights:

256 f o r (i n t i=0;i<owner . size () ; i++)
257 {
258 i n t o = owner [i] ;
259 i n t n = neighbour [i] ;
260 scalar w = weights . internalField () [i] ;
261 vector s = Sf [i] ;
262

263 pDv [o]+=s∗w ;
264 pDv [n]−=s∗(1−w) ;
265 pLv [i]=−s∗w ;
266 pUv [i]=s∗(1−w) ;
267

268 }

Note that a diagonal contribution for the present face (i) will need to be added both for
the owner and the neighbour cell. For the neighbour cell the surface normal will point in
the opposite direction wherefore these contributions are added negatively. Two diagonal
contributions are needed, in the lower coefficient vector for the contribution from the
owner cell on the neighbour cell and in the upper coefficient vector for the contribution
from the neighbour cell on the owner cell.

As no fvMatrix is used the helper functions addBoundarySource/addBoundaryDiag
are not available, consequently the boundary contribution must be added manually:

270 // Get boundary cond i t i on con t r i bu t i on s f o r p r e s su r e grad (P)
271 p . boundaryField () . updateCoeffs () ;
272 forAll (p . boundaryField () , patchI)
273 {
274 // Present fvPatchFie ld
275 fvPatchField<scalar> & fv = p . boundaryField () [patchI] ;
276

277 // Retr i eve the weights f o r the boundary
278 const fvsPatchScalarField& pw = weights . boundaryField () [patchI] ;
279

280 // Contr ibut ions from the boundary c o e f f i c i e n t s
281 tmp<Field<scalar> > tic = fv . valueInternalCoeffs (pw) ;
282 Field<scalar>& ic = tic () ;
283 tmp<Field<scalar> > tbc = fv . valueBoundaryCoeffs (pw) ;
284 Field<scalar>& bc = tbc () ;
285

286 // Get the fvPatch only
287 const fvPatch& patch = fv . patch () ;
288

289 // Sur face normals f o r t h i s patch
290 tmp<Field<vector> > tsn = patch . Sf () ;
291 Field<vector> sn = tsn () ;
292

Klas Jareteg 22

Project report - CFD with open source - 2012

293 // Manually add the con t r i bu t i on s from the boundary
294 // This what happens with addBoundaryDiag , addBoundarySource
295 forAll (fv , facei)
296 {
297 label c = patch . faceCells () [facei] ;
298

299 pDv [c]+=ic [facei]∗ sn [facei] ;
300 pSv [c]−=bc [facei]∗ sn [facei] ;
301 }
302 }

Again, care has to be taken with the signs of the contributions. The contribution from
the boundary face to the source term (valueBoundaryCoeffs) should be taken negative
as this is moved to the source term.

At this stage the contributions from the LHS and RHS can be added to the block
matrix. The coefficients that are set corresponds to au,u,av,v,aw,w,ap,u,ap,v,ap,w:

317 forAll (d , i)
318 {
319 d [i] (0 , 0) = diag [i] ;
320 d [i] (1 , 1) = diag [i] ;
321 d [i] (2 , 2) = diag [i] ;
322

323 d [i] (0 , 3) = pDv [i] . x () ;
324 d [i] (1 , 3) = pDv [i] . y () ;
325 d [i] (2 , 3) = pDv [i] . z () ;
326 }
327 forAll (l , i)
328 {
329 l [i] (0 , 0) = lower [i] ;
330 l [i] (1 , 1) = lower [i] ;
331 l [i] (2 , 2) = lower [i] ;
332

333 l [i] (0 , 3) = pLv [i] . x () ;
334 l [i] (1 , 3) = pLv [i] . y () ;
335 l [i] (2 , 3) = pLv [i] . z () ;
336 }
337 forAll (u , i)
338 {
339 u [i] (0 , 0) = upper [i] ;
340 u [i] (1 , 1) = upper [i] ;
341 u [i] (2 , 2) = upper [i] ;
342

343 u [i] (0 , 3) = pUv [i] . x () ;
344 u [i] (1 , 3) = pUv [i] . y () ;
345 u [i] (2 , 3) = pUv [i] . z () ;
346 }
347 forAll (s , i)
348 {
349 s [i] (0) = source [i] . x()+pSv [i] . x () ;
350 s [i] (1) = source [i] . y()+pSv [i] . y () ;
351 s [i] (2) = source [i] . z()+pSv [i] . z () ;
352 }

6.2.3 Discretizing the continuity equation

The continuity equation (21) will again be discretized in two parts.

Klas Jareteg 23

Project report - CFD with open source - 2012

Pressure terms For the pressure terms, one implicit and one explicit contribution is
to be calculated.

The implicit part can be discretized with the implicit Laplacian operator (fvm::-
laplacian) with the D-operator computed as the inverse of the A-operator:

439 tmp<volScalarField> tA = UEqnLHS () . A () ;
440 volScalarField& A = tA () ;

Note that the operator A is coded to use the D operator which in OpenFOAM is not the
same as the operator described in eq. 20 (which is rather equivalent to the operator DD).

The explicit part corresponding to the RHS of eq. (21). Is to be interpolated to
the faces. This can be achieved by first applying the explicit gradient operator on the
pressure only and then using the explicit divergence operator on the product of the
explict gradient and the inverse of the A-operator, which combined with the implicit
part gives:

442 tmp<volVectorField> texp = fvc : : grad (p) ;
443 volVectorField& exp = texp () ;
444 tmp<volVectorField> texp2 = exp/A ;
445 volVectorField exp2 = texp2 () ;
446

447 tmp<fvScalarMatrix> MEqnLHSp

448 (
449 −fvm : : laplacian (1/A , p)
450 ==
451 −fvc : : div (exp2)
452) ;

The different matrix parts are then extracted, and again the boundary contribution
is taken care of:

454 // Add the boundary con t r i bu t i on s
455 scalarField& pMdiag = MEqnLHSp () . diag () ;
456 scalarField& pMupper = MEqnLHSp () . upper () ;
457 scalarField& pMlower = MEqnLHSp () . lower () ;
458

459 // Add diagona l boundary con t r i bu t i on
460 MEqnLHSp () . addBoundaryDiag (pMdiag , 0) ;
461

462 // Add source boundary con t r i bu t i on
463 scalarField& pMsource = MEqnLHSp () . source () ;
464 MEqnLHSp () . addBoundarySource (pMsource , f a l s e) ;

Velocity term For this term an implicit divergence discretization is needed. Again,
this is not generally any desired operator and does not exist. The procedure to perform
such discretization follows the same structure as the implicit discretization of the pressure
gradient:

348 // Again an imp l i c i t v e r s i on not ex i s t i n g , now the div operator
349 tmp<surfaceInterpolationScheme<scalar> >
350 UtinterpScheme_

351 (
352 surfaceInterpolationScheme<scalar > : : New
353 (
354 U . mesh () ,

Klas Jareteg 24

Project report - CFD with open source - 2012

355 U . mesh () . interpolationScheme (”div (U) (imp l i c i t) ”)
356)
357) ;
358

359

360 // 1) Setup diagonal , source , upper and lower
361 tmp<vectorField> tMUpper = tmp<vectorField>
362 (new vectorField (upper . size () , pTraits<vector > : : zero)) ;
363 vectorField& MUpper = tMUpper () ;
364

365 tmp<vectorField> tMLower = tmp<vectorField>
366 (new vectorField (lower . size () , pTraits<vector > : : zero)) ;
367 vectorField& MLower = tMLower () ;
368

