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1 SOLVER CONJUGATEHEATFOAM

Tutorial conjugateHeatFoam

1 Solver conjugateHeatFoam

This section descriebes how the conjugateHeatFoam solver works. An important section to be able
to continue with cases involving this solver. The solver is included in OpenFoam-1.5-dev and can
be found here:

cd $FOAM_SOLVERS/conjugate/conjugateHeatFoam

If the solver is missing it can be downloaded from openfoam-extend.wiki.sourceforge.net/ [1]

cd $FOAM_SOLVERS/

svn checkout http://openfoam-extend.svn.sourceforge.net/svnroot/openfoam-extend/

trunk/Core/OpenFOAM-1.5-dev/applications/solvers/conjugate/conjugateHeatFoam/

cd conjugateHeatFoam

wmake

Now, back to a deeper look into the solver. The conjugateHeatFoam solver is a solver for heat
transfer problems where multiple regions occurs. For example how the free stream flow influences
the cooling of a hot wall, heat interaction between water and steel and vice versa. These regions are
all associated with its own mesh, in other words, one mesh for the fluid part and one mesh for the
solid part.

The fluid part of the solver is based on the icoFoam solver and is therefore restricted to laminar,
incompressible flow of Newtonian fluids. The flow equations is by this only solved for the fluid part
of the domain. The energy equation is in the other hand solved for both the fluid and solid part.
The energy equation is solved in a coupled manner at the matrix level.

To be able to change information between the solid part and the fluid part of the domain a speciel
boundary condition, regionCouple is used. This boundary condition is active where the interaction
between the two domains occurs.

1.1 Included parts in the conjugateHeatFoam solver

All code for the conjugateHeatFoam solver is found in its directory;
$FOAM_SOLVERS/conjugate/conjugateHeatFoam. Some of its part is already included in Open-
FOAM by default and is therefore loaded into the solver by #include. Which external data needed
by the solver is found in the main file, conjugateHeatFoam.C and is presented below.

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

#include "fvCFD.H"

#include "coupledFvMatrices.H"

#include "regionCouplePolyPatch.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

int main(int argc, char *argv[])

{

# include "setRootCase.H"

# include "createTime.H"

# include "createFluidMesh.H"

# include "createSolidMesh.H"

# include "createFields.H"

# include "createSolidFields.H"

# include "initContinuityErrs.H"

Where the included files is found and what it is doing is briefly descreibed below:
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1.1 Included parts in the conjugateHeatFoam solver 1 SOLVER CONJUGATEHEATFOAM

• fvCFD.H - A standard file for the finite volume method in OpenFOAM.
\$FOAM_SRC/finiteVolume/cfdTools/general/include/

• coupledFvMatrices.H - Header class for coupledFvMatrices. A coupled finite-volume member.
\$FOAM_SRC/coupledMatrix/coupledFvMatrices/

• regionCouplePolyPatch.H - A region couple poly patch used particular for multi region conju-
gate simulations.
\$FOAM_SRC/OpenFOAM/meshes/polyMesh/polyPatches/constraint/regionCouple/

• setRootCase.H - Checks the folder structure of the case. If problems occurs a ”FATAL ER-
ROR” is returned.
\$FOAM_SRC/OpenFOAM/include/

• createTime.H - Checks runtime according to the controlDict and initiate the time variables.
\$FOAM_SRC/OpenFOAM/include/

• createFluidMesh.H - Defines the fluid part of the domain.
\$FOAM_SOLVERS/conjugate/conjugateHeatFoam/

• createSolidMesh.H -Defines the solid part of the domain.
\$FOAM_SOLVERS/conjugate/conjugateHeatFoam/

• createFields.H - Creates the fields for the fluid part of the domain, i.e U, p, T, DT, phi.
\$FOAM_SOLVERS/conjugate/conjugateHeatFoam/

• createSolidFields.H - Creates the fields for the solid part of the domain.
\$FOAM_SOLVERS/conjugate/conjugateHeatFoam/

• initContinuityErrs.H - Declare and initialise the cumulative continuity error.
\$FOAM_SRC/finiteVolume/cfdTools/general/include/

The second part of the conjugateHeatFoam.C file contains the solver loop. It is here the runTime
field is set, which confirms the runtime and the equations are loaded and solved by the solver.

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Info<< "\nStarting time loop\n" << endl;

for (runTime++; !runTime.end(); runTime++)

{

Info<< "Time = " << runTime.timeName() << nl << endl;

# include "solveFluid.H"

# include "solveEnergy.H"

runTime.write();

Info<< "ExecutionTime = "

<< runTime.elapsedCpuTime()

<< " s\n\n" << endl;

}

Info<< "End\n" << endl;

return(0);

}

// ************************************************************************* //

The equations that is going to be solved during the process are external, solveFluid.H and
solveEnergy.H files and are loaded into the solver separately.
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1.2 solveFluid.H 1 SOLVER CONJUGATEHEATFOAM

1.2 solveFluid.H

{

// Detach patches

# include "detachPatches.H"

# include "readPISOControls.H"

# include "CourantNo.H"

fvVectorMatrix UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

- fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

// --- PISO loop

for (int corr = 0; corr < nCorr; corr++)

{

U = UEqn.H()/UEqn.A();

U.correctBoundaryConditions();

phi = fvc::interpolate(U) & mesh.Sf();

for (int nonOrth = 0; nonOrth <= nNonOrthCorr; nonOrth++)

{

fvScalarMatrix pEqn

(

fvm::laplacian(1.0/UEqn.A(), p) == fvc::div(phi)

);

pEqn.setReference(pRefCell, pRefValue);

pEqn.solve();

if (nonOrth == nNonOrthCorr)

{

phi -= pEqn.flux();

}

}

# include "continuityErrs.H"

U -= fvc::grad(p)/UEqn.A();

U.correctBoundaryConditions();

}

}

It is the flow equations for the fluid part of the domain that are found in the solveFluid.H file.
The equation that is solved is naver-stokes, simplified by assuming laminar incompressible flow.

∂u

∂t
+∇(φu)−∇(ν∇u) = −∇p (1)

After the flow equations are solved the iteration loop enters the PISO-loop and a corrector loop is
initiated by;

for (int corr=0; corr<nCorr; corr++).

