
Chalmers University of Technology

CFD with OpenFOAM software

Lagrangian particle tracking

Prepared by: Jelena Andric

Gothenburg, 200

2

1. About multiphase flows
The equations for motion and thermal properties of single-phase flows are well
accepted (Navier-Stokes equations) and closed form solutions exist for specific cases,
while major difficulty is the modeling and quantification of turbulence and its influence
on mass, momentum and energy transfer. Computational Fluid Dynamics has already a
long history and different commercially available CFD-tools for this type of the flow.
On the other hand, the correct formulation of the governing equations for multiphase
flows is still subject to debate. Interaction between different phases makes these flows
complicated and very difficult to describe theoretically.
Multiphase flows are of great importance, since they can occur even more frequently
than single phase flows and are present in various forms in industrial practice, as for
example transient flows with a transition from pure liquid to a vapor flow as a result of
external heating, separated flows and dispersed two-phase flows where one phase is
present in the form of particles, droplets, or bubbles in a continuous carrier phase (i.e.
gas or liquid).

Figure1:Different regimes of two-phase flows, a)transient two-phase flow, b)separated

two-phase flow, c)dispersed two-phase flow. [1]

For instance dispersed two-phase flows are encountered in numerous technical and
industrial processes and may be classified in terms of the different phases being
present:

• Gas-solid flows

3

• Liquid-solid flows
• Gas-droplet flows
• Liquid-droplet flows
• Liquid-droplet flows

Dispersed two-phase flows are usually separated in two flow regimes:

1. Dilute dispersed systems – the spacing between particles is large, a direct
interaction is rare and fluid dynamic forces are governing particle transport.

2. Dense dispersed systems- inter –particle spacing is low (smaller than about 10
particle diameters) and the transport of particles is dominated by collisions
between them.

 They can be characterized by the volume fraction of the dispersed phase which
represents the volume occupied by the particles in a unit volume.

Figure2: Regimes of dispersed two-phase flows as a function of particle volume fraction.

[1]

A classification of dispersed two-phase flows with respect to the importance of
interaction mechanism was provided by Elghobashi (1994). Generally it is a distinction
between dilute and dense two-phase flows as can be seen from the figure above. A
two-phase system may be regarded as dilute for volume fractions up to 310−>Pα (i.e.

8≈PdL .In this flow regime the influence of the particle on the fluid flow may be
neglected for 610−<Pα .This is referred to as one-way coupling. For higher volume
fractions it is necessary to account for the influence of the particles on the fluid flow –
two-way coupling .In the dense regime inter-particle interactions such as collisions and

4

fluid dynamic interactions between particles become important. This is so-called four
way coupling.

1.1Forces acting on particles

The motion of particles in fluids is described in a Lagrangian way by solving a set of
ordinary differential equations along the trajectory in order to calculate the change of
particle location and the linear and angular components of particle velocity. The relevant
forces acting on the particle need to be taken into account. Hence, considering
spherical particles the differential equations for calculating the particle location and
velocity are given by Newtonian second law:

.

,

,

T
dt

dI

F
dt
ud

m

u
dt

dx

P
P

i
P

P

P
P

=

=

=

∑
ω

where 63πρ PPP dm = is a particle mass, 21.0 PPP dmI = is a moment of inertia for a
sphere, iF represents the relevant forces acting on the particle, Pω is the angular
velocity of a particle and T is the torque acting on a rotating particle due to the viscous
interaction with the fluid.
Analytical solutions for the different forces are available for small Reynolds numbers
(Stokes flow).An extension to higher Reynolds numbers is usually obtained by including
a coefficient C in front of the force, where C is based on empirical correlations derived
from experiments or direct numerical simulations. In most fluid-particle systems the drag
force is dominating the particle motion. Its extension to higher particle Reynolds number
is based on the introduction of a drag coefficient DC which is defined as:

() PPF
F

D
D

Auu

FC
2

2
−

=
ρ

,

where
4

2πP
P

dA = is the cross-section of a spherical particle. The drag force is expressed

by:

() PFPFD
PP

PF
D uuuuC

d
mF −−=

ρ
ρ

4
3 .

The drag coefficient is given as a function of particle Reynolds number which is defined
as the ratio of inertial force to friction force:

5

F

PFPF
P

uud
μ

ρ −
=Re .

The dependence of the drag coefficient of a spherical particle on the Reynolds number
is shown in figure bellow and it is based on numerous experimental investigations
(Schlichting 1965). From this dependence several regimes associated with flow
characteristics can be identified as can presented in figure bellow:

Figure3: Drag coefficient as a function of particle Reynolds number. Comparison of
experimental data with the correlation for the different regimes. [1]

For small Reynolds number (i.e. 5.0Re <P) the viscous effect dominate and no
separation occurs. The analytic solution for drag is possible as proposed by Stokes
(1851):

P
DC

Re
24

= .