369 tmp<vectorField> tMDiag = tmp<vectorField>
370 (new vectorField (diag . size () , pTraits<vector > : : zero)) ;
371 vectorField& MDiag = tMDiag () ;
372

373 tmp<vectorField> tMSource = tmp<vectorField>
374 (
375 new vectorField

376 (
377 source . component (0) () . size () , pTraits<vector > : : zero
378)
379) ;
380 vectorField& MSource = tMSource () ;
381

382 // 2) Use i n t e r p o l a t i o n weights to assemble the con t r i bu t i on s
383 tmp<surfaceScalarField> tMweights =
384 UtinterpScheme_ () . weights (mag (U)) ;
385 const surfaceScalarField& Mweights = tMweights () ;
386

387 f o r (i n t i=0;i<owner . size () ; i++)
388 {
389 i n t o = owner [i] ;
390 i n t n = neighbour [i] ;
391 scalar w = Mweights . internalField () [i] ;
392 vector s = Sf [i] ;
393

394 MDiag [o]+=s∗w ;
395 MDiag [n]−=s∗(1−w) ;
396 MLower [i]=−s∗w ;
397 MUpper [i]=s∗(1−w) ;
398 }
399

400 // Get boundary cond i t i on con t r i bu t i on s f o r the p r e s su r e grad (P)
401 U . boundaryField () . updateCoeffs () ;
402 forAll (U . boundaryField () , patchI)
403 {
404 // Present fvPatchFie ld
405 fvPatchField<vector> & fv = U . boundaryField () [patchI] ;
406

407 // Retr i eve the weights f o r the boundary
408 const fvsPatchScalarField& Mw =
409 Mweights . boundaryField () [patchI] ;
410

411 // Contr ibut ions from the boundary c o e f f i c i e n t s
412 tmp<Field<vector> > tic = fv . valueInternalCoeffs (Mw) ;
413 Field<vector>& ic = tic () ;
414 tmp<Field<vector> > tbc = fv . valueBoundaryCoeffs (Mw) ;
415 Field<vector>& bc = tbc () ;
416

Klas Jareteg 25

Project report - CFD with open source - 2012

417 // Get the fvPatch only
418 const fvPatch& patch = fv . patch () ;
419

420 // Sur face normals f o r t h i s patch
421 tmp<Field<vector> > tsn = patch . Sf () ;
422 Field<vector> sn = tsn () ;
423

424 // Manually add the con t r i bu t i on s from the boundary
425 // This what happens with addBoundaryDiag , addBoundarySource
426 forAll (fv , facei)
427 {
428 label c = patch . faceCells () [facei] ;
429

430 MDiag [c]+=cmptMultiply (ic [facei] , sn [facei]) ;
431 MSource [c]−=cmptMultiply (bc [facei] , sn [facei]) ;
432 }
433 }

In the same manner as for the momentum equation, the block matrix is then updated.
This time with the terms au,p,av,p,aw,p,ap,p:

469 forAll (d , i)
470 {
471 d [i] (3 , 0) = MDiag [i] . x () ;
472 d [i] (3 , 1) = MDiag [i] . y () ;
473 d [i] (3 , 2) = MDiag [i] . z () ;
474 d [i] (3 , 3) = pMdiag [i] ;
475 }
476 forAll (l , i)
477 {
478 l [i] (3 , 0) = MLower [i] . x () ;
479 l [i] (3 , 1) = MLower [i] . y () ;
480 l [i] (3 , 2) = MLower [i] . z () ;
481 l [i] (3 , 3) = pMlower [i] ;
482 }
483 forAll (u , i)
484 {
485 u [i] (3 , 0) = MUpper [i] . x () ;
486 u [i] (3 , 1) = MUpper [i] . y () ;
487 u [i] (3 , 2) = MUpper [i] . z () ;
488 u [i] (3 , 3) = pMupper [i] ;
489 }
490 forAll (s , i)
491 {
492 s [i] (3) = MSource [i] . x ()
493 +MSource [i] . y ()
494 +MSource [i] . z ()
495 +pMsource [i] ;
496 }

6.2.4 Solving the block matrix and retrieving the solution

As the block mesh elements has been assembled the system can now be solved:

501 BlockSolverPerformance<vector4> solverPerf =
502 BlockLduSolver<vector4 > : : New
503 (
504 word (”blockVar ”) ,
505 B ,

Klas Jareteg 26

Project report - CFD with open source - 2012

506 mesh . solver (”blockVar ”)
507)−>solve (pU , s) ;
508

509 solverPerf . print () ;

Finally the solution is transferred from the coupled solution vector to the separate fields,
the boundary conditions are recalculated and possibly relaxation is applied:

515 tmp<scalarField> tUx = U . internalField () . component (0) ;
516 scalarField& Ux = tUx () ;
517 blockMatrixTools : : blockRetrieve (0 , Ux , pU) ;
518 U . internalField () . replace (0 , Ux) ;
519

520 tmp<scalarField> tUy = U . internalField () . component (1) ;
521 scalarField& Uy = tUy () ;
522 blockMatrixTools : : blockRetrieve (1 , Uy , pU) ;
523 U . internalField () . replace (1 , Uy) ;
524

525 tmp<scalarField> tUz = U . internalField () . component (2) ;
526 scalarField& Uz = tUz () ;
527 blockMatrixTools : : blockRetrieve (2 , Uz , pU) ;
528 U . internalField () . replace (2 , Uz) ;
529

530 blockMatrixTools : : blockRetrieve (3 , p . internalField () , pU) ;
531

532 UEqnLHS . clear () ;
533

534 p . relax () ;
535

536 U . correctBoundaryConditions () ;
537 p . correctBoundaryConditions () ;

The turbulence is in this solver solved using the standard function correct() applied
to the turbulence model.

Klas Jareteg 27

Project report - CFD with open source - 2012

7 Results of pUCoupledFoam

To investigate the correctness and performance of the coupled solver, comparisons to
simpleFoam are done. Benchmarking is done for both the 2D and the 3D solver.

There are two solvers implemented for the BlockLduMatrix: GMRES and BiCGStab.
In general the bi-conjugate gradient stabilized solver was found more prone to diverge,
wherefore it is not used in this work. The dimension of the Krylov space (nDirections)
in combination with the maximum number of iterations (maxIter) has a significant effect
on the convergence rate of the coupled solver and will be tested separately in section 7.3.

7.1 2D coupled solver for pitzDaily

The two dimensional coupled solver (based on vector3) is benchmarked using the stan-
dard pitzDaily case. The solver data for the coupled solver is seen in table 1. The
solution and schemes dictionaries are given for this case in Appendix D.

Table 1: Solver configuration for the two dimensional coupled solver.

Solver GMRES
Preconditioner Cholesky
Convergence criteria 1e-9
Krylov space dimension (nDirections) 5
Max iterations 10
Underrelaxation p 1.0
Underrelaxation U 1.0
Underrelaxation k 0.7
Underrelaxation ε 0.7

The pressure can be seen in figure 2 for the solution of the block coupled solver.
The pressure for y = 0.0125 is given in figure 3 for both the simpleFoam and pUCou-

pledSolver. A minor discrepancy is seen in the pressure whereas the velocity profiles
coincide. Considering the convergence of the cases given in figure 4 it is seen that the
pressure in the coupled solution is further converged, likely explaining the minor differ-
ence. The profiles confirm that the new solver has been correctly implemented.