Also corrects the velocities according to the newest calculated pressurefield. In the end it cal-
culate the continuity errors. The loop is done a prescribed number of times which is set in the
fvSolution file found in /system/fvSolution [2].
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1.3 solveEnergy.H 2 CONJUGATEHEATFOAM EXAMPLE

PISO

{

nCorrectors 2; // Number of times to run the PISO-loop corrector.

}

The PISO-loop is an efficient method to solve unsteady problems in the Navier-Stokes equation.
Compared to the SIMPLE algorithm the PISO algorithm dont needs under-relaxation. It also al-
lows the user to calculate the momentum corrector more than once. As it can be seen above it is
done two times (nCorrectors 2).

1.3 solveEnergy.H

{

// Decoupled patches

# include "attachPatches.H"

// Solid side

# include "readSolidControls.H"

for (int nonOrth = 0; nonOrth <= nNonOrthCorr; nonOrth++)

{

coupledFvScalarMatrix TEqns(2);

// Add fluid equation

TEqns.set

(

0,

new fvScalarMatrix

(

fvm::ddt(T)

+ fvm::div(phi, T)

- fvm::laplacian(DT, T)

)

);

// Add solid equation

TEqns.set

(

1,

new fvScalarMatrix

(

fvm::ddt(Tsolid) - fvm::laplacian(DTsolid, Tsolid)

)

);

TEqns.solve();

}

}

The energy equation is solved for both domains and the communication between them is done
by the previous mentioned boundary condition, regionCouple.

∂T

∂t
+∇(φT )−∇(α∇T ) = 0 (2)

∂Tsolid
∂t

−∇(αsolid∇T ) = 0 (3)

2 conjugateHeatFoam example

To get better understanding of the conjugateHeatFoam solver a simple case is going to be used and
solved. The case is already built in as a tutorial in OpenFoam-1.5-dev and can be found here:
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2 CONJUGATEHEATFOAM EXAMPLE

cd $FOAM_TUTORIALS/conjugateHeatFoam

If the tutorial is missing it can be downloaded from openfoam-extend.wiki.sourceforge.net/:

run

svn checkout http://openfoam-extend.svn.sourceforge.net/svnroot/openfoam-extend/

trunk/Core/OpenFOAM-1.5-dev/tutorials/conjugateHeatFoam/

cd conjugateHeatFoam

A first look in the conjugateHeatFoam tutorial makes it easy to believe that there is two cases, but
that is wrong, there is instead two ”cases” or domains combined as mentioned before. The folders
and files are structured in a specific way, described by the following figure. The conjugateCavity case
contains links, as for example the 0 folder. This link, links to the information from the heatedBlock
case. The solver is therefore started in the conjugateCavity case and the information from the
heatedBlock case is taken through the links. How the information is transferred between the different
domains is described below.

Figure 1: Folder-structure of a conjugateHeatFoam case

The information from the heatedBlock-case are linked to the conjugateCavity-case. The folder
structure is read by the solver and the domains are solved separately. The information between
them are as mentioned before transferred between the cases through the coupled boundary function,
regionCoupling.

IMPORTANT: During the tutorial the root-folder will be mentioned as conjugateHeatFoam. As
it can be seen in the figure over the folder structure the conjugateHeatFoam folder is at the top, and
contains both cases. If blockMesh does not work the firs time, try a second time since its a common
bug that a error message occur the first time.
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2.1 Problem specification 2 CONJUGATEHEATFOAM EXAMPLE

2.1 Problem specification

Figure 2: Domain, initial conditions

The geometry of this case consists of a two blocks, Figure 7, one of these blocks looks exactly the
same as the cavity case $FOAM TUTORIALS/icoFoam/cavity. This blocks is filled with air, with a
0.1x0.1 meter base and a deep of 0.01 meter. The second block has the same form as the first block
but contains the solid part of the domain. Due to the small deep the case is treated as a 2D-case.

Velocity on the cavity side is 1 m/s in positive x-direction. The internal temperaturefield is 273
K. The solid part of the domain has an internal temperature of 373 K and a right boundary layer
at 473 K. The coupled region is where the intersection between the two domain occurs.

Simple heat transfer knowledge tells that heat goes from hot to cold and a good assumption in
this case is that the heat will travel to the left part of the solid, into the fluid part of the domain.
Let’s see if this assumption is correct!

2.2 Mesh generation

The solid part of the mesh is found in the heatedBlock folder and is edited by:

gedit heatedBlock/constant/polyMesh/blockMeshDict

The entries are as follows:

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.3 |

| \\ / A nd | Web: http://www.openfoam.org |
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2.2 Mesh generation 2 CONJUGATEHEATFOAM EXAMPLE

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

convertToMeters 0.1;

vertices

(

(1 0 0)

(2 0 0)

(2 1 0)

(1 1 0)

(1 0 0.1)

(2 0 0.1)

(2 1 0.1)

(1 1 0.1)

);

blocks

(

hex (0 1 2 3 4 5 6 7) (10 10 1) simpleGrading (1 1 1)

);

edges

(

);

patches

(

patch topAndBottom

(

(3 7 6 2)

(1 5 4 0)

)

patch left

(

(0 4 7 3)

)

patch right

(

(2 6 5 1)

)

empty frontAndBack

(

(0 3 2 1)

(4 5 6 7)

)

);

mergePatchPairs

(

);

// ************************************************************************* //

7



2.2 Mesh generation 2 CONJUGATEHEATFOAM EXAMPLE

The solid mesh consists of a simple block with 10x10x1 cells. Case is symmetric in z-direction,
according to the empty-patch. Create the mesh by typing:

blockMesh -case heatedBlock/

The fluid mesh is found in the conjugaCavity-folder. Edit the mesh parameters by:

gedit conjugateCavity/constant/polyMesh/blockMeshDict

The entries are as follows:
/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.3 |

| \\ / A nd | Web: http://www.openfoam.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

convertToMeters 0.1;

vertices

(

(0 0 0)

(1 0 0)

(1 1 0)

(0 1 0)

(0 0 0.1)

(1 0 0.1)

(1 1 0.1)

(0 1 0.1)

);

blocks

(

hex (0 1 2 3 4 5 6 7) (10 10 1) simpleGrading (1 1 1)

