CHALMERS C’SE

How to implement your own application

e The applications are located in the $WW PRQIECT DI R/ appl i cati ons directory
(equivalent to $FOQAM APP. Go there using alias app).

e Copy an application that is similar to what you would like to do and modify it for your
purposes. In this case we will make our own copy of the i coFoamsolver and put it in our
$VWM PRQIECT _USER DI Rwith the same file structure as in the OpenFOAM installation:

cd $WM PRQJECT DI R

cp -r --parents applications/solvers/inconpressible/icoFoam $W PROQIECT USER
cd $VWM PRQIECT USER DI R/ appl i cati ons/ sol vers/inconpressible

nv i coFoam passi veScal ar Foam

cd passi veScal ar Foam

wel ean

nmv i coFoam C passi veScal ar Foam C

e Modify Make/fi | es to:

passi veScal ar Foam C
EXE = $(FOAM USER APPBI N) / passi veScal ar Foam

e Compile with wrake in the passi veScal ar Foamdirectory. r ehash if necessary.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE

Add a passive scalar transport equation (1/3)

e Let’s add, to passi veScal ar Foam the passive scalar transport equation

0s
aJrV-(us)—O

e We must modify the solver:
— Create vol uneScal ar Fi el d s (do the same as for p in cr eat eFi el ds. H)

— Add the equation sol ve(fvm :ddt(s) + fvm:div(phi, s));
before runTi me. write(); in passi veScal ar Foam C.

— Compile passi veScal ar Foamusing wrake

e We must modify the case - next slide ...

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE

Add a passive scalar transport equation (2/3)
e We must modify the case:

— Use the i coFoam cavi ty case as a base:
run
cp -r $FOAM TUTORI ALS/ i nconpr essi bl e/ i coFoam cavity passiveCavity
cd passiveCavity

— Copy the 0/ p file to 0/ s and modify p to s in that file. Choose approprate dimensions
for the scalar field (not important now).

— In f vSchenes, add (if you don’t, it will complain):
di v(phi, s) Gauss | i nearUpwi nd Gauss;

— InfvSol uti on, add (if you don’t, it will complain):

s PBi CG

{
precondi ti oner Dl LU,
t ol erance le- 05;
rel Tol 0;

}s

(if you use PCG, as for p, it will complain - try it yourself?)

e We must initialize and run the case - next slide ...

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE

Add a passive scalar transport equation (3/3)

e We must initialize s:
— cp $FOAM TUTORI ALS/ nul ti phase/ i nt er Foani | am nar/ danBr eak/ syst enl set Fi el dsDi ct system

— Set def aul t Fi el dVal ues:
vol Scal arFi el dvalue s O

— Modify the bounding box to:
box (0.03 0.03 -1) (0.06 0.06 1);

— Set fi el dval ues:
vol Scal arFi el dvalue s 1

e Run the case:
bl ockMesh
set Fi el ds
passi veScal ar Foam >& | og
par aFoam- mark s in Volume Fields, color by s (cell value) and run an animation.

e You can see that although there is no diffusion term in the equation, there is massive diffu-
sion in the results. This is due to mesh resolution, numerical scheme etc. The i nt er f oam
solver has a special treatment to reduce this kind of diffusion.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS @)D

A look inside icoFoam

e The i coFoamdirectory consists of the following:
createFields.H Mke/ i|coFoam C

e The Make directory contains instructions for the wrake compilation command.

e i coFoam Cis the main file, and cr eat eFi el ds. His an inclusion file, which is included in
| coFoam C.

e In the header of i coFoam C we include f vCFD. H, which contains all class definitions that
are needed for i coFoam f vCFD. His included from (see Make/ opti ons):
$VW PRQIECT DI R/ src/finiteVol une/l nlncl ude, but that is actually only a link to
$WM PRQIECT DI R/ src/finiteVol une/ cfdTool s/ general /i ncl ude/ fvCFD. H.
f vCFD. Hin turn only includes other files that are needed (see next slide).

e Hint: Use fi nd PATH -i nane "*LETTERSI NFI LENAVE*" to find where in PATH a file
with a file name containing LETTERSI NFI LENAME in its file name is located.
In this case: fi nd $W PRQIECT DI R -i nane "*fvCFD. H+"

e Hint: Use | ocate fvCFD. H to find all files with f vCFD. H in their names. Note that
| ocat e is much faster than f i nd, but is not frequently updated when files are added and
removed!

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS @)D
A look inside icoFoam, fvCFD.H

#i fndef fvCFD H #i ncl ude "OSspecific. H
#define fvCFD H #i ncl ude "argLi st. H'

#i nclude "tinmeSel ector. H'
#i ncl ude "par Run. H'
#i f ndef namespaceFoam

#include "Tine. H' #def i ne nanmespaceFoam
#incl ude "fvMesh. H' usi ng nanespace Foam
#include "fvc. H' #endi f

#include "fvMatrices. H'

#include "fvmH' #endi f

#include "linear. H'

#i ncl ude "uni f or nD nensi onedFi el ds. H"
#1 ncl ude "cal cul at edFvPat chFi el ds. H'
#1 ncl ude "fi xedVal ueFvPat chFi el ds. H'
#i ncl ude "adj ust Phi . H'

#i ncl ude "findRefCel | . H'

#1 ncl ude "mat henati cal Const ants. H'

The inclusion files are all class
definitions that are wused 1in
| coFoam Dig further into the
source file to find out what these
classes actually do.