A performance comparison can be seen in figure 4. It is seen that the number
of iterations as well as the time to reach the same convergence is shorter for the block
coupled solver. It should be noted that the convergence of k is in this case approximately
converging as the velocity field.

Klas Jareteg 28

Project report - CFD with open source - 2012

Figure 2: Pressure profile for solution of the dailyPitz using pUCoupledFoam.

Figure 3: Pressure comparison for simpleFoam and pUCoupledFoam at line indicated in figure 2

0 200 400 600 800 1000
Iteration

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Re
si

du
al

s

(- simpleFoam, -- pUCoupledFoam)

Turbulent energy
Velocity (x)
Pressure

(a) Iterations

0 10 20 30 40 50 60 70 80 90
['Elapsed time [s]']

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Re
si

du
al

s

(- simpleFoam, -- pUCoupledFoam)

Turbulent energy
Velocity (x)
Pressure

(b) Elapsed time

Figure 4: Comparison of convergence for simpleFoam and pUCoupledFoam.

Klas Jareteg 29

Project report - CFD with open source - 2012

7.2 2D coupled solver for pitzDaily no turbulence

To eliminate the effect of the segregated turbulence model on the convergence rate, the
pitzDaily case was run with no turbulence. Whereas this is not necessarily a correct
approach from physics viewpoint, it will give a clearer comparison of the gain of the
block coupled approach.

Figure 5 shows a comparison of the convergence for the laminar case. The conver-
gence rate difference is larger as compared to the turbulent case (compare figure 4).
This is expected since the turbulence model excluded, was a segregated solver slowing
down the implemented block matrix. Figure 5b proposes a seven fold performance gain,
considering the convergence of the pressure.

0 200 400 600 800 1000
Iteration

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Re
si

du
al

s

(- simpleFoam, -- pUCoupledFoam)

Velocity (x)
Pressure

(a) Iterations

0 5 10 15 20 25 30 35 40
['Elapsed time [s]']

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Re
si

du
al

s

(- simpleFoam, -- pUCoupledFoam)

Velocity (x)
Pressure

(b) Elapsed time

Figure 5: Comparison of convergence for simpleFoam and pUCoupledFoam.

7.3 Sensitivity analysis of nDirections and maxIter of block GMRES

For the choice of the parameters of the GMRES solver, a separate parameter study is
performed. In figure 6 the convergence on pitzDaily without turbulence with the two
dimensional coupled solver is compared for different maximum numbers of iterations. As
can be seen from the figure increasing the number of iterations, leading to a more precise
result within each time iteration, will not give a smaller number of time iterations. On
the other hand, a higher number of maximum iterations will increase the time within
each iteration and thus the convergence is slower.

In the same manner, as displayed in figure 7b, increasing nDirections will not lead
to a faster convergence in iterations, but rather a slower convergence in time.

This kind of results show that when introducing the block coupled solver, new pa-
rameters must be investigated in order to get the fastest possible convergence rate. The
convergence rates will depend on the geometry and also the type of equations. As the
solved equations are non-linear, there are still explicit parts introduced in the equation,
and thus using a very high number of maximum iterations is not so beneficial.

Klas Jareteg 30

Project report - CFD with open source - 2012

0 200 400 600 800 1000
Iteration

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Re
si

du
al

s

maxIter=100
maxIter=50
maxIter=10
maxIter=5

(a) Iterations

0 20 40 60 80 100 120 140 160
Elapsed time [s]

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Re
si

du
al

s

maxIter=100
maxIter=50
maxIter=10
maxIter=5

(b) Elapsed time

Figure 6: Comparison of convergence of the maximum number of iterations for GMRES solver. Elapsed
time on horizontal axis.

0 200 400 600 800 1000
Iteration

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Re
si

du
al

s

50 directions
20 directions
10 directions
5 directions

(a) Iterations

0 20 40 60 80 100 120 140 160
Elapsed time [s]

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Re
si

du
al

s

50 directions
20 directions
10 directions
5 directions

(b) Elapsed time

Figure 7: Comparison of convergence of the Krylov space dimension (nDirections) for GMRES solver.
Elapsed time on horizontal axis.

7.4 Using 3D solver for 2D problems

As discussed in the introduction of section 6.2, the 3D solver can be used for 2D cal-
culations also, with a slight loss in performance. Such performance loss is outlined in
figure 8. Using the higher dimensional solver for the lower dimensional case leads to
a significantly lower performance. It is thus better to use a solver specialized for the
dimension of the problem.

Klas Jareteg 31

Project report - CFD with open source - 2012

0 50 100 150 200 250
Iteration

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Re
si

du
al

s

(- pUCoupledFoam3D, -- pUCoupledFoam)

Velocity (x)
Pressure

(a) Iterations

0 5 10 15 20 25 30
['Elapsed time [s]']

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Re
si

du
al

s

(- pUCoupledFoam3D, -- pUCoupledFoam)

Velocity (x)
Pressure

(b) Elapsed time

Figure 8: Comparison of convergence of the two dimensional and the three dimensional coupled solver
for the two dimensional pitzDaily case without turbulence.

7.5 Internal flow 3D case

In order to benchmark the three dimensional version of the coupled solver an internal flow
case was produced. The Geometry can be seen in figure 9. The mesh is constructed from
a single block using the cellSet utilities to select a set of the mesh. The underralaxation
factors and solver specifications can be seen in table 2.

Table 2: Solver configuration for the three dimensional coupled solver.

Block solver GMRES
Preconditioner Cholesky
Convergence criteria 1e-9
Krylov space dimension (nDirections) 10
Max iterations 10
Underrelaxation p 1.0
Underrelaxation U 1.0
Underrelaxation k 0.7
Underrelaxation ε 0.7

Pressure and velocity profiles can be seen for horizontal lines parallel to the x-axis
in in figures 10 and 11. The coupled solver again gives close to the same result as
simpleFoam. Again the explanation of the discrepancy is differing convergence (compare
figure 12).

Klas Jareteg 32

Project report - CFD with open source - 2012

Figure 9: Geometry and mesh for the 3D channel with a flow obstacle placed at the center. The mesh
consists of in total 624000 hexahedral elements.

Figure 10: Pressure profile comparison for (y,z) = (0.075,0.075).

Figure 11: Velocity profile comparison for (y,z) = (0.075,0.075).

Klas Jareteg 33

Project report - CFD with open source - 2012

A performance comparison can be seen in figure 12 and figure 13. The gain of the
block coupled approach is less obvious in this case as compared to the pitzDaily cases.
Considering figure 13a there is still a non-significant gain in the convergence per number
of iterations, except for the turbulent energy (k) which converges in the same number
of iterations. Comparing per time (figure 13b) it is seen that the convergence of k is
slower, which is again only another way to show that the number of iterations limits the
convergence of the turbulence model, not the convergence of the pressure and velocity
field. Thus, eventually the turbulence will limit the convergence of also the pressure and
the velocity and the gain from the block coupled solver is lost.

The dependence on the turbulence is also seen in the large change in convergence
rate (the slope in the figures) occurring after approximately 12 iterations. Although,
this could likely depend on the geometry, any such change is not seen in the laminar
case (compare figure 5).

0 50 100 150 200 250
Iteration

10-4

10-3

10-2

10-1

100

Re
si

du
al

s

(- pUCoupledFoam3D, -- simpleFoam)

Turbulent energy
Velocity (x)
Pressure

(a) Iterations

0 1000 2000 3000 4000 5000 6000 7000
['Elapsed time [s]']

10-4

10-3

10-2

10-1

100
Re

si
du

al
s

(- pUCoupledFoam3D, -- simpleFoam)

Turbulent energy
Velocity (x)
Pressure

(b) Elapsed time

Figure 12: Comparison of convergence of simpleFoam and pUCoupledFoam3D (250 iterations).

