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1 Physical background and equations solved 

1.1 Welding 
The application we want to simulate is electric arc welding, where a current flows through a metal 

electrode, through a plasma created by elevating temperatures in a gas, into the base metal plates that 

are to be joined by the process. The energy needed to melt the metal is supplied through electrical 

resistive heating, also called Joule heating. The electric heating will affect both metal parts and the 

plasma in the arc. Incidentally, the welding gas (usually a mixture of argon and carbon dioxide) has 

poor conductivity until sufficient energy has been supplied to heat the gas into a plasma state.    

1.1.1 Electrical conduction and heat transfer.  

The main physical processes to simulate in welding arc simulation are electric conduction and heat 

transfer, both processes described accurately by simple Laplacian equations. What complicate matters 

is that the heat is generated by the electric field, convection in the plasma is strongly influenced by both 

temperature and the electric field, the heat generated in the plasma and the potential drop in the plasma 

influences both temperature and electric fields in the solids, and all material properties are temperature 

dependent and varies dramatically over the very large temperature range experienced - from room 

temperature to maybe 30000 degrees in the plasma. 

1.2 Physical equations 

1.2.1 Flow and momentum 
For the fluid flow, the simple momentum equation used in chtMultiRegionFoam will be retained 

unchanged as more detailed plasma models will be added later. For the solid, the velocity field will be 

given prescribed constant values in each region. I.e. the wire-feed speed in the wire and zero in the 

nozzle and plate. 

1.2.2 Thermal conduction (with Joule heating and passive transport included) 

Thermal conduction is treated in chtMultiRegionFoam, as the standard heat equation  

  

 

 

is solved. For our application, we need to add the Joule heating term: 

 

 

 

Convective heat transfer is already included as a major part of the fluid equations, but must be added 

also in the solid regions, if weld material is going to be added as wire feed in the process: 

 

 

 



1.2.3 Electrical conduction (added) 

The electrical conduction can be considered a quasi-stationary process in the time scale of heat transfer 

and convection. Thus, it is described by the simple Lagrangian equation  

 

 , 

 

where  is the conductivity, V is the electric potential field and   is the electric current density 

vector. 

Note that this equation only is valid for stationary DC current. In the case of AC or pulsed current, it is 

necessary to also include the magnetic field and the full set of Maxwell equations. 

2 Numerical implementation and solvers used 

2.1 Overview and aim 
The following changes to chtMultiRegionFoam were identified as necessary steps for the intended 

application: 

1. Create a simple test model with appropriate boundary conditions for testing the changes. 

2. Add field variables, electric potential scalar as a variable and include the velocity field also in 

the solid regions, although the velocity will not be solved for there. Add the material property 

conductivity as a field variable. 

3. Add solving for electric potential in both solid and fluid solvers. 

4. Add Joule heating term to both solid and fluid heat conduction solvers. 

5. Add passive transport term to solid heat conduction solver. 

6. Adapt internal boundary patches to also cover the electric field. 

 

2.2 Solid part solver 
The solid part solver in chtMultiRegionFoam is simply the heat conduction equation (this is the entire 

unmodified solveSolids.H) 

{ 

for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++) 

{ 

tmp<fvScalarMatrix> TEqn 

( 

fvm::ddt(rho*cp, T) 

- fvm::laplacian(K, T) 

); 

TEqn().relax(); 

TEqn().solve(); 

} 

 

Info<< "Min/max T:" << min(T) << ' ' << max(T) << endl; 

} 

 



2.3 Fluid part solver 
The fluid solver, although one of the simpler, boyancy driven flow, is significantly more complex than 

the thermal equation. The flow equations are solved by separating flow parameters in density, pressure 

and  velocity, solving these independently or recursively. These equations are here left unchanged, 

however, as a research project on plasma simulation at HV will provide an advanced  solver for the 

fluid, to be integrated later. 

The thermal solver for the fluid region is essentially the same as for the solid part, although the variable 

solved for is the thermal energy rather than the temperature, as conventions differ between solid 

mechanics and fluid mechanics. 

Momentum equation in uEqn.H: 
// Solve the Momentum equation 

tmp<fvVectorMatrix> UEqn 

( 

fvm::ddt(rho, U) 

+ fvm::div(phi, U) 

+ turb.divDevRhoReff(U) 

); 

 

Momentum equation in pEqn.H: 
fvScalarMatrix pEqn 

( 

fvm::ddt(psi, p) 

+ fvc::div(phi) 

- fvm::laplacian(rhorUAf, p) 

); 

 

Thermal equation in hEqn.H: 
fvScalarMatrix hEqn 

( 

fvm::ddt(rho, h) 

+ fvm::div(phi, h) 

- fvm::laplacian(turb.alphaEff(), h) 

== 

DpDt 

); 

3 Modifications implemented 

3.1 Change geometry 

3.1.1 blockMeshDict  

This blockMeshDict file defines an entire block, bounding the computational domain, both solid and 

fluid regions. Because of the forced flow of protection gas inside the nozzle, the boundary had to be 

divided in two atches in the redial direction, one inside the nozzle and one outside the nozzle. 

 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  1.6                                   | 

|   \\  /    A nd           | Web:      http://www.OpenFOAM.org               | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 



FoamFile 

{ 

version     2.0; 

format      ascii; 

class       dictionary; 

object      blockMeshDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

convertToMeters 1; 

 

vertices         

( 

(     0 -.020       0  ) 

(     0  .030       0  ) 

(  .020 -.020    .002  ) 

(  .020  .030    .002  ) 

(  .020 -.020   -.002  ) 

(  .020  .030   -.002  ) 

(  .005 -.020    .0005 ) 

(  .005  .030    .0005 ) 

(  .005 -.020   -.0005 ) 

(  .005  .030   -.0005 ) 

); 

 

blocks           

( 

hex (6 7 9 8 0 1 1 0) (50 1 10) simpleGrading (1 1 1) 

hex (2 3 5 4 6 7 9 8) (50 1 30) simpleGrading (1 1 1) 

); 

 

edges            

( 

arc 4 2 (.020099751  -.020  0) 

arc 5 3 (.020099751  .030  0) 

arc 8 6 (.005024938  -.020  0) 

arc 9 7 (.005024938  .030  0)); 

 

patches          

( 

patch maxX  

( 

(3 2 4 5) 

) 

patch minYInner 

( 

(0 0 8 6) 

) 

patch minYOuter 

( 

(6 8 4 2) 

) 

patch maxYInner 

( 

(1 1 7 9) 

) 

patch maxYOuter 

( 

(7 3 5 9) 



) 

cyclic frontAndBack 

( 

(0 6 7 1) 

(6 2 3 7) 

(0 1 9 8) 

(8 9 5 4) 

) 

symmetryPlane axis 

( 

(0 1 1 0) 

) 

); 

 

mergePatchPairs  

( 

); 

 

// ************************************************************************* // 

 

Figure 1: Mesh with velocity field using prescribed flow at the nozzle inlet, outlet 

boundary condition at the oputer radius of the model and zero velocity at all other 

boundaries. 

3.1.2 makeCellSets 

A problem was encountered when attempting to make an axisymmetric model by using wedge 

boundary conditions, as the utility splitMeshRegions crashed mysteriously on encountering the fourth 

region. It was particularly puzzling, as both solid and fluid regions had been processed without 

problems. The problem occurred for the “wire" region, top left corner of the figure. Thus, a series of 

trials with different settings for the inner block and for the wire dimension was performed, giving the 

following results: 

 

blockMesh divide radius makeCellSets 

inner wire radius 

makeCellSets 

outer wire radius 

Error in 

splitMeshRegions 

0.0005 0.0005 0.001 No 

0.0005 0 0.001 No 

0.001 0 0.001 Yes 

0.001 0 0.0015 No 

0.005 (desired geometry) 0 0.001 Yes 

 



 

Trials with three separate blocks in blockMeshDict, were also performed, all gaving an error in 

splitMeshRegions, regardless of where the divide radii were placed with respect to the wire and nozzle 

regions. 

 

Figure 2:  Successful test of wedge patch (first row of the table). Simulation with hot 

"wire" with center hole, wedge boundary conditions, thermal and fluid flow simulation 

only. Temperature contours after some simulation time. Flow only through convection. 

 

Although the cause of this problem is not precisely identified, it seems to relate to using several wedge 

patches in the radial direction, in one or more of the utilities setSet, setsToZones or splitMeshRegions. 

The problem can be bypassed nicely by instead using the cyclic patch as boundary condition in the 

circumferential direction. 

3.2 Adding fields to solver 
The new field electric potential (V) as well as the electrical conductivity (sigma) needs to be added to 

both solid and fluid regions, and the velocity field U has to be included also in solid regions. The two 

files createSolidFields.H and setRegionSolidFields.H for the solid case and createFluidFields.H and 

setRegionFluidFields.H for the fluid case must thus be changed. 

Additions to createSolidFields.H:         

 

   // Initialise solid field pointer lists  

... 

// Added pointers for JouleMultiRegionFoam 

PtrList<volVectorField> USolid(solidRegions.size()); 

PtrList<volScalarField> VSolid(solidRegions.size()); 

PtrList<volScalarField> sigmaSolid(solidRegions.size()); 

 

 

// Populate solid field pointer lists 

... 

// Added populations for JouleMultiRegionFoam 

Info<< "    Adding to USolid\n" << endl; 

USolid.set 

( 

i, 

new volVectorField 



( 

IOobject 

( 

"U", 

runTime.timeName(), 

solidRegions[i], 

IOobject::MUST_READ, 

IOobject::AUTO_WRITE 

), 

solidRegions[i] 

) 

); 

 

Info<< "    Adding to VSolid\n" << endl; 

VSolid.set 

( 

i, 

new volScalarField 

( 

IOobject 

( 

"Vel", 

runTime.timeName(), 

solidRegions[i], 

IOobject::MUST_READ, 

IOobject::AUTO_WRITE 

), 

solidRegions[i] 

) 

); 

Info<< "    Adding to sigmaSolid\n" << endl; 

sigmaSolid.set 

( 

i, 

new volScalarField 

( 

IOobject 

( 

"sigma", 

runTime.timeName(), 

solidRegions[i], 

IOobject::MUST_READ, 

IOobject::AUTO_WRITE 

), 

solidRegions[i] 

) 

); 

 

} 

 

Additions to setRegionSolidFields.H:     

... 

// Added for JouleMultiRegionFoam 

volVectorField& U = USolid[i]; 

volScalarField& Vel = VSolid[i]; 

volScalarField& sigma = sigmaSolid[i]; 

 

Additions to createFluidFields.H:         



 

// Initialise solid field pointer lists  

... 

// Added pointer for JouleMultiRegionFoam 

PtrList<volScalarField> VFluid(solidRegions.size()); 

PtrList<volScalarField> sigmaFluid(fluidRegions.size()); 

 

... 

// Added populations for JouleMultiRegionFoam 

Info<< "    Adding to VFluid\n" << endl; 

VFluid.set 

( 

i, 

new volScalarField 

( 

IOobject 

( 

"Vel", 

runTime.timeName(), 

fluidRegions[i], 

IOobject::MUST_READ, 

IOobject::AUTO_WRITE 

), 

fluidRegions[i] 

) 

); 

Info<< "    Adding to sigmaFluid\n" << endl; 

sigmaFluid.set 

( 

i, 

new volScalarField 

( 

IOobject 

( 

"sigma", 

runTime.timeName(), 

fluidRegions[i], 

IOobject::MUST_READ, 

IOobject::AUTO_WRITE 

), 

fluidRegions[i] 

) 

); 

} 

 

Additions to setRegionFluidFields.H:     

... 

// Added for JouleMultiRegionFoam 

volScalarField& Vel = VFluid[i]; 

volScalarField& sigma = sigmaFluid[i]; 

 

Note that it doesn't seem like the current field will need to be defined explicitly, as it can simply be 

calculated as the gradient of potential field divided by the resistivity. 



4 Wirefeed 

4.1 Changes in the solver 
Add passive transport term to solid heat equation in solveSolid.H (Not fully tested yet, but seems to 

work): 

( 

fvm::ddt(rho*cp, T) 

- fvm::laplacian(K, T) 
// Added for JouleMultiRegionFoam 

==rho*cp* (U & fvc::grad(T)) 

); 

4.2 Changes in input 
The velocity field must be defined in solid regions too. Note that since it is not actually solved for, it is 

not saved in time-history folders. Would be good to have it, but I haven't found how that could be done. 

5 Electric conduction 

5.1 Changes in the solver 
Add solving electric conduction as an equation in both solid(solveSolid.H) and fluid(solveFluid.H) 

regions. Implemented as a separate file VEqn.H,  

 
{ 

for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++) 

{ 

solve 

( 

fvm::laplacian(sigma, Vel) 

); 

} 

Info<< "Min/max V:" << min(Vel) << ' ' 

<< max(Vel) << endl; 

 

} 



 

Figure 3: Electric field, wire uniformly at 400 Volts, plate (bottom of picture) at 0 volts, all 

other boundaries are set to zeroGradient. 

5.2 Changes in the interface boundary patch 
The interface boundary patch solidWallMixedTemperatureCoupledFvPatchScalarField works by 

assigning the temperature on one side of the patch as boundary condition for the other side, and the 

heat flux from the other side as boundary condition for the first side. At a first glance, the interface 

boundary patch solidWallMixedTemperatureCoupledFvPatchScalarField should be generic enough to 

use for other variables. First tests with the new equation, however, gave unreasonable and unstable 

results, and continuity in the potential was not observed across the interface patches. It seems that this 

is caused by the temperature being explicitly transferred to the patch, while the heat flux is collected 

implicitly from the set of thermal variables. Thus, it is probably necessary to either generalize the patch 

so that the same patch can be used for both fields, or to write a separate patch for the electric field, 

using the thermal patch as a template. Perhaps the problem is that it could actually be used for any one 

of the fields, but not for both? 

 

A typical entry in system/topAir/changeDictionaryDict used was  
            topAir_to_wire 
            { 

                type            solidWallMixedTemperatureCoupled; 

                neighbourFieldName T; 

                K               sigma; 

                value           uniform 300; 

            } 

Note that solution diverged when using this settings. 

  



   
Figure 4: Non-continuous solution after applying the 

solidWallHeatFluxElectricFvPatchScalarField patch for the electrical field Vel. The left 

frame shows initial and boundary conditions, while the second frame shows calculated 

results after one short time-step. In this case, the field of the topAir fluid is reasonably 

correct, while the solution in the wire is quite unstable, exceeding expected results by more 

than an order of magnitude. 

5.3 Changes in input 
The electric field initial and boundary conditions must be defined, and the electrical conductivity must 

also be defined as a field by initial and boundary conditions. 

6  Joule heating 
Add Joule heating to thermal equations. (add a term in solveSolids.H and hEqn.H) 

( 

fvm::ddt(rho*cp, T) 

- fvm::laplacian(K, T) 

== (U & fvc::grad(T))   

// Added for JouleMultiRegionFoam 

+ sigma*(fvc::grad(Vel) ) & fvc::grad(Vel)) 

); 

7 How-to “lazydog” for using the new solver 

7.1 Mesh generation 
Mesh generation is done as usual, except that cellSets must be defined. It would probably be 

appropriate to discuss here the difference between Sets, Zones and Regions, but we will only mention 

that there are utilities to create Zones and then Regions from a given set of Sets. 

In the chtMultiRegionFoam tutorial, the overall calculation region(solid regions + fluid regions), is 

defined in the file constant/polyMesh/blockMeshDict. The sets are then defined using the utility 

makeCellSets, as defined in the file makeCellSets.setSet. A drawback of this solution is that it is 



necessary to adjust element sizes so that boundaries between regions fall exactly on cell boundaries as 

otherwise the regions will not have the desired size. This is because makeCellSets selects cells with 

centres within the specified box and assigns them to the Set. Nevertheless, it is a simple and rather 

straightforward way of defining a not too complicated block mesh consisting of several regions. 

7.2 Assign region properties and solution   
Although assignment of Regions is done automatically, once you have created Sets and use the 

appropriate utilities as in Allrun, it is necessary to make sure that calculations are performed on each 

region and to define bondary conditions and interface conditions between regions. Regions are 

specified in Allrun because simulations are run in one region at the time, but also in 

constant/regionProperties, where the sets “fluidRegionNames” and “solidRegionNames” are defined. 

7.2.1 Allrun 

In the file Allrun, the utilities and solvers called are defined, and for chtMultiRegionFoam, it is 

necessary to also define here which regions are to be solved as fluids and which shall be solved as 

solids. Replace “leftSolid Rightsolid" in the chtMultiRegionFoam tutorial with the names of your solid 

regions and “bottomAir topAir" with the names of your fluid regions. In the cleanup for 

postprocessing, the field “U" shall not be removed from solid regions when running 

JouleMultiRegionFoam. Also, in the tutorial, the variables mut,alphat and an extra p is removed for 

solids. Presumably, these variables are used for turbulence, but they can be removed when running a 

simulation without turbulence. 

chtMultiRegionFoam: 
# remove fluid fields from solid regions (important for post-processing) 

for i in heater leftSolid rightSolid 

do 

   rm -f 0*/$i/{epsilon,k,p,U} 

done 

 

# remove solid fields from fluid regions (important for post-processing) 

for i in bottomAir topAir 

do 

   rm -f 0*/$i/{cp,K} 

done 

 

JouleMultiRegionFoam: 
# remove fluid fields from solid regions (important for post-processing) 
for i in wire nozzle plate 

do 

   rm -f 0*/$i/{epsilon,k,p} 

done 

 

# remove solid fields from fluid regions (important for post-processing) 

for i in bottomAir topAir 

do 

   rm -f 0*/$i/{cp,K} 

done 

7.2.2 Fluid property folders 

For each fluid region, a folder bearing the name of that region must be placed in the constant folder. 