This regime is often referred to as Stokes flow.
For transition region (i.e. 1000Re5.0 << P) numerous correlations have been proposed.
The frequently used is the one proposed by Schiller and Neumann which fits well the
data up to 1000Re =P .

() D
P

P
P

D fC
Re
24Re15.01

Re
24 687.0 =+= .

Above 1000Re ≈P the flow is fully turbulent and the drag coefficient remains almost
constant up to the critical Reynolds number. This regime is often referred to as Newton-
regime with:

6

44.0≈DC .

At critical Reynolds number (5105.2Re ⋅≈crit) there is a drastic decrease in drag
coefficient due to transition from a laminar to turbulent boundary layer around the
particle.
 A generally more accurate sub-critical expression is given by Clift and Gauvin as:

()
()

5

16.1

687.0 102Re

Re
500,421

42.0Re15.01
Re
24

⋅<
+

+⎥
⎦

⎤
⎢
⎣

⎡
+= P

P

P
P

D forC

where the term in square brackets is Schiller-Naumman expression mentioned above.
This can be written in terms of the Stokes correction as:

()[] 800ReRe15.01 687.0
<+= PPshape forff .

This is perhaps, the most commonly used drag correction expression in multiphase
flows since many particles are constrained to PRe values in this range.

1.2 Drag of non-spherical solid particles

Non-spherical solid bodies can be classified as either regularly shaped particles
(ellipsoids, cones, disks) or irregularly-shaped particles (non-symmetric rough
surfaces).Circular cylinders belong to the class of regularly-shaped particles. For
cylindrical particles it is straightforward to define an aspect ratio cylE in the form

cylcylcyl DLE = (L -length, D -diameter).Depending on the relationship between these the
limiting cases, i.e. disks (1<<cylE) and needles 1>>cylE can be identified.
Regularly shaped non-spheroidal particles do not typically have analytical solution for
the drag even in the creeping flow limit. Firstly their shape and corresponding drag
corrections may be approximated as ellipsoids by determining an effective aspect ratio.
This approach is good for cylinders since their shape is quite similar to that of spheroid.
Additional accuracy may be obtained introducing the shape factor defined as:

..&1Re,

,

,

,

volconstsphereD

shapeD
shape

sphereD

shapeD
shape

P
C
C

f
C
C

f
<<

≡≡ .

To estimate the shape factor for non-spheroidal regularly-shaped particles, it is common
to consider two dimensionless area parameters: the surface and the projected area
ratios. Each of those can be normalized by the surface area of a sphere which has the
same volume:

2
*

2
*

41
,

d
A

A
d

A
A proj

proj
surf

surf ππ
≡≡

7

The inverse of the surface are ratio is more commonly defined as the “sphericity ratio”
or the “shape factor”. For a cylinder with an aspect ratio cylE , the surface area ratio and
equivalent volume diameter are given as:

()
.

2
3

,
18

12
,

31

312

*
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+
=≡ cyl

cyl

cyl

cyl
surf

cyl

cyl
cyl

E
dd

E

E
A

d
L

E

The projected area ratio will depend on the orientation of the particle as well as its
shape. For example, a long cylinder will have 1* >projA if it falls broadside, but 1* <projA if it
falls vertically along its axis.
Generally it is expected that lager values of *

projA or *
surfA would correspond to larger

drag values, and indeed this is the case.
The following correlation of these two area ratios was suggested by Leith for the Stokes
shape correction factor:

**

3
2

3
1

surfprojshape AAf += for 1Re <<P .

The relation is based on the fact that one-third of the drag of the sphere is form drag
(related to the projected area) while two thirds is friction drag (related to the surface
*****area) and that the form and friction drags are proportional to the particle diameter. It
holds for non-spherical particles with small deviations from the sphere, so it doesn’t hold
for very high or very low aspect ratios. It gives reasonable results for many well defined
shapes with moderate aspect ratios. If particle has surface area ratio close to that of a
spheroid the following relationships stand for a given aspect ratio:

,1
11

11ln
142 2

2

2

3432
* <⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−

−+

−
+=

−

Efor
E

E

E

EEAsurf

() ..11sin
122

1 21

2

31

32
* ≥−

−
+= −−

−
EforE

E
E

E
Asurf

1.2.1 Non-spherical particles in the Newtonian-drag regime

It is helpful to consider the drag at high Reynolds number before proceeding to
intermediate vales. Non-spherical particles tend to have drag coefficients that are
approximately independent of Reynolds number (54 10Re10 << P), so that an
approximately constant critical drag coefficient can be defined in Newton-drag regime.

8

Similarly to the definition of shapef this drag coefficient can be normalized by that of a
sphere with the same volume:

..,,

,,

volcontcritsphereD

critshapeD
shape C

C
C =

The approximate average for a sphere is:

forC critsphereD 42.0,, = 54 10Re10 << P .