7.6 motorBike 3D case

Except for the pitzDaily case there is a second standard case for simpleFoam; mo-

torBike. The case was tested with the coupled solver, and was found divergent. Also
performing a few initial iterations by simpleFoam followed by the coupled solver was
found divergent.

Studying the result of the few iterations succesful before reach a floating point ex-
ception it was seen that the pressure and the velocity diverged close to some of the most
distorted cells close to the fender. The mesh for this region is shown in figure 14. As
seen the cells are highly skewed, which causes trouble in the coupled solver. Possibly
using limited schemes could remedy the troubles.

Klas Jareteg 34

Project report - CFD with open source - 2012

0 10 20 30 40 50 60 70 80
Iteration

10-4

10-3

10-2

10-1

100

Re
si

du
al

s

(- pUCoupledFoam3D, -- simpleFoam)

Turbulent energy
Velocity (x)
Pressure

(a) Iterations

0 200 400 600 800 1000 1200 1400 1600 1800
['Elapsed time [s]']

10-4

10-3

10-2

10-1

100

Re
si

du
al

s

(- pUCoupledFoam3D, -- simpleFoam)

Turbulent energy
Velocity (x)
Pressure

(b) Elapsed time

Figure 13: Comparison of convergence of simpleFoam and pUCoupledFoam3D (50 iterations).

Figure 14: Parts of the mesh generated by snappyHexMesh in the motorBike case.

Klas Jareteg 35

Project report - CFD with open source - 2012

8 Conclusions and outlook

In this work a pressure-velocity coupled solver for steady-state turbulent flow was imple-
mented in two and three dimensions. The solver was shown to give the same results as
simpleFoam for both the 2D and 3D cases. Large gains in performance was seen for the
2D case, both in the turbulent and, even more, in the laminar case. For the 3D case the
performance gain was smaller. The turbulence fields were seen to limit the convergence
of the case, and thus also limiting the full potential of the coupled solver.

Although convergence was not reached for the motorBike case, this does not neces-
sarily say so much about the algorithm, as the low quality of the mesh is apparent.

The work gives not only an insight in the OpenFOAM matrix and discretization pro-
cedures but also a clear indication of how the block matrix structure can be beneficially
used. Although not all of the framework existed, considering e.g. implict discretiza-
tions of gradient and divergence operators, the OpenFOAM code generality allows for
relatively fast and straightforward implementation of advanced solvers.

Future, further developments could include:

Coupling turbulence
In order to make the dependence on the turbulence smaller some coupled approach
also in the turbulence could be advantageous. Many models consist of a set of two
equations which are interdepedent with potential performance gain from coupled
solutions.

Transient modelling
Including also transient calculations would give a new possible benefit from the
coupled solver. As the pressure and velocity fields converges together, something
similar to the PIMPLE algorithm is immediately achieved without any iteration.
This can potentially give major time benefits.

Parallelization
The present implementation does not allow for parallelization. Parallelization in
combination with block matrix has been performed by Clifford [6], and is possible.

Coupled and cyclic boundaries
In the tutorial case dissected in section 5.2.2 special care was given to coupled inter-
faces. This was not implemented for the pressure-velocity solver. Such extension
would be necessary for certain applications, as rotating system, etc.

Code cleaning
To make coupled calculations easier to implement more implicit operators could
beneficially be implemented. To extract the code for the implicit gradient and
divergence operators implemented in this work could be a first step.

Klas Jareteg 36

Project report - CFD with open source - 2012

References

[1] OpenFOAM. Programmers Guide. Version 2.0.0. OpenFOAM Foundation, 2011.

[2] Hrvoje Jasak. Five basic classes in OpenFOAM. June 2010. url: http://web.
student.chalmers.se/groups/ofw5/Advanced_Training/FiveBasicClasses.

pdf.

[3] OpenFOAM Wiki. OpenFOAM guide/Matrices in OpenFOAM. 2012. url: http:
//openfoamwiki.net/index.php/OpenFOAM_guide/Matrices_in_OpenFOAM.

[4] Gradient operator implicit discretization. CFD-Online. 2012. url: http://www.
cfd- online.com/Forums/openfoam- solving/59717- gradient- operator-

implicit-discretization.html.

[5] Henrik Rusche and Hrvoje Jasak. Implicit solution techniques for coupled multi-
field problems Block Solution, Coupled Matrices. June 2010.

[6] Ivor Clifford. Block-Coupled Simulations Using OpenFOAM. June 2011.

[7] S.V. Patankar and D.B. Spalding. “A calculation procedure for heat, mass and
momentum transfer in three dimensional parabolic flows”. In: International Journal
of Heat and Mass Transfer 15 (Dec. 1972), pp. 1787–1806.

[8] M. Darwish, I. Sraj, and F. Moukalled. “A coupled finite volume solver for the solu-
tion of incompressible flows on unstructured grids”. In: Journal of Computational
Physics 228 (2009), pp. 180–201.

[9] OpenFOAM Wiki. The SIMPLE algorithm in OpenFOAM. Last visited: 2012-
09-27. Mar. 2010. url: http://openfoamwiki.net/index.php/The_SIMPLE_
algorithm_in_OpenFOAM.

[10] C.M. Rhie and W.L. Chow. “A numerical study of the turbulent flow past an iso-
lated airfoil with trailing edge separation”. In: AIAA Journal 21 (1983), pp. 1525–
1532.

[11] John C. Tannehill, Dale A. Anderson, and Richard H. Pletcher. Computational
Fluid Mechanics and Heat Transfer. second edition. Taylor & Francis, Washington,
USA, 997.

[12] Julia Springer et al. A coupled pressure based solution algorithm based on the
Volume-of-Fluid approach for two or more immiscible fluids. June 2010.

[13] L. Mangani and C. Bianchini. A coupled finite volume solver for the solution of
laminar/turbulent incompressible and compressible flows. June 2010.

Klas Jareteg 37

http://web.student.chalmers.se/groups/ofw5/Advanced_Training/FiveBasicClasses.pdf
http://web.student.chalmers.se/groups/ofw5/Advanced_Training/FiveBasicClasses.pdf
http://web.student.chalmers.se/groups/ofw5/Advanced_Training/FiveBasicClasses.pdf
http://openfoamwiki.net/index.php/OpenFOAM_guide/Matrices_in_OpenFOAM
http://openfoamwiki.net/index.php/OpenFOAM_guide/Matrices_in_OpenFOAM
http://www.cfd-online.com/Forums/openfoam-solving/59717-gradient-operator-implicit-discretization.html
http://www.cfd-online.com/Forums/openfoam-solving/59717-gradient-operator-implicit-discretization.html
http://www.cfd-online.com/Forums/openfoam-solving/59717-gradient-operator-implicit-discretization.html
http://openfoamwiki.net/index.php/The_SIMPLE_algorithm_in_OpenFOAM
http://openfoamwiki.net/index.php/The_SIMPLE_algorithm_in_OpenFOAM

Project report - CFD with open source - 2012

A Other sources on OpenFOAM block coupling

In order to grasp the idea of the blockCoupled matrix format a few presentations and
articles are worth mentioning, most originated from the OpenFOAM workshops or sim-
ilar:

[5]Henrik Rusche and Hrvoje Jasak. Implicit solution techniques for coupled multi-
field problems Block Solution, Coupled Matrices. June 2010
Basic introduction to the idea of region coupling and block coupling for CFD simulations.
Describes with a few examples how it has been implemented in OpenFOAM.