At the end we say that we
will use all definitions made in
namespace Foam

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE

A look inside icoFoam

e | coOFoamstarts with

int main(int argc, char xargv[])

where i nt argc, char xargv[] are the number of parameters, and the actual parame-
ters used when running i coFoam

e The case is initialized by:

#

T H HF

| ncl ude

I ncl ude
I ncl ude
I ncl ude
I ncl ude

"set Root Case. H"

"“createTi ne. H

"cr eat eMesh. H'
"creat eFi el ds. H'
"initContinuityErrs. H

where all inclusion files except cr eat eFi el ds. Hare included from
src/ OpenFOAM | nl ncl ude and src/finiteVol une/l nl ncl ude. Have a look at them
yourself. (find them using the fi nd or | ocat e commands)

e creat eFi el ds. His located in the i coFoamdirectory. It initializes all the variables used
in i coFoam Have a look inside it and see how the variables are created from files.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE

A look inside icoFoam

e The time loop starts by:
while (runTine.loop())

and the rest is done at each time step.

e The f vSol uti on subdictionary Pl SOis read, and the Courant number is calculated and
written to the screen by (use the f i nd command)

I ncl ude "readPl SOControl s. H'
I ncl ude " Cour ant No. H'

e We will now discuss the PISO algorithm used in i coFoam in words, equations and code
lines.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS @)D
The PISO algorithm: The incompressible flow equations (1/7)

(Acknowledgements to Professor Hrvoje Jasak)

e In strictly incompressible flow the coupling between density and pressure is removed, as
well as the coupling between the energy equation and the rest of the system.

e The incompressible continuity and momentum equations are given by:

V-u=0

g—?wLV-(uu)—V-(z/Vu):—Vp

e The non-linearity in the convection term (V - (uu)) is handled using an iterative solution
technique, where

V- (uu) ~ V- (u®u")

where u® is the currently available solution and u" is the new solution. The algorithm cycles
until u°® = u™.

e There is no pressure equation, but the continuity equation imposes a scalar constraint on
the momentum equation (since V - u is a scalar).

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS @)D
The PISO algorithm: The idea behind the algorithm (2/7)

(Acknowledgements to Professor Hrvoje Jasak)
e The idea of PISO is as follows:

— Pressure-velocity systems contain two complex coupling terms:
+ Non-linear convection term, containing u-u coupling.

x Linear pressure-velocity coupling.

— On low Courant numbers (small time-step), the pressure-velocity coupling is much
stronger than the non-linear coupling.

— It is therefore possible to repeat a number of pressure correctors without updating
the discretization of the momentum equation (without updating u°).

— In such a setup, the first pressure corrector will create a conservative velocity field,
while the second and following will establish the pressure distribution.

e Since multiple pressure correctors are used with a single momentum equation, it is not
necessary to under-relax neither the pressure nor the velocity.

e On the negative side, the derivation of PISO is based on the assumption that the momentum
discretization may be safely frozen through a series of pressure correctors, which is true
only at small time-steps. Experience also shows that the PISO algorithm is more sensitive
to mesh quality than the SIMPLE algorithm.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS @)D
The PISO algorithm: Derivation of the pressure equation (3/7)

(Acknowledgements to Professor Hrvoje Jasak)

e As previously mentioned, there is no pressure equation for incompressible flow, so we use
the continuity and momentum equations to derive a pressure equation.

e Start by discretizing the momentum equation, keeping the pressure gradient in its original
form:

apup + Za%u]\f =r—Vp
N
e Introduce the H(u) operator:

H(u)=r — Z ayuy

N
so that:

avup = H(u)— Vp
up = (ap)” ' (H(u) - Vp)

e Substitute this in the incompressible continuity equation (V - u = 0) to get a pressure equa-
tion for incompressible flow:

V- [(ap)'Vp] = V- [(a}) "H(u)]

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS @)D
The PISO algorithm: Sequence of operations (4/7)

(Acknowledgements to Professor Hrvoje Jasak)
e The following description corresponds to the operations at each time step.

e Use the conservative fluxes, phi, derived from the previous time step, to discretize the
momentum equation. Now, phi represents the ’old’ velocity, «°, in the convective term.

fvVectorMatri x UEQn

(
fvm : ddt (U)
+ fvm :div(phi, U
- fvm:laplacian(nu, U)

);
e Solve the momentum equations using the pressure from the previous time step.
sol ve(UEgn == -fvc::grad(p));
This is the momentum predictor step.

e We will re-use UEgn later, which is the reason not to do both these steps as a single operation
solve(fvm:ddt (U)+fvm:div(phi, U-fvm:|laplacian(nu, U ==-fvc::grad(p));

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS @)D
The PISO algorithm: Sequence of operations (5/7)

(Acknowledgements to Professor Hrvoje Jasak)

e Loop the pressure-corrector step a fixed number of times (nCorr) :

- Store r UAx UEgn. H() (corresponding to (a%)'H(u)) in the U field, representing the
velocity solution without the pressure gradient. Calculate interpolated face fluxes
from the approximate velocity field (corrected to be globally conservative so that
there is a solution to the pressure equation) to be used in the f vc: : di v operator.