);

edges

(

);

patches

(

wall movingWall

(

(3 7 6 2)

)
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2.2 Mesh generation 2 CONJUGATEHEATFOAM EXAMPLE

wall left

(

(0 4 7 3)

)

wall right

(

(2 6 5 1)

)

wall bottom

(

(1 5 4 0)

)

empty frontAndBack

(

(0 3 2 1)

(4 5 6 7)

)

);

mergePatchPairs

(

);

// ************************************************************************* //

The fluid mesh consists of a simple block of 10x10x1 cells. All sides exepts the symmtric ones
are treated as walls. Finally, create the fluid mesh by typing:

blockMesh -case conjugateCavity

At last the intersection between the two domains has to be specified. By looking at the blockMesh-
Dict in conjugateCavity case, it is the right patch that connects with the heatedBlock. At the
heatedBlocked it is the left patch that connects with the conjugateCavity case. To specify this, open
first the boundary in the conjugateCavity domain:

gedit conjugateCavity/constant/polyMesh/boundary

Replace the following lines:

right

{

type wall;

nFaces 10;

startFace 200;

}

With the following change:

right

{

type regionCouple;

nFaces 10;

startFace 200;

shadowRegion solid;

shadowPatch left;

attached on;

}
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2.3 Boundary conditions and initial fields 2 CONJUGATEHEATFOAM EXAMPLE

The same procedure is done in the heatedBlock domain.

gedit heatedBlock/constant/polyMesh/boundary

Replace the following lines:

left

{

type patch;

nFaces 10;

startFace 200;

}

With the following change:

left

{

type regionCouple;

nFaces 10;

startFace 200;

shadowRegion region0;

shadowPatch right;

attached on;

}

The shadowRegion tells the solver on which region it should get the neighbour information. In
this case is the shadowRegion getting its information from the conjugateCavity case.

The shadowPatch tells the solver on which patch in this region the intersection occurs which in
this case is the right patch on the conjugateCavity case. At last a specification if the surfaces should
be attached or not can be made. The differences between on or off is that when it is on, non-zero
velocity vectors is allowed at the surface. Off means that the velocity vectors is zero at the wall. In
this case, use attached on since the vectors then are allowed to be non-zero.

2.3 Boundary conditions and initial fields

Now, both meshes are created and there’s time to move on and set the boundary conditions. In this
case we are required to set the initial and boundary fields for velocity U and pressure p in the fluid
domain. Temperature T and the thermal diffusivities DT has to be set for both domains.

The pressure boundary are set to zeroGradient at all walls, except the front and back face
which are set to empty.

/*---------------------------------------------------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.3 |

| \\ / A nd | Web: http://www.openfoam.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

root "";

case "";

instance "";
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2.3 Boundary conditions and initial fields 2 CONJUGATEHEATFOAM EXAMPLE

local "";

class volScalarField;

object p;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

walls

{

type zeroGradient;

}

right

{

type fixedValue;

value uniform 0;

}

left

{

type zeroGradient;

}

cylinder

{

type zeroGradient;

}

defaultFaces

{

type empty;

}

}

// ************************************************************************* //

The boundaries for the velocity are set to zero velocity on the wall. The movingWall are set to
moving boundary with a velocty in (1,0,0) m/s. Front and back are as pressure set to empty.

/*---------------------------------------------------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.3 |

| \\ / A nd | Web: http://www.openfoam.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{
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2.3 Boundary conditions and initial fields 2 CONJUGATEHEATFOAM EXAMPLE

version 2.0;

format ascii;

root "";

case "";

instance "";

local "";

class volVectorField;

object U;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

walls

{

type fixedValue;

value uniform (0 0 0);

}

right

{

type zeroGradient;

}

left

{

type fixedValue;

value uniform (0.1 0 0);

}

cylinder

{

type fixedValue;

value uniform (0 0 0);

}

defaultFaces

{

type empty;

}

}

// ************************************************************************* //

It is when it comes to the temperature field and the thermal diffusivity field that it can become a
little bit tricky. First of all open the initial conditions for the temperature in the conjugateCavity
case.

gedit conjugateCavity/0/T

Be sure that the right boundary is set-up correctly since this boundary has as neighbour the left

12



2.4 Case control 2 CONJUGATEHEATFOAM EXAMPLE

patch on the heatedBlock side:

right

{

type regionCoupling;

value uniform 273;

remoteField T;

}

The remoteField is the oppsite patch, i.e the left on the heatedBlock case. Notice the higher uniform
temperature on the heatedBlock domain. Set the temperatures regionCoupling for the heatedBlock
case:

gedit heatedBlock/0/T

left

{

type regionCoupling;

value uniform 373;

remoteField T;

}

The same procedure is repeated for the thermal diffusivity.

gedit conjugateCavity/0/DT

right

{

type regionCoupling;

value uniform 1e-3;

remoteField DT;

}

Notice that on every patch where intersection occurs between the fields, the regionCoupling bound-
ary condition is used, it doesnt matter if it is the temperature of thermal diffusivty. The intersection
follows by a regionCoupling boundary condition. For the heatBlock the thermal diffusivity is set to
1e-3. The same on the conjugateCavity side.

gedit heatedBlock/0/DT

left

{

type regionCoupling;

value uniform 1e-3;

remoteField DT;

}

2.4 Case control

When the boundaries are set there is time to specify the case controls. A look in the conjugate-
Cavity/system directory shows controlDict, fvSolution and fvSchemes. By these files, all solver
parameters can be set, for example which interpolation scheme, solver control and how large the
time step should be.

2.4.1 controlDict

To change the timesteps and endtime of the calculation, it is enough to change this in the conju-
gateCavity/system/controlDict file. This due to that the conjugateHeatFoam solver reads this field

13



2.4 Case control 2 CONJUGATEHEATFOAM EXAMPLE

first. Open the controlDict file and set the solving endTime to 2s and the deltaT to 0.01s and
writeInterval 5s:

gedit conjugateCavity/system/controlDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.3 |

| \\ / A nd | Web: http://www.openfoam.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object controlDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

application icoFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 2;

deltaT 0.01;

writeControl timeStep;

writeInterval 5;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression uncompressed;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

// ************************************************************************* //

Notice that it is written icoFoam on the applications line. The fluid part of the domain uses as
mentioned before the icoFoam to solve the solution. By removing the regionCoupling boundary
conditions and replace them with a icoFoam friendly boundary conditions allows the user to run the
fluid part of the domain separately.