[6]Ivor Clifford. Block-Coupled Simulations Using OpenFOAM. June 2011
Gives theory of the block coupled solver, including solver strategy and matrix classes.
Outlines two different ways to use the functionality; either manually setting the off-diagonal
(coupled) terms, or by using pre-existing assembler routines block coupled equations of
equal structure.

[12]Julia Springer et al. A coupled pressure based solution algorithm based on the
Volume-of-Fluid approach for two or more immiscible fluids. June 2010
Example of Volume-of-Fluid (VOF) calculations performed, discretizing the phase equa-
tions and the pressure equations to a block coupled matrix.

Further, other works have presented the idea of block coupled solutions, without neces-
sary explicitly using the BlockLduMatrix matrix format, such as:

[13]L. Mangani and C. Bianchini. A coupled finite volume solver for the solution of
laminar/turbulent incompressible and compressible flows. June 2010
A general introduction to pressure-velocity coupling with block solvers. Gives multiple
examples of comparisons of segregated and coupled solutions, showing a major benefit in
the number of iterations.

[8]M. Darwish, I. Sraj, and F. Moukalled. “A coupled finite volume solver for the
solution of incompressible flows on unstructured grids”. In: Journal of Com-
putational Physics 228 (2009), pp. 180–201
A more detailed description of coupled pressure and velocity calculations for incompress-
ible, laminar flow independent of OpenFOAM. Theoretical base for [13].

Klas Jareteg 38

Project report - CFD with open source - 2012

B Tutorial case for blockCoupledScalarTransportFoam

A simple tutorial test case is implented in blockCoupledSwirlTest. The system consists
of a 2D rectangular area with a structured mesh and prescribed velocity field of the fluid,
as shown in Figure 15 The resulting temperatures can be seen in Figure 16.

Figure 15: Geometry for tutorial test case of the block coupled solver. Displaying velocity magnitude
in background with direction in glyphs.

Figure 16: Temperature distributions for the solid and fluid temperatures.

Benchmarking and comparison

This case has been compared to a segregated solver showing beneficial results for the
block coupled solver algorithm[5]. The number of iterations to reach convergence was
decreased by a factor of two approximately.

Klas Jareteg 39

Project report - CFD with open source - 2012

C Complete code for pUCoupledFoam

1 /∗−−−∗\
2 ========= |
3 \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O pera t i on |
5 \\ / A nd | Copyright he ld by o r i g i n a l author
6 \\/ M an ipu l a t i on |
7 −−−
8 License
9 This f i l e i s part o f OpenFOAM.

10

11 OpenFOAM i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or modify i t
12 under the terms o f the GNU General Publ ic L i cense as publ i shed by the
13 Free Software Foundation ; e i t h e r v e r s i on 2 o f the License , or (at your
14 opt ion) any l a t e r v e r s i on .
15

16 OpenFOAM i s d i s t r i b u t e d in the hope that i t w i l l be us e fu l , but WITHOUT
17 ANY WARRANTY; without even the impl i ed warranty o f MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Publ ic L i cense
19 f o r more d e t a i l s .
20

21 You should have r e c e i v ed a copy o f the GNU General Publ ic L i cense
22 along with OpenFOAM; i f not , wr i t e to the Free Software Foundation ,
23 Inc . , 51 Frankl in St , F i f th Floor , Boston , MA 02110−1301 USA
24

25 Appl i ca t ion
26 pvCoupledFoam
27

28 Desc r ip t i on
29 Steady−s t a t e s o l v e r f o r incompres s ib l e , tu rbu l ent f low , with imp l i c i t
30 coup l ing between pr e s su r e and v e l o c i t y achieved by BlockLduMatrix
31 Turbulence i s in t h i s v e r s i on so lved us ing the e x i s t i n g turbu lence
32 s t r u c tu r e .
33 Auther
34 Klas Jareteg , 2012−09−27−2012−10−16
35 Vers ion
36 0 .6
37

38 \∗−−−∗/
39

40 #inc lude ”fvCFD .H”
41 #inc lude ”s inglePhaseTransportModel .H”
42 #inc lude ”RASModel .H”
43

44

45 // Add the support f o r a r b i t r y vec to r s i z e types
46 #inc lude ”VectorNFieldTypes .H”
47 #inc lude ”vo lVectorNFie lds .H”
48

49 // Add the support f o r b lock matr i ce s
50 #inc lude ”blockLduSolvers .H”
51 #inc lude ”blockVectorNMatrices .H”
52

53 // Add the u t i l i t i e s wr i t t en f o r blockMatrix t rans f o rmat i ons
54 #inc lude ”blockMatr ixTools .H”
55

56 // Sur face i n t e r p o l a t i o n schemes to get the weights
57 #inc lude ”su r f a ce In t e rpo la t i onScheme .H”
58

59 // ∗ //

Klas Jareteg 40

Project report - CFD with open source - 2012

60

61 i n t main (i n t argc , char ∗argv [])
62 {
63 # inc lude ”setRootCase .H”
64 # inc lude ”createTime .H”
65

66 Info<< ”Create mesh f o r time = ”
67 << runTime . timeName () << Foam : : nl << Foam : : endl ;
68 Info<<” Mesh name : ”<<fvMesh : : defaultRegion<<endl ;
69 Foam : : fvMesh mesh

70 (
71 Foam : : IOobject
72 (
73 Foam : : fvMesh : : defaultRegion ,
74 // ” f l u i d ” ,
75 runTime . timeName () ,
76 runTime ,
77 Foam : : IOobject : : MUST_READ
78)
79) ;
80

81 Info << ”Reading f i e l d p\n” << endl ;
82 volScalarField p

83 (
84 IOobject

85 (
86 ”p” ,
87 runTime . timeName () ,
88 mesh ,
89 IOobject : : MUST_READ ,
90 IOobject : : AUTO_WRITE
91) ,
92 mesh

93) ;
94

95 Info << ”Reading f i e l d U\n” << endl ;
96 volVectorField U

97 (
98 IOobject

99 (
100 ”U” ,
101 runTime . timeName () ,
102 mesh ,
103 IOobject : : MUST_READ ,
104 IOobject : : AUTO_WRITE
105) ,
106 mesh

107) ;
108

109 #inc lude ”createPh i .H”
110

111 singlePhaseTransportModel laminarTransport (U , phi) ;
112 autoPtr<incompressible : : RASModel> turbulence

113 (
114 incompressible : : RASModel : : New (U , phi , laminarTransport)
115) ;
116

117 // Block vec to r f i e l d f o r the p r e s su r e and v e l o c i t y f i e l d to be so lved f o r
118 volVector4Field pU

119 (
120 IOobject

121 (

Klas Jareteg 41

Project report - CFD with open source - 2012

122 ”pU” ,
123 runTime . timeName () ,
124 mesh ,
125 IOobject : : NO_READ ,
126 IOobject : : NO_WRITE
127) ,
128 mesh ,
129 dimensionedVector4 (word () , dimless , vector4 : : zero)
130) ;
131

132 // I n s e r t the p r e s su r e and v e l o c i t y i n t e r n a l f i e l d s in to the vo lVec to r2F ie ld
133 {
134 vector4Field blockX = pU . internalField () ;
135

