Project work for the PhD course in OpenFOAM

Roll Motion of a Box and Interaction with Free-Surface

Arash Eslamdoost
arash.eslamdoost@chalmers.se

Computational Hydrodynamics
Sustainable Ship Propulsion
Shipping and Marin Technology Department
Chalmers University of Technology
Gothenburg, Sweden

December 2009

1. Introduction

The objective of this tutorial is to investigate the capability of OpenFOAM-1.6.x in
handling free-surface flows when there is some mesh deformation in computational
domain. Such a problem could be seen a lot in ship motion modeling. To simplify the
problem enough, initially it is considered that there is a two-dimensional box located
between the interface of water and air. Moreover, to check the OpenFOAM'’s
capability in handling dynamic mesh, the box will be set to roll in an oscillating mode
which requires adapting the grid for each time step. The general presentation of the
discussed modeling could be seen in Figure 1.

AIR

BOX

Figure 1. Schematic presentation of the intended modeling

It is common among OpenFOAM users to brows and find the available modeling in
OpenFOAM tutorial which are more similar to the new intended modeling and base
this new modeling on these previously linked solvers and libraries. The most similar
available tutorial to the rolling box case is “sloshingTank2D”, which could be found
in the following directory:

$FOAM_ TUTORIALS/multiphase/interDyMFoam/ras/sloshingTank2D

In “sloshingTank2D” tutorial there is a tank with partially filled with water. It is
possible to give some roll and other sort of motions (e.g. sway and heave) to the
whole tank together. Therefore, in this case, there is a moving mesh but actually there
is not any change in cell volumes and arrays relative to each other. This case is
running with the “interDyMFoam” solver and according to the information provided
in [1] this solver is applied for two incompressible, isothermal immiscible fluids using
a VOF (volume of fluid) phase-fraction based interface capturing approach, with
optional mesh motion and mesh topology changes including adaptive re-meshing.
Therefore, “interDyMFoam” solver should be able to handle both interface tracking
and mesh motion in the rolling box case.

As a first step to start the rolling box modeling, it has been tried to just change the
geometry of the tank and replace it with the rolling box geometry. Now, it is required
to generate a new grid and this is done through the blockMesh application. The
detailed coordinate of the vertexes, edges, patches, blocks and mesh adaption
implemented in the blockMesh file is presented in appendix A. The generated mesh is

rather coarse and in case that the accuracy of the solution is important this grid should
be refined.

Now on, the case which the whole computational domain is supposed to have an
angular oscillation about a defined axis, is called “boxSolidOscillation” and the case,
which only the box is supposed to oscillate, is called “boxFreeOscillation”. These
cases could be found in the OpenFOAM Course Homepage in the following address:

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2009/

Download and copy them to your run directory and then unpack the contents.

2. boxSolidOscillation case

Current case just deals with pure solid movement of whole computational domain
without having any change in cells’ volume. The dynamic mesh handling and
controlling parameters on moving the whole field in this case will be discussed further
in the following.

To get started with this case, move in to the “boxSolidOscillation” directory.

Created “boxSolidOscillation” folder as usual contains three sub-directories, which
are “0”, “constant”, and “system”. Some of the main contents of these sub-directories
will be discussed a little more in deep.

Grid applied in this case is produced applying blockMesh. To check the grid
properties open ‘“‘constant/polyMesh/blockMesh”. Also, you might find the
blockMesh file contents in appendix A. Run the blockMesh to generate the mentioned
structured grid and then to check the mesh quality the “checkMesh” command could
be applied.

' blockMesh
' checkMesh

Open and investigate the generated grid in paraview. It can bee seen that the
generated mesh is located on xy-plane. Default dynamicMesh is set in a way that the
axis of angular oscillation should be located along x-axis; but, current generated grid
is located on xy-plane and its axis of oscillation is along z-axis. According to this, the
grid should be adapted by changing the current array of x and z axis. Issuing the
following command line could do this:

Now it is required to modify the files in “0” directory for current geometry and set the
proper boundary conditions. Appendixes 2, 3, 4 present the settings for velocity,
pressure and alphal boundary condition. Boundaries of box and tank are treated as
non-moving walls. Pressure boundary conditions on walls are treated as

“bouyantPressure”. Also, “zeroGradient” alphal' has been set on boundaries.