14



2.4 Case control 2 CONJUGATEHEATFOAM EXAMPLE

2.4.2 fvSolution

gedit conjugateCavity/system/fvSolution

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.5-dev |

| \\ / A nd | Web: http://www.openfoam.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object fvSolution;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

solvers

{

p PCG

{

preconditioner DIC;

tolerance 1e-06;

relTol 0;

};

U PBiCG

{

preconditioner DILU;

tolerance 1e-05;

relTol 0;

};

T+T BiCG

{

preconditioner

{

type Cholesky;

}

minIter 0;

maxIter 1000;

tolerance 1e-6;

relTol 0.0;

};

}

PISO

{

nCorrectors 2;

nNonOrthogonalCorrectors 0;

pRefCell 0;

pRefValue 0;

}

// ************************************************************************* //

It is in the fvSolution that the PISO-algorithm, mentioned above in the report, is found.
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The pressure is solved with the PCG (Preconditioned conjugate gradient) solver. The precondi-
tioner uses an option called DIC, which is Diagonal incomplete-Cholesky. The velocity U is solved
by the PBiCG solver. The PBiCG is the quite the as the PCG, the difference is that PCG uses
symmetric asymmetric lduMatrices when the the PBiCG uses asymmetric lduMatrices. As option
to this the DILU is used. DILU means Diagonal incomplete-LU. The temperature T+T is solved
using the BiCG solver (Bi-conjugate gradient).

The T+T means that there are two temperature fields. If there had been more fields there had
been more T:s too. Since the temperature in this case depends on two fields and that the fields can
consist of differnt size of meshes. The temperature needs there for to be iterated to fit between both
meshes. In this the maximum number of iterations is 1000.

The tolerance and relTol used when solving both U, p and T tells the specific solver when it
should end the iteration for the specifik timestep. The initial value is based on the current value
and the solver stops either of the residuals falls below the tolerance or the the ratio of current to
initial residuals falls below the solver relative tolerance. Relative solver tolerance set to zero means
that the solver is forced to stop when the tolerance criteria is reached [7].

The following solver scheme are used for the heatedBlock case:

gedit heatedBlock/system/fvSolution

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.3 |

| \\ / A nd | Web: http://www.openfoam.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object fvSolution;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

solvers

{

T ICCG 1e-06 0;

}

SIMPLE

{

nNonOrthogonalCorrectors 0;

}

// ************************************************************************* //

Compared to the conjugateCavity domain the heatedBlock case is solved using the SIMPLE-algoritm.
Even if the heatedBlock doesnt have any pressure or velocity there needs to be a specified solution
algoritm. The one that is used officially by the conjugateHeatFoam solver is the PISO algorithm
which is descriebed above.

The temperature is solved using the incomplete Cholesky preconditioned conjugate gradient. It
is derived from the general preconditioned conjugate gradient but with a choice of a pre-selected
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preconditioner.

2.4.3 fvSchemes

The fvSchemes sets the numerical schemes to the case. It tells the solver in which manner the
different terms should be solved. In an euler way as the ddtScheme means that the term is solved
in first order, bounded and implicit way.

A Gauss linear way means that the discretisation using gauss. It needs also a interpolation
scheme and the linear scheme means that it interpolate by second order. The upwind also occurs
and this means interpolation in a first order upwind manner.

The laplacian schemes using corrected gauss linear schemes. The corrected addition means the
the interpolation needs to be conservative.

The chosen interpolation schemes for the conjugateCavity case is showned below:

gedit conjugateCavity/system/fvScheme

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.3 |

| \\ / A nd | Web: http://www.openfoam.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object fvSchemes;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

ddtSchemes

{

default Euler;

}

gradSchemes

{

default Gauss linear;

grad(p) Gauss linear;

}

divSchemes

{

default none;

div(phi,U) Gauss linear;

div(phi,T) Gauss upwind;

}
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laplacianSchemes

{

default none;

laplacian(nu,U) Gauss linear corrected;

laplacian((1|A(U)),p) Gauss linear corrected;

laplacian(DT,T) Gauss linear corrected;

}

interpolationSchemes

{

default linear;

interpolate(HbyA) linear;

}

snGradSchemes

{

default corrected;

}

fluxRequired

{

default no;

p;

}

// ************************************************************************* //

The interpolation schemes used by the heatedBlock case is showned below:

gedit heatedBlock/system/fvScheme

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.3 |

| \\ / A nd | Web: http://www.openfoam.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object fvSchemes;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

ddtSchemes

{

default Euler;

}

18



2.5 Run the case and post process 2 CONJUGATEHEATFOAM EXAMPLE

gradSchemes

{

default Gauss linear;

grad(T) Gauss linear;

}

divSchemes

{

default none;

}

laplacianSchemes

{

default none;

laplacian(DT,T) Gauss linear corrected;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default corrected;

}

fluxRequired

{

default no;

T;

}

// ************************************************************************* //

2.5 Run the case and post process

To run the case, type:

conjugateHeatFoam -case conjugateCavity

This runs the case for the pre-set time. When the iteration process has finished. Open the case and
study the result. Hopefully this gives a better a better understanding of how the conjugateHeatFoam
solver works.
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3 2D FREE CONVECTION IN ENCLOSURES

Figure 3: Temperature field with velocity vectors

3 2D free convection in enclosures

3.1 Problem specification

This tutorial allows the user to setup and analyse free convection in enclosure. The forced convection
is assumed to ne negligible and the flow is therefore driven by the the temperature differences between
the plates.

Figure 4: Problem specification of 2D free convection in enclosures

The enclosure is consists of a hot lower wall and a cold upper wall with Dirichlet boundary
conditions. The dimensions for the enclosure is 6x1 dm. The hot lower wall has a temperature of
400 K and the upper wall has a temperature of 300 K. The gravity of the case is set to -9.82 m/s2̂.
The air in the enclosure has a temperature of 350 K. The change in Rayleigh number is made by
changing the gravity.