136 // Separate ly add the three v e l o c i t y components
137 f o r (i n t i=0; i<3;i++)
138 {
139 tmp<scalarField> tf = U . internalField () . component (i) ;
140 scalarField& f = tf () ;
141 blockMatrixTools : : blockInsert (i , f , blockX) ;
142 }
143

144 // Pressure i s the 2nd component
145 scalarField& f = p . internalField () ;
146 blockMatrixTools : : blockInsert (3 , f , blockX) ;
147 }
148

149 // ===//
150

151 Info<< ”\ nStar t ing time loop \n” << endl ;
152 whi le (runTime . loop ())
153 {
154 Info<< ”Time = ” << runTime . timeName () << nl << endl ;
155

156 p . storePrevIter () ;
157 U . storePrevIter () ;
158

159 const surfaceVectorField& Sf = p . mesh () . Sf () ;
160 const unallocLabelList& owner = mesh . owner () ;
161 const unallocLabelList& neighbour = mesh . neighbour () ;
162

163 {
164 vector4Field blockX = pU . internalField () ;
165

166 // Separate ly add the three v e l o c i t y components
167 f o r (i n t i=0; i<3;i++)
168 {
169 tmp<scalarField> tf = U . internalField () . component (i) ;
170 scalarField& f = tf () ;
171 blockMatrixTools : : blockInsert (i , f , blockX) ;
172 }
173

174 // Pressure i s the 2nd component
175 scalarField& f = p . internalField () ;
176 blockMatrixTools : : blockInsert (3 , f , blockX) ;
177

178

179 // ===//
180 // Ve loc i ty equat ion (LHS) matrix
181 // ===//
182 tmp<fvVectorMatrix> UEqnLHS

183 (

Klas Jareteg 42

Project report - CFD with open source - 2012

184 fvm : : div (phi , U)
185 + turbulence−>divDevReff (U)
186) ;
187

188 // Matrix block
189 BlockLduMatrix<vector4> B (mesh) ;
190

191 // Diagonal i s s e t s epa r a t e l y
192 Field<tensor4>& d = B . diag () . asSquare () ;
193

194 // Off−d iagona l a l s o as square
195 Field<tensor4>& u = B . upper () . asSquare () ;
196 Field<tensor4>& l = B . lower () . asSquare () ;
197

198 // Source term f o r the block matrix
199 Field<vector4> s (mesh . nCells () , vector4 : : zero) ;
200

201 // Add the boundary con t r i bu t i on s f o r the v e l o c i t y equat ion
202 tmp<scalarField> tdiag = UEqnLHS () . D () ;
203 scalarField& diag = tdiag () ;
204 scalarField& upper = UEqnLHS () . upper () ;
205 scalarField& lower = UEqnLHS () . lower () ;
206

207 // Add diagona l boundary con t r i bu t i on
208 // This i s automat i ca l l y done when you do UEqnLHS () .D() ;
209 //UEqnLHS () . addBoundaryDiag (diag , 0) ;
210

211 // Add source boundary con t r i bu t i on
212 vectorField& source = UEqnLHS () . source () ;
213 UEqnLHS () . addBoundarySource (source , f a l s e) ;
214

215 // ===//
216 // Pressure g rad i en t matrix
217 // ===//
218 // I n t e r p o l a t i o n scheme f o r the p r e s su r e weights
219 tmp<surfaceInterpolationScheme<scalar> >
220 tinterpScheme_

221 (
222 surfaceInterpolationScheme<scalar > : : New
223 (
224 p . mesh () ,
225 p . mesh () . interpolationScheme (”grad (p) ”)
226)
227) ;
228

229 // Pressure g rad i en t c on t r i bu t i on s − corresponds to an imp l i c i t
230 // grad i en t operator
231 tmp<vectorField> tpUv = tmp<vectorField>
232 (
233 new vectorField (upper . size () , pTraits<vector > : : zero)
234) ;
235 vectorField& pUv = tpUv () ;
236 tmp<vectorField> tpLv = tmp<vectorField>
237 (
238 new vectorField (lower . size () , pTraits<vector > : : zero)
239) ;
240 vectorField& pLv = tpLv () ;
241 tmp<vectorField> tpSv = tmp<vectorField>
242 (
243 new vectorField (source . size () , pTraits<vector > : : zero)
244) ;
245 vectorField& pSv = tpSv () ;

Klas Jareteg 43

Project report - CFD with open source - 2012

246 tmp<vectorField> tpDv = tmp<vectorField>
247 (
248 new vectorField (diag . size () , pTraits<vector > : : zero)
249) ;
250 vectorField& pDv = tpDv () ;
251

252 // 2) Use i n t e r p o l a t i o n weights to assemble the con t r i bu t i on s
253 tmp<surfaceScalarField> tweights = tinterpScheme_ () . weights (p) ;
254 const surfaceScalarField& weights = tweights () ;
255

256 f o r (i n t i=0;i<owner . size () ; i++)
257 {
258 i n t o = owner [i] ;
259 i n t n = neighbour [i] ;
260 scalar w = weights . internalField () [i] ;
261 vector s = Sf [i] ;
262

263 pDv [o]+=s∗w ;
264 pDv [n]−=s∗(1−w) ;
265 pLv [i]=−s∗w ;
266 pUv [i]=s∗(1−w) ;
267

268 }
269

270 // Get boundary cond i t i on con t r i bu t i on s f o r p r e s su r e grad (P)
271 p . boundaryField () . updateCoeffs () ;
272 forAll (p . boundaryField () , patchI)
273 {
274 // Present fvPatchFie ld
275 fvPatchField<scalar> & fv = p . boundaryField () [patchI] ;
276

277 // Retr i eve the weights f o r the boundary
278 const fvsPatchScalarField& pw = weights . boundaryField () [patchI] ;
279

280 // Contr ibut ions from the boundary c o e f f i c i e n t s
281 tmp<Field<scalar> > tic = fv . valueInternalCoeffs (pw) ;
282 Field<scalar>& ic = tic () ;
283 tmp<Field<scalar> > tbc = fv . valueBoundaryCoeffs (pw) ;
284 Field<scalar>& bc = tbc () ;
285

286 // Get the fvPatch only
287 const fvPatch& patch = fv . patch () ;
288

289 // Sur face normals f o r t h i s patch
290 tmp<Field<vector> > tsn = patch . Sf () ;
291 Field<vector> sn = tsn () ;
292

293 // Manually add the con t r i bu t i on s from the boundary
294 // This what happens with addBoundaryDiag , addBoundarySource
295 forAll (fv , facei)
296 {
297 label c = patch . faceCells () [facei] ;
298

299 pDv [c]+=ic [facei]∗ sn [facei] ;
300 pSv [c]−=bc [facei]∗ sn [facei] ;
301 }
302 }
303

304 // ===//
305 // Assemble momentum equat ion
306 // ===//
307 // Assemble the momentum equat ion con t r i bu t i on s

Klas Jareteg 44

Project report - CFD with open source - 2012

308 forAll (d , i)
309 {
310 d [i] (0 , 0) = diag [i] ;
311 d [i] (1 , 1) = diag [i] ;
312 d [i] (2 , 2) = diag [i] ;
313

314 d [i] (0 , 3) = pDv [i] . x () ;
315 d [i] (1 , 3) = pDv [i] . y () ;
316 d [i] (2 , 3) = pDv [i] . z () ;
317 }
318 forAll (l , i)
319 {
320 l [i] (0 , 0) = lower [i] ;
321 l [i] (1 , 1) = lower [i] ;
322 l [i] (2 , 2) = lower [i] ;
323