- Loop the non-orthogonal corrector step a fixed number of times (nNonOrt hCorr) :

* Calculate the new pressure:
fvScalarMatrix pEgn (fvm:laplacian(rUA, p) == fvc::div(phi));
PEqn. set Ref erence(pRef Cel | , pRef Val ue) ;
pEqgn. sol ve();
where r UA corresponds to (a%) .

* Correct finally phi for the next pressure-corrector step (see also next slide):
I f (nonOrth == nNonOrthCorr){ phi -= pEgn.flux(); }

- Calculate and write out the continuity error.

- Correct the approximate velocity field using the corrected pressure gradient.

e Do the next pressure-corrector step.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS @)D
The PISO algorithm: Conservative face fluxes (6/7)

(Acknowledgements to Professor Hrvoje Jasak)
e Here we derive the conservative face fluxes used in pEgn. f | ux() in the previous slide.

e Discretize the continuity equation:
V-u:Zsf-u:ZF
f f

where F is the face flux, F' = s; - u.

e Substitute the expression for the velocity in "PISO slide (3/7) (up = (a%)"'(H(u) — Vp)),
yielding

F=—(a}) 's;- Vp+ (ap)'s; - Hu)

e A part of the above appears during the discretization of the pressure Laplacian, for each

face:
_ ur—118
(a})~'sy - Vp = (ap) 1%(1% —pp) = ay(py — pp)
where |d| is the distance between the owner and neighbour cell centers, and af;, = (a%)‘l%

is the off-diagonal matrix coefficient in the pressure Laplacian. For the fluxes to be fully
conservative, they must be completely consistent with the assembly of the pressure equation
(e.g. non-orthogonal correction).

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS @)D
The PISO algorithm: Rhie & Chow interpolation (7/7)

(Acknowledgements to Dr. Fabian Peng-Kérrholm and Professor Hrvoje Jasak)

e When using a colocated FVM formulation it is necessary to use a special interpolation to
avoid unphysical pressure oscillations.

e OpenFOAM uses an approach ’in the spirit of Rhie & Chow’, but it is not obvious how this
is done. Fabian presents a discussion on this in his PhD thesis, and here is the summary of
the important points:

— In the explicit source term f vc: : di v(phi) of the pressure equation, phi does not
include any effect of the pressure.

— r UA does not include any effect of pressure when solving the pressure equation and
finally correcting the velocity.

— The Laplacian term, f vm : | apl aci an(r UA, p), of the pressure equation uses the
value of the gradient of p on the cell faces. The gradient is calculated using neigh-
bouring cells, and not neighbouring faces.

— fvc::grad(p) is calculated from the cell face values of the pressure.

e See Rhie and Chow in OpenFOAM, by Fabian Peng Karrholm at the course homepage, 2007,
for a detailed description of the PISO algorithm and Rhie and Chow in OpenFOAM.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS @)D

A look inside icoFoam, write statements

e At the end of icoFoam there are some write statements:

runTime.wite();

| nfo<< "ExecutionTinme = " << runTi ne. el apsedCpuTine() << " s"
<< " CockTinme =" << runTine. el apsedd ockTine() << " s"
<< nl << endl;

e Wite() makes sure that all variables that were defined as an | Qobj ect with
| Gobj ect: : AUTO WRI TE are written to the time directory accoring to the settings in the
control Di ct dictionary.

e el apsedCpuTi ne() is the elapsed CPU time.

e el apsedd ockTi ne() is the elapsed wall clock time.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE

A look inside icoFoam, summary of the member functions

e Some of the member functions used in i coFoamare described below. The descriptions are
taken from the classes of each object that was used when calling the functions.
A() : Return the central coefficient of an f vVect or Matri x.
H() : Return the H operation source of an f vVect or Matri X.
Sf () : Return cell face area vectors of an f vivesh.
f 1 ux() : Return the face-flux field from an f vScal ar Mat ri x
correct Boundar yCondi ti ons() : Correct boundary field of a vol Vect or Fi el d.

e Find the descriptions by identifying the object type (class) and then search the OpenFOAM
Doxygen at: htt p: //f oam sour cef or ge. net/ doc/ Doxygen/ ht m / (linked to from
www. openf oam com).

¢ You can also find the Doxygen documentation by doing:
firefox file://$W PRQIECT DI R/ doc/ Doxygen/ ht m /i ndex. ht m
This requires that the Doxygen documentation was compiled. If so, it would correspond to
the exact code that you have currently installed rather than the version the documenta-
tion was originally compiled for, found at www. openf oam com Unfortunately, the search
functionality only works when running firefox through a php server.

e See the presentation by Martin Beaudoin at the 2007 course, on how to adapt the Doxygen
documentation, and include your own development.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