All air properties for the case are taken at a temperature of 350K. The following values where
used:

T ρ cp µ ∗ 107 ν ∗ 106 k α ∗ 106 Pr
K kg/m3 kJ/kg ∗K N ∗ s/m2 m2/s W/m ∗K) m2/s
350 0.9950 1.009 208.2 20.92 0.030 29.9 0.700
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3.2 Solver-selection

To solve the specified problem above a solver for OpenFOAM is needed. To make the choise easier,
a list of demands is which the solver needs to satisfy:

• A solver that handles Buoyancy-flow

• The flow can be considers incompressible but due to buoyancy the gravity changes in the flow,
therefore a compressible solver is needed.

• Steady-state solver is preferred.

• Solve for turbulent flow.

According to OpenFOAMs standard solvers there is one that satisfy the demands, in other words
buoyantSimpleFoam [3].

Solver buoyantSimpleFoam Here are som brief notes about how the buoyantSimpleFoam solver
solves the equations and which equations. The solver solves for the momentum equation:

∇(φU)− (∇φ)U∇µeff∇U −∇(µeff (∇U)T ) = −∇pd− (∇ρ)gh (4)

The energy equation:

∇(φh)− (∇φ)h∇α∇h = ∇(
φ

ρp
)− p∇(

φ

ρ
) (5)

Beyond the pressure and flux is calculated by:

∇ρ(rUA)∇pd = ∇φ (6)

And a correction of the velcities is made by:

U = rUA(∇pd+ (∇ρ)gh (7)

The solver is using the basicThermo.H which handels the thermodynamic properties based on the
perfect gas assumption.

3.3 Mesh generation

Lets get back to the case again. A solver is selected and it is time to create the mesh and set up the
case. The mesh should have a domain of 6x1 dm. Open blockMeshDict and create the mesh.

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.5 |

| \\ / A nd | Web: http://www.OpenFOAM.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

convertToMeters 0.01;
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vertices

(

(0 0 0)

(60 0 0)

(60 10 0)

(0 10 0)

(0 0 1)

(60 0 1)

(60 10 1)

(0 10 1)

);

blocks

(

hex (0 1 2 3 4 5 6 7) (120 60 1) simpleGrading (1 1 1)

);

edges

(

);

patches

(

wall top

(

(3 7 6 2)

)

wall bottom

(

(1 5 4 0)

)

patch side

(

(2 6 5 1)

(0 4 7 3)

)

empty frontAndBack

(

(0 3 2 1)

(4 5 6 7)

)

);

mergePatchPairs

(

);

// ************************************************************************* //

Set the convertToMeters to 0.01. This scales the domain to the desired dimensions. The domain
consists of 120 cells in x-direction and 60 cells in y-direction. When the mesh settings are done
continue to create the mesh by blockMesh. Check the mesh with checkMesh to see that everything
is OK.

The following step is to set the boundary conditions to imitate the problem specification. Open
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the boundary and set the boundary conditions to the following:

Surface: Boundary type:
top wall
bottom wall
side wall
frontAndBack empty

3.4 Boundary conditions and initial fields

According to information above the gravitaion should be set to -9.82 m/s2. Specify this by open
the environmentalProperties and set g to -9.82.

Next thing to do is to specify all the thermophysical data. This is done in the thermophysicalProperties.
The mixture-line should be set to the following:

Type Number of moles Mol weight cp Heat fusion µ Pr
mixture air 1 28.97 1009 0 208.2 ∗ 10−7 0.700

At last set the reference pressure to 101325 Pa.
Check so the RASModel is set to kEpsilon and that turbulence is on. This is done in the

RASProperties.
To be able to calculate the Nusselt number later we need to specify some reference values that

is used in for the Nusselt number. These are specified in the refValues:

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.5 |

| \\ / A nd | Web: http://www.OpenFOAM.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object refValues;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

k 0.030; // Conductivity

T_initial 350 // Initial temperature

T_hot 400 // Hot wall temperature

length 0.01 // Length scale

// ************************************************************************* //

Next stef is to set up all the boundary conditions for the different fields that the solvers needs,
epsilon, k, p, U, pd, T.

The boundaries for the epsilon is set to:
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Surface: Boundary condition:
top zeroGradient
bottom zeroGradient
side zeroGradient
frontAndBack empty

The initial field is calculated by some simple assumption. First guess a maximum velocity in y-
direction (1 m/s), assume turbulence intensity of 10% and calculated with this the kinetic energy:

k =
3

2
(u ∗ turbintensity)2 =

3

2
(1 ∗ 0.1)2 = 0.015 (8)

Continue with assume that the lengthscale is the same as the distance between the two walls and
calculate the dissipation.

ε =
C0.75
µ ∗ k3/2

l
=

0.090.75 ∗ 0.0153/2

0.1
= 0.00302. (9)

This is just initial guesses that through the iteration process will change. This gives
internalField uniform 0.00302; Continue with set the boundary conditions of k:
internalField uniform 0.015;

Surface: Boundary condition:
top zeroGradient
bottom zeroGradient
side zeroGradient
frontAndBack empty

dp:
internalField uniform 0;

Surface: Boundary condition:
top fixedFluxBuoyantPressure

value uniform 0
bottom fixedFluxBuoyantPressure

value uniform 0
side fixedFluxBuoyantPressure

value uniform 0
frontAndBack empty

U:
internalField uniform (0 0 0);

Surface: Boundary condition:
top fixedValue

value uniform (0 0 0)
bottom fixedValue

value uniform (0 0 0)
side fixedValue

value uniform (0 0 0)
frontAndBack empty

p:
internalField uniform 101325;

Surface: Boundary condition:
top zeroGradient
bottom zeroGradient
side zeroGradient
frontAndBack empty
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T:
internalField uniform 350;

Surface: Boundary condition:
top fixedValue

value uniform 300
bottom fixedValue

value uniform 400
side zeroGradient
frontAndBack empty

All boundaries are now set.

3.5 Case control

The turbulence model are k − ε and it should solve the equations under steady-state conditions.
Be sure that this is done under ddtScheme, it should show steadyState. This is found in the
fvSchemes. The velocity-pressure coupling should be set to SIMPLE in the fvSolution. Also there
is a use of under-relaxation to get the solution more stable during solving. Set the endTime to 8000,
deltaT to 1 in the controlDict.