324 l [i] (0 , 3) = pLv [i] . x () ;
325 l [i] (1 , 3) = pLv [i] . y () ;
326 l [i] (2 , 3) = pLv [i] . z () ;
327 }
328 forAll (u , i)
329 {
330 u [i] (0 , 0) = upper [i] ;
331 u [i] (1 , 1) = upper [i] ;
332 u [i] (2 , 2) = upper [i] ;
333

334 u [i] (0 , 3) = pUv [i] . x () ;
335 u [i] (1 , 3) = pUv [i] . y () ;
336 u [i] (2 , 3) = pUv [i] . z () ;
337 }
338 forAll (s , i)
339 {
340 s [i] (0) = source [i] . x()+pSv [i] . x () ;
341 s [i] (1) = source [i] . y()+pSv [i] . y () ;
342 s [i] (2) = source [i] . z()+pSv [i] . z () ;
343 }
344

345 // ===//
346 // Create imp l i c i t v e l o c i t y (LHS) f o r con t i nu i t y equat ion
347 // ===//
348 // Again an imp l i c i t v e r s i on not ex i s t i n g , now the div operator
349 tmp<surfaceInterpolationScheme<scalar> >
350 UtinterpScheme_

351 (
352 surfaceInterpolationScheme<scalar > : : New
353 (
354 U . mesh () ,
355 U . mesh () . interpolationScheme (”div (U) (imp l i c i t) ”)
356)
357) ;
358

359

360 // 1) Setup diagonal , source , upper and lower
361 tmp<vectorField> tMUpper = tmp<vectorField>
362 (new vectorField (upper . size () , pTraits<vector > : : zero)) ;
363 vectorField& MUpper = tMUpper () ;
364

365 tmp<vectorField> tMLower = tmp<vectorField>
366 (new vectorField (lower . size () , pTraits<vector > : : zero)) ;
367 vectorField& MLower = tMLower () ;
368

369 tmp<vectorField> tMDiag = tmp<vectorField>

Klas Jareteg 45

Project report - CFD with open source - 2012

370 (new vectorField (diag . size () , pTraits<vector > : : zero)) ;
371 vectorField& MDiag = tMDiag () ;
372

373 tmp<vectorField> tMSource = tmp<vectorField>
374 (
375 new vectorField

376 (
377 source . component (0) () . size () , pTraits<vector > : : zero
378)
379) ;
380 vectorField& MSource = tMSource () ;
381

382 // 2) Use i n t e r p o l a t i o n weights to assemble the con t r i bu t i on s
383 tmp<surfaceScalarField> tMweights =
384 UtinterpScheme_ () . weights (mag (U)) ;
385 const surfaceScalarField& Mweights = tMweights () ;
386

387 f o r (i n t i=0;i<owner . size () ; i++)
388 {
389 i n t o = owner [i] ;
390 i n t n = neighbour [i] ;
391 scalar w = Mweights . internalField () [i] ;
392 vector s = Sf [i] ;
393

394 MDiag [o]+=s∗w ;
395 MDiag [n]−=s∗(1−w) ;
396 MLower [i]=−s∗w ;
397 MUpper [i]=s∗(1−w) ;
398 }
399

400 // Get boundary cond i t i on con t r i bu t i on s f o r the p r e s su r e grad (P)
401 U . boundaryField () . updateCoeffs () ;
402 forAll (U . boundaryField () , patchI)
403 {
404 // Present fvPatchFie ld
405 fvPatchField<vector> & fv = U . boundaryField () [patchI] ;
406

407 // Retr i eve the weights f o r the boundary
408 const fvsPatchScalarField& Mw =
409 Mweights . boundaryField () [patchI] ;
410

411 // Contr ibut ions from the boundary c o e f f i c i e n t s
412 tmp<Field<vector> > tic = fv . valueInternalCoeffs (Mw) ;
413 Field<vector>& ic = tic () ;
414 tmp<Field<vector> > tbc = fv . valueBoundaryCoeffs (Mw) ;
415 Field<vector>& bc = tbc () ;
416

417 // Get the fvPatch only
418 const fvPatch& patch = fv . patch () ;
419

420 // Sur face normals f o r t h i s patch
421 tmp<Field<vector> > tsn = patch . Sf () ;
422 Field<vector> sn = tsn () ;
423

424 // Manually add the con t r i bu t i on s from the boundary
425 // This what happens with addBoundaryDiag , addBoundarySource
426 forAll (fv , facei)
427 {
428 label c = patch . faceCells () [facei] ;
429

430 MDiag [c]+=cmptMultiply (ic [facei] , sn [facei]) ;
431 MSource [c]−=cmptMultiply (bc [facei] , sn [facei]) ;

Klas Jareteg 46

Project report - CFD with open source - 2012

432 }
433 }
434

435 // ===//
436 // Create e x p l i c i t and imp l i c t p r e s su r e par t s f o r con t i nu i t y equat ion
437 // ===//
438 // Pressure par t s o f the mass equat ion
439 tmp<volScalarField> tA = UEqnLHS () . A () ;
440 volScalarField& A = tA () ;
441

442 tmp<volVectorField> texp = fvc : : grad (p) ;
443 volVectorField& exp = texp () ;
444 tmp<volVectorField> texp2 = exp/A ;
445 volVectorField exp2 = texp2 () ;
446

447 tmp<fvScalarMatrix> MEqnLHSp

448 (
449 −fvm : : laplacian (1/A , p)
450 ==
451 −fvc : : div (exp2)
452) ;
453

454 // Add the boundary con t r i bu t i on s
455 scalarField& pMdiag = MEqnLHSp () . diag () ;
456 scalarField& pMupper = MEqnLHSp () . upper () ;
457 scalarField& pMlower = MEqnLHSp () . lower () ;
458

459 // Add diagona l boundary con t r i bu t i on
460 MEqnLHSp () . addBoundaryDiag (pMdiag , 0) ;
461

462 // Add source boundary con t r i bu t i on
463 scalarField& pMsource = MEqnLHSp () . source () ;
464 MEqnLHSp () . addBoundarySource (pMsource , f a l s e) ;
465

466 // ===//
467 // Assemble mass equat ion
468 // ===//
469 forAll (d , i)
470 {
471 d [i] (3 , 0) = MDiag [i] . x () ;
472 d [i] (3 , 1) = MDiag [i] . y () ;
473 d [i] (3 , 2) = MDiag [i] . z () ;
474 d [i] (3 , 3) = pMdiag [i] ;
475 }
476 forAll (l , i)
477 {
478 l [i] (3 , 0) = MLower [i] . x () ;
479 l [i] (3 , 1) = MLower [i] . y () ;
480 l [i] (3 , 2) = MLower [i] . z () ;
481 l [i] (3 , 3) = pMlower [i] ;
482 }
483 forAll (u , i)
484 {
485 u [i] (3 , 0) = MUpper [i] . x () ;
486 u [i] (3 , 1) = MUpper [i] . y () ;
487 u [i] (3 , 2) = MUpper [i] . z () ;
488 u [i] (3 , 3) = pMupper [i] ;
489 }
490 forAll (s , i)
491 {
492 s [i] (3) = MSource [i] . x ()
493 +MSource [i] . y ()

Klas Jareteg 47

Project report - CFD with open source - 2012

494 +MSource [i] . z ()
495 +pMsource [i] ;
496 }
497

498 // ===//
499 // Solve the block matrix
500 // ===//
501 BlockSolverPerformance<vector4> solverPerf =
502 BlockLduSolver<vector4 > : : New
503 (
504 word (”blockVar ”) ,
505 B ,
506 mesh . solver (”blockVar ”)
507)−>solve (pU , s) ;
508