To see how the initial phases distribution in the computational domain is defined open
“system/setFields”. Settings for “setFields” application could be seen in Appendix 5.

In the fvSolution, the PISO sub-dictionary contains elements that are specific to
interFoam. There are the usual correctors to the momentum equation but also
correctors to a PISO loop around the o, phase equation. Of particular interest are the
nAlphaSubCycles and cAlpha keywords. nAlphaSubCycles represents the number of
sub-cycles within the o equation; sub-cycles are additional solutions to an equation
within a given time step. It is used to enable the solution to be stable without reducing
the time step and vastly increasing the solution time. Here 3 sub-cycles has been
specified, which means that the o, equation is solved in 3x one-third-length time
steps within each actual time step [2].

The cAlpha keyword is a factor that controls the compression of the interface where:
0 corresponds to no compression; 1 corresponds to conservative compression; and,
anything larger than 1, relates to enhanced compression of the interface [2].

PISO

{
momentumPredictor no;
nCorrectors 2;
nNonOrthogonalCorrectors 0;
nAlphaCorr 1;
nAlphaSubCycles 3;
cAlpha 1.5;
correctPhi no;
pRefPoint (0-40);
pRefValue le5;

1

Phases (water and air) initial distribution is fixed by applying the “setFields”
command.
| CpO0/alphalorg0/alphal
\Setfields
Mesh movement in this case is applied through the available dictionary in “constant”
directory, which is called “dynamicMeshDict”.

dynamicFvMesh solidBodyMotionFvMesh;

solidBodyMotionFvMeshCoeffs

{
solidBodyMotionFunction SDA;
SDACoeffs

{

"alphal is the phase fraction of phase 1 in a multi-phase system, alpha in the control dictionaries refers
to any phase. The reason for the "inconsistency" is to ensure that the discretisation schemes are the
same for all phases.

CofG (000);
lamda 50;

rollAmax 0.22654;
rollAmin 0.10472;

heaveA 0;
swayA 0;
Q 2;
Tp 13.93;
Tpn 11.93;
dTi 0.059;
dTp -0.001;

Ship design analysis (SDA) mentioned in the “dynamicMeshDict” is a 3DoF motion
function, which is applied to the whole computational cells all together. SDA class
comprises sinusoidal roll (rotation about x), heave (z-translation) and sway (y-
translation) motions with changing amplitude and phase. It could be found in the
following directory:

$FOAM_SRC/dynamicFvMesh/solidBodyMotionFvMesh/solidBodyMotionFunctions

In “dynamicMeshDict” there are some coefficients required for defining the way that
the computational domain is supposed to move. These coefficients are introduced in
“SDA.H” as private data and going to be employed in motion equations presented in
“SDA.C”. Definition and dimension for each of these coefficients are presented in
Table 1.

Table 1. Coefficients applied in “dynamicMeshDict”

Coefficient Description Type | Dimension
CofG Center of gravity vector [m]
lamda Model scale ratio scalar [-]
rollAmax Max roll amplitude scalar [rad]
rollAmin Min roll amplitude scalar [rad]
heaveA Heave amplitude scalar [m]
swayA Sway amplitude scalar [m]
Q Damping Coefficient scalar [-]
Tp Time Period for liquid scalar [sec]
Tpn Natural Period of Ship scalar [sec]
dTi Reference time step scalar [sec]
dTp Increase in Tp per unit dTi scalar [-]

In current case just the roll motion of the computational domain is of our interest and
therefore the heave and sway coefficients are set to zero.

Now, the case is ready to run applying “interDyMFoam” application.

This application will start the solution first by reading the scheme of mesh motion and
then setting the initial fields such as g, p, alphal, U and boundary conditions.
Consequently, the incompressible transport model and turbulence model are set.
Presented lines in the following gray box is the report of this procedure that appears

on screen after issuing the interDyMFoam command. Moreover, output of running
this application is presented for one of the time steps. According to setting the
nAlphaSubCycles to 3, it could be seen that three consequent iterations occurs for
solving the multidimensional universal limiter for explicit solution (MULES).