Each of these folders must contain the files g, RASProperties, thermophysicalproperties and 

turbulenceProperties, including material properties for that fluid region. Such a folder is not required 

for solid regions as all material properties for solid regions are defined as fields.  



7.3 Fields and boundary conditions 
In JouleMultiRegionFoam, as well as in  chtMultiRegionFoam, boundary conditions must be set (in the 

files system/*/changeDictionaryDict and 0/*) not only for external boundaries, but also for the interface 

boundaries between the regions. External boundaries are treated as usual, and the internal boundaries 

that have automatically been defined by the utility splitMeshRegions may also be treated as external 

boundaries. However, the idea of MixedBoundary is to use internal boundaries as interfaces between 

regions, preserving the continuity of the solution. For internal interface regions, the patch 

solidWallMixedTemperatureCoupled should be used. Note that "reverse" boundary conditions and 

sample region = the bounding region need to be specified too. 

 

T:  

The temperature is one of the main independent variables in both solid and fluid regions, and can be 

given all the usual external boundary conditions, zeroGradient, fixedValue, InletOutlet. 

Between regions, solidWallMixedTemperatureCoupled or fixedValue can be used. 

 

U: 

The velocity is one of the main independent variables in the fluid regions, and gan be given all the 

usual boundary conditions, zeroGradient, fixedValue, InletOutlet. In JouleMultiRegionFoam, U must 

be defined also in solid regions, to allow wirefeed to be accounted for. 

 

p: 

The pressure is one of the main independent variables in the fluid regions, and gan be given all the 

usual boundary conditions, zeroGradient, fixedValue, InletOutlet 

 

epsilon, k: 

These are not calculated, just material constants used in fluid regions. Boundary conditions are still 

required by OpenFoam though, so set zeroGradient for simplicity. 

 

cp, rho, K:  

These are not calculated, just material constants for solid regions. Boundary conditions are still 

required by OpenFoam though, so set zeroGradient for simplicity. 

 

Vel: 

Electric potential field, solved for in the electric potential equation, and thus required in both solid and 

fluid Regions for JouleMultiRegionFoam, but not for chtMultiRegionFoam. 

 

sigma: 

Electric conductivity field, needed to solve the electric potential equation, and thus required in both 

solid and fluid Regions for JouleMultiRegionFoam, but not for chtMultiRegionFoam. 

7.4 Solution control 
startTime should be set to the same value as deltaT in system/controlDict, because the first timestep 

folder is used to setup boundary and initial conditions for the different regions. 

For both solid and fluid regions, the solution scheme for the electric field must be defined, as follows. 

In the files system/regionName/fvSchemes, the basic solution scheme for the Laplacian is specified:  

// added electrical continuity eqn for JouleMultiRegionFoam 

    laplacian(sigma,Vel) Gauss linear corrected; 



 

And, in the files system/regionName/fvSolution,  the solution scheme is further specified:  

 
Vel 

    { 

        solver          PCG; 

        preconditioner  DIC; 

        tolerance       1e-14; 

        relTol          0; 

    } 

8 Next steps 
As described above, a lot remains to be done to make this implementation work, notably, reusiong the 

numbering of the necessary steps identified above: 

1. Improve the simple test model and establish a set of test cases with appropriate boundary 

conditions for testing the performance of the model. 

2. The velocity vector does not appear in output files for solid regions, although it does influence 

calculation of the transport term in the heat equation. 

3. The electric potential is solved in both solid and fluid regions, though the performance has not 

been tested and integration and convergence criteria should be properly defined. 

4. The Joule heating term, although implemented in both solid and fluid heat conduction solvers 

does not seem to yield correct results. Improving the test case, ad. 

5. The passive transport term in the solid heat conduction solver seems to work correctly, but 

needs verification against exact values for a simple test case. 

6. The internal boundary patch does not seem to work properly. Investigate whether this is due to 

incorrect usage, that it is not general enough to be used or that it is not possible to use it for two 

different fields at the same time. 

  