509 solverPerf . print () ;
510

511 // ===//
512 // Retr i eve the s o l u t i o n and update f o r next i t e r a t i o n
513 // ===//
514

515 tmp<scalarField> tUx = U . internalField () . component (0) ;
516 scalarField& Ux = tUx () ;
517 blockMatrixTools : : blockRetrieve (0 , Ux , pU) ;
518 U . internalField () . replace (0 , Ux) ;
519

520 tmp<scalarField> tUy = U . internalField () . component (1) ;
521 scalarField& Uy = tUy () ;
522 blockMatrixTools : : blockRetrieve (1 , Uy , pU) ;
523 U . internalField () . replace (1 , Uy) ;
524

525 tmp<scalarField> tUz = U . internalField () . component (2) ;
526 scalarField& Uz = tUz () ;
527 blockMatrixTools : : blockRetrieve (2 , Uz , pU) ;
528 U . internalField () . replace (2 , Uz) ;
529

530 blockMatrixTools : : blockRetrieve (3 , p . internalField () , pU) ;
531

532 UEqnLHS . clear () ;
533

534 p . relax () ;
535

536 U . correctBoundaryConditions () ;
537 p . correctBoundaryConditions () ;
538

539 }
540

541 phi = fvc : : interpolate (U) & mesh . Sf () ;
542 turbulence−>correct () ;
543 runTime . write () ;
544

545 Info<< ”ExecutionTime = ” << runTime . elapsedCpuTime () << ” s ”
546 << ” ClockTime = ” << runTime . elapsedClockTime () << ” s ”
547 << nl << endl ;
548

549 }
550

551 Info<< ”End\n” << endl ;
552

553 re turn 0 ;
554 }

Klas Jareteg 48

Project report - CFD with open source - 2012

Listing 19: pUCoupledFoam

Klas Jareteg 49

Project report - CFD with open source - 2012

D Case specifications for benchmarks

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM Extend Pro j ec t : Open Source CFD |
4 | \\ / O pera t i on | Vers ion : 1.6− ext |
5 | \\ / A nd | Web: www. extend−p ro j e c t . de |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile

9 {
10 version 2 . 0 ;
11 format ascii ;
12 c l a s s dictionary ;
13 object fvSolution ;
14 }
15 // ∗ //
16

17 solvers

18 {
19

20 blockVar

21 {
22 solver GMRES ;
23 preconditioner Cholesky ;
24 nDirections 5 ;
25

26 tolerance 1e−09;
27 relTol 0 ;
28

29 minIter 1 ;
30 maxIter 10 ;
31 }
32

33

34 p

35 {
36 solver PCG ;
37 preconditioner DIC ;
38 tolerance 1e−06;
39 relTol 0 . 0 1 ;
40 } ;
41 U

42 {
43 solver PBiCG ;
44 preconditioner DILU ;
45 tolerance 1e−05;
46 relTol 0 . 1 ;
47 } ;
48 k

49 {
50 solver PBiCG ;
51 preconditioner DILU ;
52 tolerance 1e−05;
53 relTol 0 . 1 ;
54 } ;
55 epsilon

56 {
57 solver PBiCG ;
58 preconditioner DILU ;
59 tolerance 1e−05;

Klas Jareteg 50

Project report - CFD with open source - 2012

60 relTol 0 . 1 ;
61 } ;
62 R

63 {
64 solver PBiCG ;
65 preconditioner DILU ;
66 tolerance 1e−05;
67 relTol 0 . 1 ;
68 } ;
69 nuTilda

70 {
71 solver PBiCG ;
72 preconditioner DILU ;
73 tolerance 1e−05;
74 relTol 0 . 1 ;
75 } ;
76 }
77

78 SIMPLE

79 {
80 nNonOrthogonalCorrectors 0 ;
81 }
82

83 relaxationFactors

84 {
85 p 1 . 0 ;
86 U 1 . 0 ;
87 k 0 . 7 ;
88 epsilon 0 . 7 ;
89 }
90

91 // ∗∗∗ //

Listing 20: fvSolution for and pUCoupledFoam for the coupled case benchmark. For simpleFoam

underralaxation is applied to p(0.3) and U(0.7).

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM Extend Pro j ec t : Open Source CFD |
4 | \\ / O pera t i on | Vers ion : 1.6− ext |
5 | \\ / A nd | Web: www. extend−p ro j e c t . de |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile

9 {
10 version 2 . 0 ;
11 format ascii ;
12 c l a s s dictionary ;
13 object fvSchemes ;
14 }
15 // ∗ //
16

17 ddtSchemes

18 {
19 de f au l t steadyState ;
20 }
21

22 gradSchemes

23 {
24 de f au l t Gauss linear ;
25 grad (p) Gauss linear ;

Klas Jareteg 51

Project report - CFD with open source - 2012

26 grad (U) Gauss linear ;
27 }
28

29 divSchemes

30 {
31 de f au l t none ;
32 div (phi , U) Gauss upwind ;
33 div (phi , k) Gauss upwind ;
34 div (phi , epsilon) Gauss upwind ;
35 div (phi , R) Gauss upwind ;
36 div (R) Gauss linear ;
37 div (phi , nuTilda) Gauss upwind ;
38 div ((nuEff∗dev (grad (U) . T ()))) Gauss linear ;
39 div ((grad (p) | A (U))) Gauss linear ;
40 }
41

42 laplacianSchemes

43 {
44 de f au l t none ;
45 laplacian (nuEff , U) Gauss linear corrected ;
46 laplacian ((1 | A (U)) , p) Gauss linear corrected ;
47 laplacian (DkEff , k) Gauss linear corrected ;
48 laplacian (DepsilonEff , epsilon) Gauss linear corrected ;
49 laplacian (DREff , R) Gauss linear corrected ;
50 laplacian (DnuTildaEff , nuTilda) Gauss linear corrected ;
51 }
52

53 interpolationSchemes

54 {
55 de f au l t linear ;
56 interpolate (U) linear ;
57 div (p) linear ;
58 }
59

60 snGradSchemes

61 {
62 de f au l t corrected ;
63 }
64

65 fluxRequired

66 {
67 de f au l t no ;
68 p ;
69 }
70

71 // ∗∗∗ //

Listing 21: fvSchemes for simpleFoam and pUCoupledFoam cases.

Klas Jareteg 52

	Introduction and overview
	Block coupled systems
	Formulation
	Non-linear dependencies

	
	Advantages and drawbacks

	OpenFOAM matrix structure, assembling and solving
	polyMesh
	lduMatrix format
	fvMatrix
	fvm and fvc discretization
	Discretization of boundary conditions

	OpenFOAM block coupling implementation
	Classes related to block coupling
	Example solver blockCoupledScalarTransport
	Alternative approach for equations of equal structure

	Implementing pressure and velocity coupling
	Coupled model
	OpenFOAM implementation

	Results of pUCoupledFoam
	2D coupled solver for pitzDaily
	2D coupled solver for pitzDaily no turbulence
	Sensitivity analysis of nDirections and maxIter of block GMRES
	Using 3D solver for 2D problems
	Internal flow 3D case
	motorBike 3D case

	Conclusions and outlook
	Other sources on OpenFOAM block coupling
	Tutorial case for blockCoupledScalarTransportFoam
	Complete code for pUCoupledFoam
	Case specifications for benchmarks