3.6 Run the case

Finally all setting are made and the case is ready to run, type:

buoyantSimpleFoam >& log&

The result should look something like this:

Figure 5: Buoyancy driven flow

3.7 Calculated Nusselt number using NusseltCalc

When the solver has finished it is time to calculated the heat flux (Q) and the Nusselt number. The
nusselt number and heat flux will be calculated using NusseltCalc. How NusseltCalc is created and
how whats happens in it is described in section NusseltCalc. Calculate nusselt number with:

NusseltCalc

The nusselt number and heat flux is now calculated and by open paraFoam, it can be plotted. They
are only calculated on the patches, not on the hole field. To plot them, open paraFoam and the
NusseltNumber and wallHeatFlux should be available in the list of cellArrays.
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4 NusseltCalc

The NusseltCalc is a new tool developed to calculate the Nusselt number on the boundaries. It is a
further development of the already existing postProcessing tool wallHeatFlux. The problem is that
wallHeatFlux dont work for buoyancy driven flow so the first thing to do is convert it so it handles
these kinds of flow. Copy the tool the run-folder:

run

cp -r $FOAM_APP/utilities/postProcessing/wall/wallHeatFlux/ .

Change the name of the wallHeatFlux.C to NusseltCalc.C. Then open Make/files and change
content to:

NusseltCalc.C

EXE = $(FOAM_USER_APPBIN)/NusseltCalc

This creates a link to the NusseltCalc tool and makes it executable from the terminal.
Continue by open the NusseltCalc.C file. This tool is from the beginning developed for com-

bustion applications and now we have bounacy flow. So the first thing to do is to take away the
hCombustionThermo.H and replace it with basicThermo.H. The basicThermo handles basic ther-
modynamic properties which is needed in buoyancy driven flows. The following step is to replace
all parts containg hCombustionThermo in the createFields.H file with basicThermo. This is done
by the following command:

sed -e ’s/hCombustionThermo/basicThermo/g’ createFields.H > tmp.H

mv tmp.H createFields.H

The NusseltCalc is now prepared to calculate the heat flux on a buoyancy driven flow but to calcu-
late the Nusselt number the equation for Nusselt number needs to be added to the solver loop in
the NusseltCalc.C. The Nusselt number is calculated by using the previously calculated heat flux,
Q, which is the heat flux for all patches at the boundary field of a volScalarField. The solver also
prints the integrated heat flux for all wall patches by:

Info<< "\nWall heat fluxes [W]" << endl;

forAll(patchHeatFlux, patchi)

{

if (typeid(mesh.boundary()[patchi]) == typeid(wallFvPatch))

{

Info<< mesh.boundary()[patchi].name()

<< " "

<< sum

(

mesh.magSf().boundaryField()[patchi]

*patchHeatFlux[patchi]

)

<< endl;

}

}

Info<< endl;

The used equation for Nusselt number is:

h =
Q

Thot − Tinitial
(10)

Nu =
h ∗ l
k

(11)

This is implemented in the NusseltCalc.C by including the following loop. Include the loop just
below the wallHeatFlux.write(); line:
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volScalarField NusseltNumber

(

IOobject

(

"NusseltNumber",

runTime.timeName(),

mesh

),

mesh,

dimensionedScalar("NusseltNumber", heatFlux.dimensions(), 0.0)

);

forAll(NusseltNumber.boundaryField(), patchi)

{

NusseltNumber.boundaryField()[patchi] = length*

patchHeatFlux[patchi]/((T_hot-T_initial)*k);

}

NusseltNumber.write();

Whats happening is that it creates a volScalarField with the name of ”NusseltNumber”. All values
in this files will be scalars due do dimensionedScalar. The following procedure is loop through all
boundary patches and calculate the Nusselt number. As mentioned above it is calculated from the
heat flux on the boundaries. The heat flux is calculated from:
surfaceScalarField heatFlux =

fvc::interpolate(RASModel->alphaEff())*fvc::snGrad(h);

To be able to full fill the calculation of the nusselt number the length, Thot, Tinitial and k needs to be
specified. These values should the NusseltCalc get from the refValues in the case folder. Therefore
do we have to create a readRefValues thats reads the values from a dictionary. This is done by
creating a file called readRefValues.H. The file should contain the following:

Info << "\nReading refValues" << endl;

IOdictionary refValues

(

IOobject

(

"refValues",

runTime.constant(),

mesh,

IOobject::MUST_READ,

IOobject::NO_WRITE

)

);

scalar k (readScalar(refValues.lookup("k")));

Info << "Conductivity is:"<< k << endl;

scalar T_initial(readScalar(refValues.lookup("T_initial")));

Info << "Initial temperature is:"<< T_initial << endl;

scalar T_hot(readScalar(refValues.lookup("T_hot")));

Info << "Hot wall temperature:"<< T_hot << endl;

scalar length(readScalar(refValues.lookup("length")));

Info << "Length scale is set to:"<< T_hot << endl;
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5 2D CONVECTIVE AND CONDUCTIVE HEAT TRANSFER

The files starts by recognize the IOdictionary refValues. Then it continues to read all the needed
scalars. For example the conductivity k is read by readScalar(refValues.lookup("k")). The pro-
cedure starts by that it search for a line that starts with k, then it takes the scalar on this line and
names it k. The procedure is then repeated for all scalars that are specified in the readRefValues.H
file.

To let the NusseltCalc get these scalars, just include the file inside the forAll(timeDirs, timeI)-
loop by:

#include "createFields.H"

Then is the NusseltCalc configuration done and it is time to compile it by wmake in the termi-
nal.

5 2D convective and conductive heat transfer

The following tutorial are going to solve convective and conductive heat transfer with a heat gener-
ation in 2D. The solver that is used in the case is the conjugateHeatFoam solver.

During the tutorial the root-folder will be mentioned as the folder that contains the conjugateDomain
and heatedCylinder. If blockMesh does not work the firs time, try a second time since its a common
bug that a error message occur the first time.