Drag at high Reynolds number is normally defined by projected area, it is difficult to
determine the *

projA for some particles, since the trajectories will generally include
secondary motion, so that they are not always falling in a broadside orientation (vs. area
associated with volumetric diameter). For cylinders secondary motion was found to be
important at extreme aspect ratios. In general cylinders and prolate ellipsoids can be
approximately represented for a wide variety of density ratios by the following
expression:

() 114.217.01 ** >−+−+≈ EforAAC surfsurfshape .

1.2.2 Non-spherical particles at intermediate Reynolds numbers

There are many forms of correlations trying to predict drag coefficient of non-spherical
particles at intermediate .ReP The most successful approaches are those which use a
combination of the Stokes drag correction and the Newton-drag correction. These
approaches assume that the dependence from 1Re <<P to critP ,Re is similar for all
particle shapes and the difference is simply correction at two extremes, given by shapef
and shapeDC , .The dependency comes out from dimensional analysis and can be

expressed as ()** RePD fC = by normalizing the drag coefficient and the Reynolds number
as:

,*

shape

D
D C

C
C =

 shape

Pshape
P f

C Re
Re* =

Use of dimensionless Clift-Gauvin expression yields:

()[]
()

SCcircularforC

P

P
P

D ≈
+

++=

16.1*

687.0*
*

*

Re
500,421

42.0Re15.01
Re
24 .

9

This gives good correlation for particles for a wide range of Reynolds number whose
relative cross-section (C/S) is approximately circular, e.g. spheres and cylinders. For
moderate particle Reynolds numbers, a normalized Schiller-Neumann expression may
be similarly defined:

()[] SCcircularforff PPshape ≈<+= &800ReRe15.01 *687.0*

10

2. Implementation in OpenFOAM

Two classes are to be descried. Class solidParticle and solidParticleCloud.

2.1Class solidParticle

• Complete documentation is given by files solidParticle.H and solidPaticle.C
located in /src/lagrangian/solidParticle.

• This is simple solid spherical particle class with one-way coupling with the
continuous phase.

• It is inherited from class particle. Inheritance is one of the key features of C++
classes. Class (called a subclass or derived type) can inherit the characteristics
of another class(es) (super class or base type) plus include its own. In order to
derive a class from another, a colon (:) in the declaration of the derived class is
used.

• Complex inheritance is one of the main OpenFOAM characteristics.
• Its private members are diameter of the spherical particle and velocity of parcel.
• In public part class Cloud<solidParticle> is defined as its friend class.Class

trackData used to pass data to trackToFace function is also defined in this part.
• There are two constructors for this class: constructor form components and the

constructor from Istream.
• Member functions used to access the private members of class are defined as

well.

solidParticle.H

 /*---*\

 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
 \\/ M anipulation |

 License
 This file is part of OpenFOAM.

 OpenFOAM is free software; you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by the
 Free Software Foundation; either version 2 of the License, or (at your
 option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

11

 You should have received a copy of the GNU General Public License
 along with OpenFOAM; if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

 Class
 solidParticle

 Description
 Simple solid spherical particle class with one-way coupling with the
 continuous phase.

 SourceFiles
 solidParticleI.H
 solidParticle.C
 solidParticleIO.C
 --/

 #ifndef solidParticle_H
 #define solidParticle_H

 #include "particle.H"
 #include "IOstream.H"
 #include "autoPtr.H"
 #include "interpolationCellPoint.H"
 #include "contiguous.H"

 // *//

 namespace Foam
 {

 class solidParticleCloud;

 /*--*\
 Class solidParticle Declaration
 --/

 class solidParticle
 :
 public particle<solidParticle>
 {
 // Private member data

 //- Diameter
 scalar d_;

 //- Velocity of parcel
 vector U_;

 public:

 friend class Cloud<solidParticle>;

 //- Class used to pass tracking data to the trackToFace function
 class trackData

12

 {
 //- Reference to the cloud containing this particle
 solidParticleCloud& spc_;

 // Interpolators for continuous phase fields

 const interpolationCellPoint<scalar>& rhoInterp_;
 const interpolationCellPoint<vector>& UInterp_;
 const interpolationCellPoint<scalar>& nuInterp_;

 //- Local gravitational or other body-force acceleration
 const vector& g_;

 public:

 bool switchProcessor;
 bool keepParticle;

 // Constructors

 inline trackData
 (
 solidParticleCloud& spc,
 const interpolationCellPoint<scalar>& rhoInterp,
 const interpolationCellPoint<vector>& UInterp,
 const interpolationCellPoint<scalar>& nuInterp,
 const vector& g
);

 // Member functions

 inline solidParticleCloud& spc();

 inline const interpolationCellPoint<scalar>& rhoInterp() const;

 inline const interpolationCellPoint<vector>& UInterp() const;

 inline const interpolationCellPoint<scalar>& nuInterp() const;

 inline const vector& g() const;
 };

 // Constructors

 //- Construct from components
 inline solidParticle
 (
 const Cloud<solidParticle>& c,
 const vector& position,
 const label celli,
 const scalar m,
 const vector& U
);