Create time
Create mesh for time =0

Selecting dynamicFvMesh solidBodyMotionFvMesh
Selecting solid-body motion function SDA

Reading g
Reading field p

Reading field alphal

Reading field U

Reading/calculating face flux field phi
Reading transportProperties

Selecting incompressible transport model Newtonian

Selecting turbulence model type laminar

time step continuity errors : sum local = 0, global = 0, cumulative = 0

GAMGPCG: Solving for pcorr, Initial residual = 1, Final residual = 2.2321e-13, No Iterations 1

time step continuity errors : sum local = 1.38355e-11, global = 5.61669e-30, cumulative = 5.61669e-30
Courant Number mean: 1.3569e-11 max: 1.72618e-10

Starting time loop

Courant Number mean: 0.0930747 max: 0.472539
deltaT = 0.00714286
Time = 0.128571

solidBodyMotionFunctions::SDA::transformation(): Time = 0.128571 transformation: ((0 0 O0)
(0.999235 (0.0391004 0 0)))

Execution time for mesh.update() =0.01 s

MULES: Solving for alphal

Liquid phase volume fraction = 0.5 Min(alphal) =-4.02279e-20 Max(alphal) =1

MULES: Solving for alphal

Liquid phase volume fraction = 0.5 Min(alphal) =-2.78346e-21 Max(alphal) =1

MULES: Solving for alphal

Liquid phase volume fraction = 0.5 Min(alphal) =-6.47083e-22 Max(alphal) =1

GAMG: Solving for p, Initial residual = 0.0681279, Final residual = 0.000220229, No Iterations 2

time step continuity errors : sum local = 1.0173e-06, global = 1.50675e-17, cumulative = -1.83543e-16
GAMGPCG: Solving for p, Initial residual = 0.00106785, Final residual = 1.71041e-09, No Iterations 7
time step continuity errors : sum local = 7.4766e-12, global = 1.50911e-17, cumulative = -1.68452e-16
ExecutionTime = 1.18 s ClockTime=1s

Result of the computation is presented in two sets of phase distribution and velocity
field in Figure 2.

Column A

Column B

alphal
0.25 0.5 0.75
M ERRRRER L ARRERREL Y A2 NW
0 Elapsed Time: O s 1

U Magnitude [m/s]

1 2 3
s ' ,
0 Elapsed Time: O s 3.5

alphal
025 05 075,
i o i
0 Elapsed Time: 2.5 s 1

U Magnitude [m/s]

1 2 3
s)
3.5

Elapsed Time: 2.5 s

alphal
025,05 . 075
(RN NN ANE R MR RNURER o ARRN {
0 Elapsed Time: 5 s 1

U Magnitude [m/s]

1 2 3
WE SENEEEEL SRERRRRRES
0 Elapsed Time: 5 s 35

alphal U Magnitude [m/s]
1 2 3
02D O 7P WS SN EENENES SRRRRRRS A
0 Elapsed Time: 10 s 1 0 Elapsed Time: 10 s 35
Figure 2. Column A presents the alphal distribution and column B shows the velocity

field for the corresponding time

3. boxFreeOscillation

In this section, in contrast with the previous one, instead of moving the whole
computational grid as a solid body just the inner box is going to have an angular
oscillation. So, it is required to set up another application for the dynamic mesh
treatment. At this stage, difference between boxFreeOscillation case and
boxSolidOscillation is between the settings of ‘“dynamicMeshDict” located at
“constent” directory and consequently the required boundary motion input data in
“pointMotionU” located in “0” directory. Moreover, it is required to modify the
“fvSolution” dictionary and define the cell motion solver. These modification and
settings are going to be discussed in the following sections.

3.1. meshMotionLib

At the Moment, there are two available libraries in OpenFoam-1.6.x, which can
produce the desired oscillating for specified patches. They are called
“angularOscillatingVelocity” and “angularOscillatingDisplacement” and both could
be found in the following path:

$FOAM_SRC/fvMotionSolver/pointPatchFields/derived/

Both of these libraries are applicable for current case based on user demand. Here,
“angularOscillatingVelocity” library is going to be used. This library is attached to the
materials available on OpenFOAM Course homepage in “meshMotionLib” directory.
To be able to make some modification in this library and probably prepare the library
to a specific type of motion it would be better to edit the “files” and “option” files and
recompile it to the user library. A general description to “angularOscillatingVelocity”
is presented in the following paragraphs.

3.1.1. angularOscillatingVelocity
The source files for this library could be found in “dynamicMeshDict” folder of the
provided materials at OpenFOAM Course homepage.