5.1 Problem specification

Figure 6: Convective conductive heat transfer, initial conditions

The problem consists of a cylinder in cross-flow. The domain is symmetric so only half of the
problem is meshed. All walls in the channel are at 300 K exept the half cylinder which has a
temperature of 605 K. The initial temperature of the air inside the channel are at 300 K too. Inlet
velocity is set to 10 m/s in x-direction with a 0 pressure outlet boundary. This types of problems
can be used to model heat exchanger problems.
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The solver conjugateHeatFoam needs the thermal diffusivity to solve and this is specified as:

α =
k

ρcp
(12)

The data needed for the problem is:

Data: Air
Temp (K) ρ(kg/m3) k (W/(m*K)) cp (J/(kg ∗K))
300 1.1614 0.0263 1007
450 0.7740 0.03239 1021

By this data the film-temperature can be calculated and following the thermal diffusivity value for
the film temperature:

Tfilm =
Tinf + Twall

2
(13)

Whichs gives:

αfilm =
kfilm

ρfilmcp,film
=

0.03239

0.7740 ∗ 1021
= 0.000040987 (14)

α300K =
k300K

ρ300Kc300K
=

0.0263

1.1614 ∗ 1007
= 0.000022488 (15)

5.2 Mesh generation

The mesh that is created for the fluid part of the domain is created from 8 boxes. A small grading
is used for the cells that approaching the cylinder.

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.5 |

| \\ / A nd | Web: http://www.OpenFOAM.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

convertToMeters 0.01;

vertices

(

(0.5 0 -0.5)

(2.5 0 -0.5)

(8 0 -0.5)

(8 1.7677 -0.5)

(1.7677 1.7677 -0.5)

(0.353553 0.353553 -0.5)

(8 5 -0.5)

(1.7677 5 -0.5)

(0 5 -0.5)

(0 2.5 -0.5)

(0 0.5 -0.5)
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(-0.5 0 -0.5)

(-2.5 0 -0.5)

(-5 0 -0.5)

(-5 1.7677 -0.5)

(-1.7677 1.7677 -0.5)

(-0.353553 0.353553 -0.5)

(-5 5 -0.5)

(-1.7677 5 -0.5)

(0.5 0 0.5)

(2.5 0 0.5)

(8 0 0.5)

(8 1.7677 0.5)

(1.7677 1.7677 0.5)

(0.353553 0.353553 0.5)

(8 5 0.5)

(1.7677 5 0.5)

(0 5 0.5)

(0 2.5 0.5)

(0 0.5 0.5)

(-0.5 0 0.5)

(-2.5 0 0.5)

(-5 0 0.5)

(-5 1.7677 0.5)

(-1.7677 1.7677 0.5)

(-0.353553 0.353553 0.5)

(-5 5 0.5)

(-1.7677 5 0.5)

);

blocks

(

hex (5 4 9 10 24 23 28 29) (30 10 1) simpleGrading (4 1 1)

hex (0 1 4 5 19 20 23 24) (30 10 1) simpleGrading (4 1 1)

hex (1 2 3 4 20 21 22 23) (20 10 1) simpleGrading (1 1 1)

hex (4 3 6 7 23 22 25 26) (20 20 1) simpleGrading (1 1 1)

hex (9 4 7 8 28 23 26 27) (10 20 1) simpleGrading (1 1 1)

hex (15 16 10 9 34 35 29 28) (30 10 1) simpleGrading (0.25 1 1)

hex (12 11 16 15 31 30 35 34) (30 10 1) simpleGrading (0.25 1 1)

hex (13 12 15 14 32 31 34 33) (20 10 1) simpleGrading (1 1 1)

hex (14 15 18 17 33 34 37 36) (20 20 1) simpleGrading (1 1 1)

hex (15 9 8 18 34 28 27 37) (10 20 1) simpleGrading (1 1 1)

);

edges

(

arc 0 5 (0.469846 0.17101 -0.5)

arc 5 10 (0.17101 0.469846 -0.5)

arc 1 4 (2.30970 0.956709 -0.5)

arc 4 9 (0.956709 2.30970 -0.5)

arc 19 24 (0.469846 0.17101 0.5)

arc 24 29 (0.17101 0.469846 0.5)

arc 20 23 (2.30970 0.956709 0.5)

arc 23 28 (0.956709 2.30970 0.5)

arc 11 16 (-0.469846 0.17101 -0.5)
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arc 16 10 (-0.17101 0.469846 -0.5)

arc 12 15 (-2.30970 0.956709 -0.5)

arc 15 9 (-0.956709 2.30970 -0.5)

arc 30 35 (-0.469846 0.17101 0.5)

arc 35 29 (-0.17101 0.469846 0.5)

arc 31 34 (-2.30970 0.956709 0.5)

arc 34 28 (-0.956709 2.30970 0.5)

);

patches

(

patch down

(

//down

(0 1 20 19)

(1 2 21 20)

(12 11 30 31)

(13 12 31 32)

)

wall up

(

//up

(7 8 27 26)

(6 7 26 25)

(8 18 37 27)

(18 17 36 37)

)

patch right

(

(2 3 22 21)

(3 6 25 22)

)

patch left

(

(14 13 32 33)

(17 14 33 36)

)

wall cylinder

(

(10 5 24 29)

(5 0 19 24)

(16 10 29 35)

(11 16 35 30)

)

);

mergePatchPairs

(

);

// ************************************************************************* //

The cylinder is meshed in without any grading and consists of 4 blocks. It is found in the heatedCylinder
folder.
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5.2 Mesh generation 5 2D CONVECTIVE AND CONDUCTIVE HEAT TRANSFER

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.5-dev |

| \\ / A nd | Revision: 1831 |

| \\/ M anipulation | Web: http://www.OpenFOAM.org |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

convertToMeters 0.01;

vertices

(

(0.20 0.20 -0.5)

(-0.20 0.20 -0.5)

(-0.20 0 -0.5)

(0.20 0 -0.5)

(0.20 0.20 0.5)

(-0.20 0.20 0.5)

(-0.20 0 0.5)

(0.20 0 0.5)

(0.353553 0.353553 -0.5)

(-0.353553 0.353553 -0.5)

(-0.5 0 -0.5)

(0.5 0 -0.5)

(0.353553 0.353553 0.5)

(-0.353553 0.353553 0.5)

(-0.5 0 0.5)

(0.5 0 0.5)