13

 //- Construct from Istream
 solidParticle
 (
 const Cloud<solidParticle>& c,
 Istream& is,
 bool readFields = true
);

 //- Construct and return a clone
 autoPtr<solidParticle> clone() const
 {
 return autoPtr<solidParticle>(new solidParticle(*this));
 }

 // Member Functions

 // Access

 //- Return diameter
 inline scalar d() const;

 //- Return velocity
 inline const vector& U() const;

 //- The nearest distance to a wall that
 // the particle can be in the n direction
 inline scalar wallImpactDistance(const vector& n) const;

 //- Tracking
 bool move(trackData&);

 //- Overridable function to handle the particle hitting a
 //- processorPatch
 void hitProcessorPatch
 (
 const processorPolyPatch&,
 solidParticle::trackData& td
);

 //- Overridable function to handle the particle hitting a
 //- processorPatch without trackData
 void hitProcessorPatch
 (
 const processorPolyPatch&,
 int&
);

 //- Overridable function to handle the particle hitting a wallPatch
 void hitWallPatch
 (
 const wallPolyPatch&,
 solidParticle::trackData& td
);

14

 //- Overridable function to handle the particle hitting a wallPatch
 //- without trackData
 void hitWallPatch
 (
 const wallPolyPatch&,
 int&
);

 //- Overridable function to handle the particle hitting a polyPatch
 void hitPatch
 (
 const polyPatch&,
 solidParticle::trackData& td
);

 //- Overridable function to handle the particle hitting a polyPatch
 //- without trackData
 void hitPatch
 (
 const polyPatch&,
 int&
);

 // Ostream Operator

 friend Ostream& operator<<(Ostream&, const solidParticle&);
 };

 template<>
 inline bool contiguous<solidParticle>()
 {
 return true;
 }

 template<>
 void Cloud<solidParticle>::readFields();

 template<>
 void Cloud<solidParticle>::writeFields() const;

// * //
 } // End namespace Foam

 // * //
 #include "solidParticleI.H"

 // *//

 #endif

 // ** //

15

solidParticle.C

/*--*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
 \\/ M anipulation |

 License
 This file is part of OpenFOAM.

 OpenFOAM is free software; you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by the
 Free Software Foundation; either version 2 of the License, or (at your
 option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM; if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

 --/

#include "solidParticleCloud.H"

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * //

bool Foam::solidParticle::move(solidParticle::trackData& td)
{
 td.switchProcessor = false;
 td.keepParticle = true;

 const polyMesh& mesh = cloud().pMesh();
 const polyBoundaryMesh& pbMesh = mesh.boundaryMesh();

 scalar deltaT = mesh.time().deltaT().value();
 scalar tEnd = (1.0 - stepFraction())*deltaT;
 scalar dtMax = tEnd;

 while (td.keepParticle && !td.switchProcessor && tEnd > SMALL)
 {
 if (debug)
 {
 Info<< "Time = " << mesh.time().timeName()
 << " deltaT = " << deltaT
 << " tEnd = " << tEnd
 << " steptFraction() = " << stepFraction() << endl;
 }

 // set the lagrangian time-step

16

 scalar dt = min(dtMax, tEnd);

 // remember which cell the parcel is in
 // since this will change if a face is hit
 label celli = cell();

 dt *= trackToFace(position() + dt*U_, td);

 tEnd -= dt;
 stepFraction() = 1.0 - tEnd/deltaT;

 cellPointWeight cpw(mesh, position(), celli, face());
 scalar rhoc = td.rhoInterp().interpolate(cpw);
 vector Uc = td.UInterp().interpolate(cpw);
 scalar nuc = td.nuInterp().interpolate(cpw);

 scalar rhop = td.spc().rhop();
 scalar magUr = mag(Uc - U_);

 scalar ReFunc = 1.0;
 scalar Re = magUr*d_/nuc;

 if (Re > 0.01)
 {
 ReFunc += 0.15*pow(Re, 0.687);
 }

 scalar Dc = (24.0*nuc/d_)*ReFunc*(3.0/4.0)*(rhoc/(d_*rhop));

 U_ = (U_ + dt*(Dc*Uc + (1.0 - rhoc/rhop)*td.g()))/(1.0 + dt*Dc);

 if (onBoundary() && td.keepParticle)
 {
 if (isType<processorPolyPatch>(pbMesh[patch(face())]))
 {
 td.switchProcessor = true;
 }
 }
 }

 return td.keepParticle;
}

bool Foam::solidParticle::hitPatch
(
 const polyPatch&,
 solidParticle::trackData&,
 const label
)
{
 return false;
}

bool Foam::solidParticle::hitPatch
(

17

 const polyPatch&,
 int&,
 const label
)
{
 return false;
}

void Foam::solidParticle::hitProcessorPatch
(
 const processorPolyPatch&,
 solidParticle::trackData& td
)
{
 td.switchProcessor = true;
}