The original “H” and “.C” files copied from the
“$FOAM_SRC/fvMotionSolver/pointPatchFields/derived/angularOscillatingVelocity
” path were named “libOscillatingVelocityPointPatchVectorField.H” and
“libOscillatingVelocityPointPatchVectorField.C” but in order not to make some
distinction among the original library and this one the string “libOscillatingVelocity”
in the names of “H” and “C” files has been replaced with
“libMyOscillatingVelocity”. This replacement has to be done inside these source files
as well as “files” and “options” in the “Make” directory. Finally, the “files” and
“options” files should be the same as following ones.

files
libMyOscillatingVelocityPointPatchVectorField.C

LIB = S(FOAM_USER_LIBBIN)/ libMyOscillatingVelocityPointPatchVectorField

options
EXE_INC =\
-IS(LIB_SRC)/triSurface/Ininclude \
-IS(LIB_SRC)/meshTools/InInclude \
-IS(LIB_SRC)/dynamicMesh/InInclude \
-IS(LIB_SRC)/finiteVolume/Ininclude \
-IS(LIB_SRC)/fvMotionSolver/Ininclude

LIB_LIBS =\
-ItriSurface \
-ImeshTools \
-ldynamicMesh \
-IfiniteVolume

The main part of this library which defines the movement of the patches is presented
as member function in “libOscillatingVelocityPointPatchVectorField.C”. Here, the
velocity of each point on a specific patch is calculated for each time step. One may
define a new function to move the patches by editing the presented function in this
file and if required the constructors in “.H” file. The mechanism of oscillating
velocity function could be seen in 0. In a specific case that the origin of rotation is
located in the center of the box the result of the motion should be a pure roll around
box’s center axis. The function of this oscillation for patches, which exists as a
member functions, is presented in the following gray box.

libOscillatingVelocityPointPatchVectorField.C

//***************MemberFUnCtionS *************//

void angularOscillatingVelocityPointPatchVectorField::updateCoeffs()
{
if (this->updated())
{
return;

}

const polyMesh& mesh = this->dimensionedInternalField().mesh()();
const Time& t = mesh.time();
const pointPatch& p = this->patch();

scalar angle = angle0_ + amplitude_*sin(omega_*t.value());
vector axisHat = axis_/mag(axis_);
vectorField pORel = p0_ - origin_;

vectorField::operator=

(
(
p0_

+ pORel*(cos(angle) - 1)
+ (axisHat A pORel*sin(angle))
+ (axisHat & pORel)*(1 - cos(angle))*axisHat
- p.localPoints()

)/t.deltaT().value()

)7

fixedValuePointPatchField<vector>::updateCoeffs();

Figure 3. Mechanism of oscillating velocity

Now, to make current library available for the other applications, it should be
compiled through following command.

There should be a link to this new library in “controlDict” file to let the employed
applications to know about it. Inserting the following line to the “controlDict” does
this.

After preparing the meshMotion library, it is required to do some settings in the
“fvSoloution” dictionary and define the solver for mesh motion application. This
purpose is done by adding the following lines to the solvers in the “fvSolution”.

fvSolution
cellMotionUx PCG

{

preconditioner DIC;
tolerance 1e-08;
relTol 0;

|7

cellMotionU PCG
{

preconditioner DIC;
tolerance 1e-08;
relTol 0;

|7

“solvers” specifies each linear-solver that is used for each discretised equation. The
syntax for each entry within “solvers” uses a keyword that is the word relating to the
variable being solved in the particular equation. The choises for “solvers” are
presented in Table 2 [1].

10

Table 2. Solver Options

Solver Keyword
Preconditioned (bi-)conjugate gradient PCG/PBiCG*
Solver using a smoother smoothSolver

Generalised geometric-algebraic multi-grid GAMG

*PCG for symmetric matrices, PBICG for asymmetric

There is a range of options for preconditioning of matrices in the conjugate gradient
solvers, represented by the preconditioner keyword in the solver dictionary. The
preconditioners are listed in Table 3 [1].