);

blocks

(

// center block 1

hex (2 3 0 1 6 7 4 5) (10 10 1) simpleGrading (1 1 1)

// right 1

hex (3 11 8 0 7 15 12 4) (10 10 1) simpleGrading (1 1 1)

// top 1

hex (1 0 8 9 5 4 12 13) (10 10 1) simpleGrading (1 1 1)

// left 1

hex (10 2 1 9 14 6 5 13) (10 10 1) simpleGrading (1 1 1)

);

32
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edges

(

arc 8 11 (0.4619 0.19134 -0.5)

arc 12 15 (0.4619 0.19134 0.5)

arc 8 9 (0 0.5 -0.5)

arc 12 13 (0 0.5 0.5)

arc 9 10 (-0.4619 0.19134 -0.5)

arc 13 14 (-0.4619 0.19134 0.5)

);

patches

(

patch cylinder

(

(11 15 12 8)

(8 12 13 9)

(9 13 14 10)

)

patch symmetry

(

(4 7 15 12)

(5 4 12 13)

(14 6 5 13)

(6 7 4 5)

(2 3 0 1)

(10 2 1 9)

(1 0 8 9)

(0 3 11 8)

)

patch bottom

(

(10 2 6 14)

(2 3 7 6)

(3 11 15 7)

)

);

mergePatchPairs

(

);

// ************************************************************************* //

s Create the meshes for the two domains by:

blockMesh -case conjugateDomain

blockMesh -case heatedCylinder

Next step is to specify which type each boundary should be. This is done according to the problem
specification. Open file conjugateDomain/constant/polyMesh/boundary and set the conjugate-
Domain case boundary conditions. Since the solution is symmetric accoring to the down surface
a standard symmetric OpenFOAM boundary condition is used, symmetryPlane. This boundary
condition mirrors the plane solution at the specified boundary:
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5.3 Boundary conditions and initial fields5 2D CONVECTIVE AND CONDUCTIVE HEAT TRANSFER

Boundary types on fluid domain:
Surface: Boundary type:
down symmetryPlane
top wall
left patch
right patch
cylinder regionCouple

shadowRegion solid
shadowPatch cylinder
attached on

defaultFaces empty

Continue by set the heatedCylinder boundaries:

Boundary types on cylinder domain:
Surface: Boundary type:
cylinder regionCouple

shadowRegion region0
shadowPatch cylinder
attached on

symmetry empty
bottom patch

It is important to specify the regionCouple boundary condition correctly. This is described above in
the report in section 2.3 which tells that the shadowRegion tells the solver on which region it should
get the neighbour information. The shadowPatch tells the solver on which patch in this region the
intersection occurs. At last a specification if the surfaces should be attached or not can be made.

5.3 Boundary conditions and initial fields

The boundary conditions on the conjugateDomain case is set to the following.
U:
Set internal field to: internalField uniform (0 0 0);

Boundary condition U:
Surface: Boundary type:
up fixedValue

value uniform (0 0 0)
down symmetryPlane
right zeroGradient
left fixedValue

value uniform (10 0 0)
cylinder fixedValue

value uniform (0 0 0)
defaultFaces empty

p:
Set internal field to: internalField uniform 0;
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5.3 Boundary conditions and initial fields5 2D CONVECTIVE AND CONDUCTIVE HEAT TRANSFER

Boundary condition p:
Surface: Boundary type:
up zeroGradient
down symmetryPlane
right fixedValue

value uniform 0
left zeroGradient
cylinder zeroGradient
defaultFaces empty

T:
Set internal field to: internalField uniform 300; and the film temperature at the regionCou-
pling zone to 450 K. This is a proper assumptoin since the fluid close to the wall is in the mean at
much higher temperature than the free stream temperature.

Boundary condition T:
Surface: Boundary type:
up zeroGradient
down symmetryPlane
right zeroGradient
left zeroGradient
cylinder regionCoupling

value uniform 450
remoteField T

defaultFaces empty

DT:
Set internal field to the previously calculated thermal diffusivity at 300 K:
internalField uniform 0.000022488;. The film temperature is set at the regionCoupling zone
and the thermal diffusivity in the same way.

Boundary condition DT:
Surface: Boundary type:
up zeroGradient
down symmetryPlane
right zeroGradient
left zeroGradient
cylinder regionCoupling

value uniform 0.000040987
remoteField DT

defaultFaces empty

Continue by setting up the boundary conditions on the heatedCylinder case. The thermal diffusiv-
ity in on the cylinder is assumed to be 10. This causes the cylinder to be 605 K constantly through
the iteration process. T:
Set internal field to: internalField uniform 605;

Boundary condition T:
Surface: Boundary type:
cylinder regionCoupling

value uniform 1
remoteField T

bottom fixedValue
value uniform 605

symmetry empty
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DT:
Set internal field to: internalField uniform 10;

Boundary condition DT:
Surface: Boundary type:
cylinder regionCoupling

value uniform 10
remoteField DT

bottom zeroGradient
symmetry empty

The last thing to specify now is the transportProperties which is found in the constant directory.
The nu should be set to 0.00002092 and the DT to 0.000022488.

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.3 |

| \\ / A nd | Web: http://www.openfoam.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object transportProperties;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

nu nu [0 2 -1 0 0 0 0] 0.00002092;

DT DT [0 2 -1 0 0 0 0] 0.000022488;

// ************************************************************************* //

5.4 Case control

The conjugateHeatFoam solver is very dependent on the mesh and the timestep. Small cells requires
a small time step and vice versa. In this case set the deltaT to 0.00001 and writeInterval to 1000
and the endTime to 0.06. Its enough to set the PISO algorithm to nCorrectors 2; in the
fvSolution.
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5.5 Run the case 5 2D CONVECTIVE AND CONDUCTIVE HEAT TRANSFER

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.3 |

| \\ / A nd | Web: http://www.openfoam.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object controlDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

application icoFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 0.06;

deltaT 0.00001;

writeControl timeStep;

writeInterval 1000;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression uncompressed;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

// ************************************************************************* //

5.5 Run the case

Run the case by:

conjugateHeatFoam -case conjugateDomain
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Wait and the evaluate the result.

Figure 7: Convective conductive heat transfer around a hot cylinder
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