void Foam::solidParticle::hitProcessorPatch
(
 const processorPolyPatch&,
 int&
)
{}

void Foam::solidParticle::hitWallPatch
(
 const wallPolyPatch& wpp,
 solidParticle::trackData& td
)
{
 vector nw = wpp.faceAreas()[wpp.whichFace(face())];
 nw /= mag(nw);

 scalar Un = U_ & nw;
 vector Ut = U_ - Un*nw;

 if (Un > 0)
 {
 U_ -= (1.0 + td.spc().e())*Un*nw;
 }

 U_ -= td.spc().mu()*Ut;
}

void Foam::solidParticle::hitWallPatch
(
 const wallPolyPatch&,
 int&
)
{}

void Foam::solidParticle::hitPatch

18

(
 const polyPatch&,
 solidParticle::trackData& td
)
{
 td.keepParticle = false;
}

void Foam::solidParticle::hitPatch
(
 const polyPatch&,
 int&
)
{}

void Foam::solidParticle::transformProperties (const tensor& T)
{
 Particle<solidParticle>::transformProperties(T);
 U_ = transform(T, U_);
}

void Foam::solidParticle::transformProperties(const vector& separation)
{
 Particle<solidParticle>::transformProperties(separation);
}
// *** //

2.2 Class solidParticleCloud

• Complete documentation is given by files solidParticleCloud.H and
solidPaticleCloud.C located in /src/lagrangian/solidParticle.

• It is inherited from class cloud.
• Its private members are fvMesh & mesh and particle properties such as particle

density, restitution ratio and friction coefficient. Moreover there are private
member functions that disallow default bitwise copy constructor and assignment
operator.

• Constructor is defined in public part as well as member functions to access the
class private members

solidParticleCloud.H

/*--*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
 \\/ M anipulation |

19

 License
 This file is part of OpenFOAM.

 OpenFOAM is free software; you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by the
 Free Software Foundation; either version 2 of the License, or (at your
 option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM; if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

 Class
 solidParticleCloud

 Description

 SourceFiles
 solidParticleCloudI.H
 solidParticleCloud.C
 solidParticleCloudIO.C
 --/

 #ifndef solidParticleCloud_H
 #define solidParticleCloud_H
 #include "Cloud.H"
 #include "solidParticle.H"
 #include "IOdictionary.H"

 // * //

 namespace Foam
 {

 // Class forward declarations
 class fvMesh;
 /*--*\
 Class solidParticleCloud Declaration
 --/

 class solidParticleCloud
 :
 public Cloud<solidParticle>
 {
 // Private data

 const fvMesh& mesh_;

 IOdictionary particleProperties_;

20

 scalar rhop_;
 scalar e_;
 scalar mu_;

 // Private Member Functions

 //- Disallow default bitwise copy construct
 solidParticleCloud(const solidParticleCloud&);

 //- Disallow default bitwise assignment
 void operator=(const solidParticleCloud&);

 public:

 // Constructors

 //- Construct given mesh
 solidParticleCloud(const fvMesh&);

 // Member Functions

 // Access

 inline const fvMesh& mesh() const;

 inline scalar rhop() const;
 inline scalar e() const;
 inline scalar mu() const;

 // Edit

 //- Move the particles under the influence of the given
 // gravitational acceleration
 void move(const dimensionedVector& g);

 // Write
 // -Write fields
 virtual void writeFields() const;

};

 // * //

 } // End namespace Foam

 // *//

 #include "solidParticleCloudI.H"

 // *//

 #endif
 //**//

21

solidParticleCloud.C

/*--*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
 \\/ M anipulation |

 License
 This file is part of OpenFOAM.

 OpenFOAM is free software; you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by the
 Free Software Foundation; either version 2 of the License, or (at your
 option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM; if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

 --/

#include "solidParticleCloud.H"
#include "fvMesh.H"
#include "volFields.H"
#include "interpolationCellPoint.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * //

namespace Foam
{
 defineParticleTypeNameAndDebug(solidParticle, 0);
 defineTemplateTypeNameAndDebug(Cloud<solidParticle>, 0);
};

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * //

Foam::solidParticleCloud::solidParticleCloud
(
 const fvMesh& mesh,
 const word& cloudName
)
:
 Cloud<solidParticle>(mesh, cloudName, false),
 mesh_(mesh),
 particleProperties_
 (
 IOobject
 (

22

 "particleProperties",
 mesh_.time().constant(),
 mesh_,
 IOobject::MUST_READ,
 IOobject::NO_WRITE
)
),
 rhop_(dimensionedScalar(particleProperties_.lookup("rhop")).value()),
 e_(dimensionedScalar(particleProperties_.lookup("e")).value()),
 mu_(dimensionedScalar(particleProperties_.lookup("mu")).value())
{
 solidParticle::readFields(*this);
}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * //

void Foam::solidParticleCloud::move(const dimensionedVector& g)
{
 const volScalarField& rho = mesh_.lookupObject<const volScalarField>("rho");
 const volVectorField& U = mesh_.lookupObject<const volVectorField>("U");
 const volScalarField& nu = mesh_.lookupObject<const volScalarField>("nu");

 interpolationCellPoint<scalar> rhoInterp(rho);
 interpolationCellPoint<vector> UInterp(U);
 interpolationCellPoint<scalar> nuInterp(nu);

 solidParticle::trackData td(*this, rhoInterp, UInterp, nuInterp, g.value());

 Cloud<solidParticle>::move(td);
}

void Foam::solidParticleCloud::writeFields() const
{
 solidParticle::writeFields(*this);
}
// **//

2.3 SolidCylinder and solidCylinderCloud classes

Two new classes called solidCylinder and solidCylinder Cloud which stand for
cylindrical particles are built from solidParticle and solidParticleCloud class respectively.
In $WM_PROJECT_USER_DIR new directory called solidCyliner is created as a copy of
solidParicle directory located in src/lagrangian.

cd solidCylinder

Make/files and Make/options are necessary as well. Make directory should be created.

23

Make/files:

Make/options:

The compilation can be done using wmake libso which will build a dynamic library.
The file names must be modified:

rename solidParticle solidCylinder *

In files solidCylinder.H,solidCylinde.C,solidCylinderCloud.H,
solidCylinderCloud.C, solidCylinderI.H, solidCylinderCloudI.H,
solidCylinderIO.C all occurrences of solidParticle should be changed to
solidCylinder:

sed –i s/solidParticle/ solidCylinder/g solidCylinder.H
sed –i s/solidParticle/ solidCylinder/g solidCylinder.C
sed –i s/solidParticle/ solidCylinder/g solidCylinderCloud.H
sed –i s/solidParticle/ solidCylinder/g solidCylinderCloud.C
sed –i s/solidParticle/ solidCylinder/g solidCylinderI.H
sed –i s/solidParticle/ solidCylinder/g solidCylinderCloudI.H
sed –i s/solidParticle/ solidCylinder/g solidCylinderIO.C

Change in drag force due to particle shape change must be taken into account. This is
realized in solidCylinder.C file in the following way:

scalar E=l_/d_;
scalar Asurfs=(2*E+1)/pow(18*pow(E,2),1/3);
scalar fshape=(1/3)*pow(1.59,1/2)+(2/3)*pow(Asurfs,1/2);

solidCylinder.C
solidCylinderIO.C
solidCylinderCloud.C

LIB = $(FOAM_USER_LIBBIN)/libsolidCylinder

EXE_INC = \
 -I$(LIB_SRC)/finiteVolume/lnInclude \
 -I$(LIB_SRC)/lagrangian/basic/lnInclude \
 -I$(LIB_SRC)/lagrangian/solidParticle/lnInclude

LiB_LIBS = \
 -llagrangian \
 -lfiniteVolume

24

readEnvironmentalProperties.H

 Info << "\nReading environmentalProperties" << endl;

 IOdictionary environmentalProperties
 (
 IOobject
 (
 "environmentalProperties",
 runTime.constant(),
 mesh,
 IOobject::MUST_READ,
 IOobject::NO_WRITE
)
);

 dimensionedVector g(environmentalProperties.lookup("g"));

scalar Cshape=1+0.7*pow(Asurfs-1,1/2)+2.4*(Asurfs-1);
scalar Rec=Cshape*Re/fshape;
scalar ReFuncc=1+0.15*pow(Rec,0.687);
scalar Dcc=(24.0*nuc/d_)*ReFuncc*(3.0/4.0)*(rhoc/(d_*rhop));
U_=(U_+dt*(Dcc*Uc+(1.0-rhoc/rhop)*td.g()))/(1.0+dt*Dcc);

The compilation is done using wmake libso.

2.4. SolidParticleFoam solver as an application of solidParticleCloud
class

It is obtained through svn:

svn checkout
http://openfoamextend.svn.sourceforge.net/svnroot/openfoam-
extend/trunk/Breeder_1.5/solvers/other/solidParticleFoam/
cd solidParticleFoam/solidParticleFoam

In order to do the compilation file readEnviromentalproperies.H has to be copied
to the solver from OpenFoam-1.5.x version:

cp/chalmers/sw/unsup/OpenFOAM_1.5.x/src/finiteVolume/cfdTools/ge
neral/include/readEnvironmentalProperties.

It can be compiled using wmake.

25

This solver solves for the particle position and velocity. Particles are considered as
spherical rigid bodies. Particle properties are density, restitution ratio and friction
coefficient.
Box is used as a test case. Two particles at different initial velocities are inserted into
the fluid at rest and their motion is tracked.

cd ../box
blockMesh

In order to apply this solver to cylinder particles the following steps should be done:

cd solidParticleFoam
mv solidParticleFoam.C soliCylinderFoam.C
sed –i s/solidParticle/ solidCylinder/g solidCylinderFoam.C

The files and options in Make directory of the solver must be changed as well:

Make/files:

Make/options:

Finally,it is compiled using wmake libso.

solidCylinderFoam.C

EXE = $(FOAM_USER_APPBIN)/solidCylinderFoam

EXE_INC = \
 -I$(LIB_SRC)/finiteVolume/lnInclude \
 -I$(LIB_SRC)/lagrangian/basic/lnInclude \
 -I$(LIB_SRC)/lagrangian/solidParticle/lnInclude \
 -I../solidCylinder/lnInclude

EXE_LIBS = \
 -lfiniteVolume \
 -llagrangian \
 -lsolidParticle \
 -L$(FOAM_USER_LIBBIN) \
 -lsolidCylinder

26

solidCylinderFoam.C

/*---*\

 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright Tutorial Author: Hakan Nilsson
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software; you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by the
 Free Software Foundation; either version 2 of the License, or (at your
 option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM; if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Application
 solidParticleFoam

Description
 Example of the use of the solidParticleCloud class
 You must use OpenFOAM-1.5.x

---/
//Some features of the fvCFD class are needed:
#include "fvCFD.H"
//The class definitions of the solidCylinderCloud class are needed:
#include "solidCylinderCloud.H"

// * //

int main(int argc, char *argv[])
{

include "setRootCase.H"
include "createTime.H"
include "createMesh.H"
include "createFields.H"

//The gravitational acceleration is needed:
include "readEnvironmentalProperties.H"

27

// * //

 Info<< "\nCreating particle cloud" << endl;
 solidCylinderCloud particles(mesh);
 //The solidParticleCloud class constructor allows the specification
 //of the cloudName of the Cloud directory (default is defaultCloud):
 //solidParticleCloud particles(mesh, "myCloud");

 //The solidParticleCloud class has access member functions:
 Info<<"\nFrom constant/particleProperties:" << endl;
 Info<<"rhop = " << particles.rhop() << endl;
 Info<<"e = " << particles.e() << endl;
 Info<<"mu = " << particles.mu() << endl;

 Info<< "\nStarting time loop\n" << endl;

 for (runTime++; !runTime.end(); runTime++)
 {
 Info<< "Time = " << runTime.timeName() << nl << endl;

 Info<< "Moving particles." << nl << endl;
 particles.move(g);

 runTime.write();

 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
 << "ClockTime = " << runTime.elapsedClockTime() << " s"
 << nl << endl;
 }

 //It is possible to explicitly write the lagrangian fields.
 //Here they will be placed in the endTime+deltaT time directory:
 //Info<<"\nWriting fields." << endl;
 //particles.writeFields();

 Info<< "End\n" << endl;

 return(0);
}

In $WM_PROJECT_USER_DIR/solidParticleFoam there should be three
subdirectories: box, solidParticleFoam,solidCylinder.This is where
solidCylinder directory should be placed, otherwise there will be some errors while
compiling.
Box/0 includes :lagrangian nu rho U;
lagrangian /defaultCloud includes: d l positions U;
More details are provided bellow.

28

/*---*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	
\\ / A nd	Version 1.5
\\/ M anipulation	Web: http://www.OpenFOAM.org
---/
FoamFile
{
 version 2.0;
 format ascii;
 class volVectorField;
 object U;
}
// * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);
boundaryField
{

 Walls
 {
 type fixedValue;
 value uniform(0 0 0)
 }
}

// * //

In 0/U the velocity of the continuous phase is defined. The corresponding OpenFOAM
file is shown bellow. The velocity is an object of volVectorField class. The units are
specified in m/s. The internal field is set to uniform (0 0 0) (fluid at rest) and the
boundary field is set to zero gradient.

29

/*---*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	
\\ / A nd	Version 1.5
\\/ M anipulation	Web: http://www.OpenFOAM.org
---/
FoamFile
{
 version 2.0;
 format ascii;
 class volScalarField;
 object rho;
}
// * //

dimensions [1 -3 0 0 0 0 0];

internalField uniform 1;

boundaryField
{

 Walls
 {
 type zeroGradient;
 }

}
// * //

In 0/rho the density of the continuous phase is defined. From the corresponding
OpenFOAM file It can be seen that the density is defined as an object of
volScalarField class. The units are kg/m3. The internal field is set to 1 (air density at
ambient temperature) while the boundary field is specified as zero gradients.

30

/*---*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	
\\ / A nd	Version 1.5
\\/ M anipulation	Web: http://www.OpenFOAM.org
---/
FoamFile
{
 version 2.0;
 format ascii;
 class volScalarField;
 object nu;
}
// * //

dimensions [0 2 -1 0 0 0 0];

internalField uniform 1e-6;

boundaryField
{

 Walls
 {
 type zeroGradient;
 }

}
// * //

In 0/nu the kinematic viscosity of the continuous phase is defined. The corresponding
OpenFOAM file is given bellow. It can be seen that viscosity is defined as an object of
volScalarField class. The units are m2/s and the boundary field is specified as zero
gradient.