Table 3. Preconditioner options

Preconditioner Keyword
Diagonal incomplete-Cholesky (symmetric) DIC
Faster diagonal incomplete-Cholesky (DIC with caching) FDIC
Diagonal incomplete-LU (asymmetric) DILU
Diagonal diagonal
Geometric-algebraic multi-grid GAMG
No preconditioning none

The other distinction in “boxFreeOscillating” case comparing to the
“boxSolidOscillating” case is in “dynamicMeshDic” dictionary located in “constant”
directory. The new dictionary is presented in the following gray box.

dynamicMeshDict

FoamFile

{

version 2.0;

format ascii;

class dictionary;
location "constant";
object motionProperties;

}

dynamicFvMesh dynamicMotionSolverFvMesh;
motionSolverlLibs ("libfvMotionSolvers.so");
solver velocityLaplacian;

diffusivity uniform;

It could be seen that there are two parameters that are important in dynamic mesh
manipulation which are “solver” and “diffusivity” scheme. Available models for the
“solver” are:

* displacementLaplacian
* velocityLaplacian
* SBRStress

which in “boxFreeOscillating” case has set to be velocityLaplacian. Available options
for diffusivity models are presened in Table 4. Further information on “solver” and
“diffusivity” models could be found in [5].

11

Table 4. Diffusivity Models

quality-based methods distance-based methods™
* uniform * linear
e directional * quadratic
* motionDirectional * exponential

* inverseDistance
“These models are used with “inverseDistance” method

Now it is required to define the motion of the moving patches (box) in
“pointMotionU” file located in “0” directory. This input file is required to calculate
the coordinate of each point on a specified moving patch during time variation. The
motion equation was reviewed previously. (libOscillatingVelocityPointPatchVectorField.C)

Available basic parameters in “pointMotionU” which control the motion of moving
patches are presented in Table 5.

Table 5. Motion control Parameters in “pointMotionU”

Parameter Type Description Dimension
axis Vector Axis of Rotation m
origin Vector Center of Rotation m
angle Scalar Oscillation Occurs this reference angle rad
amplitude Scalar Amplitude of Oscillations m
omega Scalar Angular Frequency rad/sec
pointMotionU
FoamFile
{
version 2.0;
format ascii;

class pointVectorField;
object pointMotionU;
}

//*************************************//
dimensions [01-10000];

internalField uniform (0 0 0);
boundaryField

{

tank

{
type fixedValue;
value uniform (0 0 0);

}

box

{
type ibMyOscillatingVelocityPointPatchVectorField;
axis (1 00);
origin (0 100 0);
angle0 0;
amplitude 0.01;
omega 5;
value uniform (0 0 0);

}

front

{
type empty;

}

back

{
type empty;

}

}

12

After setting a dynamic mesh solver for the case, it is the time for setting the phase
(alpha) distribution in the computational domain. This step is totally similar to the
“setFields” in previous case. Therefore, “setFieldsDict” dictionary settings should be
similar to the appendix 4 then it is possible to run the following command:

! Cp 0/alphal.org O/alphal
' setFields

At the moment needed setting are done and the case is ready to start the calculations
applying interDyMFoam.

——

Results of the “boxFreeOscillating” case with presented settings are depicted in
Figure 4. Paying attention to the phase distribution graphs one can see that the
maximum amount of alphal is greater than 1, which is not practical and should be
identical to 1. This problem appears to be originated from the MULES implicit solver
in the interPhaseChangeFoam and should be fixed.

13

Column A Column B

alphal U Magnitude [m/s]
CE TSN .2 TR R N
0 Elapsed Time: 0 s 13 0 Elapsed Time: 0 s 8
= =
I 11 T
(|
i |
alphal U Magnitude [m/s]
028, 08 678, s R .
0 Elapsed Time: 2.5 s 13 0 Elapsed Time: 2.5 s 8

gl i
[HEAL !

alphal U Magnitude [m/s]
0.25 05 0.75 1 1.25 2 4 6
0 Elapsed Time: 5 s 13 0 Elapsed Time: 5 s 8
==t =Eme——
! T
il
(I | ioan
[[
alphal U Magnitude [m/s]
0.25 05 0.75 1 1.25 2 4 6
0 Elapsed Time: 10 s 13 0 Elapsed Time: 10 s 8
Figure 4. Column A presents the alphal distribution and column B shows the velocity

field for the corresponding time

14

References:

1.

2.

http://www.cfd-online.com/Forums/openfoam/
http://www.opencfd.co.uk/openfoam/doc/damBreak.html

Eysteinn Helgason, Point-wise deformation of mesh patches, