
Institute of Mathematical Sciences and Technology

Norwegian University of Life Sciences

CFD with OpenSource software, assignment 3

Tutorial Power law velocity inlet,
InterFoam

Author:
Jan Potac

Peer reviewed by:

December 13, 2009

1 Introduction

The goal of this tutorial is to setup and run 2D simulation of incompressible two-phase
turbulent flow with velocity inlet profile. It is focused on geometry creation, boundary
condition definition and turbulence model activation. A transient solver for incompressible
and multiphase flows using volume of fluid method, interFoam, is chosen. The case files are
constructed using different damBreak tutorial files.
The model is characterized by a fluid mixture entering domain, passing an obstacle and
leaving. The flow is governed by power law velocity inlet profile.

2 Geometry

The simple geometry contains a wind tunnel with a cubic obstacle placed on the bottom.
The tunnel is 6 m high and 36 m long. The cube has dimensions of 1x1 m and is located
15 m downstream. See Fig. 1. The mixture of air and ,for instance, snow enters the
domain on the left side and leaving on the right. All the domain surfaces used in boundary
condition definition and setup are called as INLET, OUTLET, OBSTACLE, SKY and
FRONTANDBACK.
First, the tutorial case related to interDyMFoam was copied for a use of a template.

run
cp -r $FOAM_TUTORIALS/multiphase/interDyMFoam/ras/damBreakWithObstacle .
mv damBreakWithObstacle snowDrift
cd snowDrift

Since the geometry in this damBreakWithObstacle case is different then in damBreak de-
scribed in user guide, the directory polyMesh is deleted and files from damBreak case are
uploaded instead.

rm -rf constant/polyMesh
cp -r $FOAM_TUTORIALS/multiphase/interFoam/laminar/damBreak/constant/polyMesh constant

Now the file blockMeshDict can be rearranged. The vertices and patches have to be changed
as follows:

convertToMeters 1;

vertices
(

(0 0 0)
(15 0 0)
(16 0 0)
(36 0 0)
(0 1 0)
(15 1 0)
(16 1 0)
(36 1 0)
(0 6 0)
(15 6 0)
(16 6 0)

1

(36 6 0)
(0 0 1)
(15 0 1)
(16 0 1)
(36 0 1)
(0 1 1)
(15 1 1)
(16 1 1)
(36 1 1)
(0 6 1)
(15 6 1)
(16 6 1)
(36 6 1)

);
blocks
(

hex (0 1 5 4 12 13 17 16) (23 8 1) simpleGrading (1 1 1)
hex (2 3 7 6 14 15 19 18) (19 8 1) simpleGrading (1 1 1)
hex (4 5 9 8 16 17 21 20) (23 42 1) simpleGrading (1 1 1)
hex (5 6 10 9 17 18 22 21) (4 42 1) simpleGrading (1 1 1)
hex (6 7 11 10 18 19 23 22) (19 42 1) simpleGrading (1 1 1)

);

edges
(
);

patches
(

patch inlet
(

(0 12 16 4)
(4 16 20 8)

)
patch outlet
(

(7 19 15 3)
(11 23 19 7)

)
wall obstacle
(

(1 5 17 13)
(5 6 18 17)
(2 14 18 6)
(0 1 13 12)
(2 3 15 14)

)
wall sky

2

(
(8 20 21 9)
(9 21 22 10)
(10 22 23 11)

)
empty frontAndBack
(

(0 4 5 1)
(2 6 7 3)
(4 8 9 5)
(5 9 10 6)
(6 10 11 7)

(12 13 17 16)
(14 15 19 18)
(16 17 21 20)
(17 18 22 21)
(18 19 23 22)

)

);

mergePatchPairs
(
);

When ready the command blockMesh might be run. The generated mesh and geometry
can be seen at Figure 1.

Figure 1: Geometry and mesh

3

3 Initial and boundary conditions

The next step covers setting up of initial and boundary conditions located in subdirectory
0. The files U, p, alpha1, k and epsilon have to be redefined to fullfil boundary conditions
definition names and also desired values. First copy the missing turbulence properties into
0 directory.

cp -r $FOAM_TUTORIALS/multiphase/interFoam/ras/damBreak/0/k 0/
cp -r $FOAM_TUTORIALS/multiphase/interFoam/ras/damBreak/0/epsilon 0/

The file describing velocity properties at the boundaries looks as

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField
{

inlet
{

type powerLawVelocity;
n (1 0 0);
y (0 1 0);
maxValue 10;
value uniform (0 0 0);

}
outlet
{

type zeroGradient;
}
obstacle
{

type fixedValue;
value uniform (0 0 0);

}
sky
{

type zeroGradient;
}
frontAndBack
{

type empty;
}

}

As an inlet velocity covering the wind profile the powerLawVelocity boundary condition
will be implemented. The more detailed about how to implement this is described in the
text below.
The similar steps as for file U have to be done also for files p, k and epsilon.

4

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 0;

boundaryField
{

inlet
{

type zeroGradient;
}

outlet
{

type fixedValue;
value uniform 0;

}

obstacle
{

type buoyantPressure;
value uniform 0;

}

sky
{

type totalPressure;
p0 uniform 0;
U U;
phi phi;
rho rho;
psi none;
gamma 1;
value uniform 0;

}

frontAndBack
{

type empty;
}

}

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0.1;

boundaryField
{

inlet

5

{
type fixedValue;
value uniform 1;

}
outlet
{

type zeroGradient;
}
obstacle
{

type kqRWallFunction;
value uniform 0.1;

}
sky
{

type kqRWallFunction;
value uniform 0.1;

}
frontAndBack
{

type empty;
}

}

dimensions [0 2 -3 0 0 0 0];

internalField uniform 0.1;

boundaryField
{

inlet
{

type fixedValue;
value uniform 0.1;

}
outlet
{

type zeroGradient;
}
obstacle
{

type epsilonWallFunction;
Cmu 0.09;
kappa 0.41;
E 9.8;
value uniform 0.1;

}
sky

6

{
type epsilonWallFunction;
Cmu 0.09;
kappa 0.41;
E 9.8;
value uniform 0.1;

}
frontAndBack
{

type empty;
}

}

The last file in 0 directory is alpha1. Since the simulation is two phase, this file specifies
volume fraction at the boundaries. The inlet condition should provide continuous volume
fraction entering the domain.

dimensions [0 0 0 0 0 0 0];

internalField uniform 0;

boundaryField
{

inlet
{

type inletOutlet;
inletValue uniform 0.0001;
value uniform 0.0001;

}
outlet
{

type zeroGradient;
}
obstacle
{

type zeroGradient;
}
sky
{

type inletOutlet;
inletValue uniform 0;
value uniform 0;

}
frontAndBack
{

type empty;
}

}

7

3.1 Power Law Velocity profile

Wind velocity inside Earth’s boundary layer changes with increasing height. There exist a
few wind profiles valid for certain conditions. This power law wind profile can be calculated
using expression

u(y) = uref

(
y

yref

)α

(1)

where uref and yref are reference values obtained from measurements. Exponent α de-
scribes stability of the atmosphere, and is approximately 0.143.
To implement powerLawVelocity boundary condition the parabolicVelocityFvPatchVector-
Field is used as a template.

cp -r $FOAM_APP/solvers/multiphase/interFoam .
cp -r /chalmers/sw/unsup/OpenFOAM/OpenFOAM-1.5-dev/src/finiteVolume/fields/fvPatchFields/derived/parabolicVelocity/* interFoam
mv interFoam snowInterFoam
cd snowInterFoam
wclean

The file files in Make sub-directory has to be changed to contain

interFoam.C
powerLawVelocityFvPatchVectorField.C

EXE = $(FOAM_USER_APPBIN)/snowInterFoam

The header of original solver file interFoam.C has to contain

#include "powerLawVelocityFvPatchVectorField.H";

Before the new condition can be compiled within the new solver called snowInterFoam,
everything called ’parabolic’ should be replaced by ’powerLaw’. To do so the following
commands can be applied

sed -i s/parabolic/powerLaw/g parabolicVelocityFvPatchVectorField.H
sed -i s/parabolic/powerLaw/g parabolicVelocityFvPatchVectorField.C
mv parabolicVelocityFvPatchVectorField.C powerLawVelocityFvPatchVectorField.C
mv parabolicVelocityFvPatchVectorField.H powerLawVelocityFvPatchVectorField.H

Let’s take a look back at the power law function which has to be specified in powerLowVe-
locityFvPatchVectorField.C. The whole profile calculation is located in Member Function.

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

void powerLawVelocityFvPatchVectorField::updateCoeffs()
{

if (updated())
{

return;
}
// Get range and orientation
boundBox bb(patch().patch().localPoints(), true);

8

vector ctr = (bb.min()); //this lines defines minimum y value

const vectorField& c = patch().Cf();

// Calculate local 1-D coordinate for the powerLaw profile
scalarField coord =((c - ctr) & y_)/((bb.max() - bb.min()) & y_);

vectorField::operator=(n_*maxValue_*pow (coord/8,0.143));//power law equation

}

Now, the solver can by compiled by running wmake.

4 Transport properties, activation of turbulence model, fields
setup, and run of the solver

In original damBreak case, the water is considered as a fluid. In this case, the density and
viscosity is decreased to reach more buouyant fluid properties. This is done by changing
the file transportProperties.

phase1
{

transportModel Newtonian;
nu nu [0 2 -1 0 0 0 0] 3.8e-10;
rho rho [1 -3 0 0 0 0 0] 250;

Before the final run of the solver will be done, there is a need to activate turbulence model
and set volume fields.
First, the turbulence model must be activated in file called turbulenceProperties in
constant sub-directory

simulationType RASModel;

Then the file RASModel has to be set up as well. In this case the file is copied from damBreak
case.

cp -r $FOAM_TUTORIALS/multiphase/interFoam/ras/damBreak/constant/RASProperties constant

Now, when turbulence equations are activated, there is a need to set volume fields using
file setFieldsDict in system sub-directory. The box region with volume fraction of 0.0001
is defined in the domain inlet.

efaultFieldValues
(

volScalarFieldValue alpha1 0
volVectorFieldValue U (0 0 0)

);

regions

9

(
boxToCell
{

box (0 0 0) (1 6 1);
fieldValues
(

volScalarFieldValue alpha1 0.0001
);

}
);

Since the content of files fvSolution and fvSchemes does not fit with turbulence model
equation setup, one can substitute these files by taking from from damBreak tutorial.

rm -rf system/fv*
cp -r $FOAM_TUTORIALS/multiphase/interFoam/ras/damBreak/system/fv* system/

The last steps are to run command setFileds and snowInterFoam. Before that the
controlDict file should be checked.

application snowInterFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 60;

deltaT 0.001;

writeControl adjustableRunTime;

writeInterval 2;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression uncompressed;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

10

adjustTimeStep yes;

maxCo 0.1;

maxDeltaT 1;

Finally the case is ready and can be run using first setFields and then snowInterFoam.

5 Post-processing

First, let’s check the proper velocity inlet profile. Running paraFoam and applying the Cell
Centers filter and Glyph for inlet patch the velocity profile can be seen as in Figure 2.
The mass distribution inside the domain using plotting alpha1 can be seen at Figure 3

Figure 2: Power law velocity inlet profile

11

Figure 3: Power law velocity inlet profile

12