31

/*---*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	
\\ / A nd	Version 1.5
\\/ M anipulation	Web: http://www.OpenFOAM.org
---/
FoamFile
{
 version 2.0;
 format ascii;
 class vectorField;
 location "0";
 object d;
}
// * //
2
(
2.0e-3
2.0e-3
)
// *** //

/*---*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	
\\ / A nd	Version 1.5
\\/ M anipulation	Web: http://www.OpenFOAM.org
---/
FoamFile
{
 version 2.0;
 format ascii;
 class vectorField;
 location "0";
 object d;
}
// * //
2
(
2.0e-3
2.0e-3
)
// *** //

In lagrangian/d foam file particle (cylinder) diameters are specified:

In lagrangian/l foam file cylinder lengths are specified:

32

/*---*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	
\\ / A nd	Version 1.5
\\/ M anipulation	Web: http://www.OpenFOAM.org
---/
FoamFile
{
 version 2.0;
 format ascii;
 class vectorField;
 location "0";
 object U;
}
// *
//
2
(
(1.7e-1 0 0)
(1.7 0 0)
)
// *** //

In lagrangian/U foam file the initial velocities of two particles (cylinders) are
specified:

33

3. Results and discussion

3.1 Reynolds numbers

Reynolds number as functions of time are presented for both, sphere and cylinder pairs.
Analyzing the graphs bellow it can be noticed that cylinders experience higher Re-
number then spheres, which is physically correct. Moreover, sphere and cylinder with
higher initial velocity firstly have rather high Re- numbers, but for a quite short time are
approaching very low values. Regarding sphere and cylinder with lower initial velocity
the decreasing trend for Re-numbers can be notices, but except for the beginning of the
simulation (first 0.2 s) the values remain higher comparing to the second sphere-
cylinder pair.

Figure4: Reynolds number as a function of time for spherical particles

34

Figure5: Reynolds number as a function of time for cylindrical particles

3.2 Drag forces

Drag forces are plotted for both spheres and cylinders. From the figures below it can be
seen that drag forces are higher for cylinders which is physically correct.
 Another issue that should be discussed is the manner in which the steady-state
condition is approached. Figure 6 stands for the sphere and cylinder with lower velocity.
The slight trend of moving toward stationary can be noticed, but nothing certain can be
said for the specified simulation time. On the other hand, Figure7 corresponds to the
sphere and cylinder with higher velocity and it can clearly be seen that steady state
condition is reached quite fast (approximately after 0.8 s).
Regarding the force magnitudes, higher values are noticed for the sphere and cylinder
with lower initial velocities, which is in agreement with previous discussion concerning
Re-numbers.

35

Figure6: Drag force as a function of time for sphere1 and cylinder1

Figure7: Drag force as a function of time for sphere2 and cylinder2

36

3.3 Drag coefficient

In figures bellow the dependence of drag coefficients for spherical particles on Reynolds
numbers is shown. The results are in good agreement with theory. For the first sphere
and cylinder the Stokes (creeping flow), transition and Newton region can be identified.

Figure8: Drag coefficient as a function of particle Reynolds number for sphere1

Figure9: Drag coefficient as a function of particle Reynolds number for cylinder1

37

Regarding the sphere and cylinder with higher initial velocity the plots do not provide
clear information about the drag coefficient.

Figure10: Drag coefficient as a function of particle Reynolds number for sphere2

Figure11: Drag coefficient as a function of particle Reynolds number for cylinder2

38

In order to clarify this drag coefficients for the second sphere and cylinder are plotted
versus Re-numbers for the firs 0.8 s. The trend can clearly be seen from the figures
bellow. Regarding the previous plots it can be concludes that high drag coefficients
correspond to very low Re-numbers that occur for computation time t=0.8-1s.

Figure12: Drag coefficient as a function of particle Reynolds number for sphere2

(computational time t=0.8s)

Figure13: Drag coefficient as a function of particle Reynolds number for cylinder2

(computational time t=0.8s)

39

References:

1. ERCOFTAC , The Best Practice Guidelines for Computational Fluid Dynamics of
turbulent dispersed multiphase flows, 2008

2. Crowe, C.,Sommerfeld,M.,Tsuji, Y., Multiphase flows with droplets and particles,
CRC Press, 1998

3. Loth, E., Drag of non-spherical solid particles of regular and irregular shape,
Science Direct, 2007

4. Sasic, S., Van Wachem, B., Direct numerical simulation (DNS) of an individual
fiber in an arbitrary flow field – an implicit immersed boundary method,
Multiphase Science and Technology, Vol21, Issues 1-2, 2009

5. Lectures –PhD course in CFD with OpenSource software, Quarter2, 2009,
Chalmers University of Technology

6. http://foam.sourceforge.net/doc/Doxygen/html/
7. http://www.cplusplus.com/doc/tutorial

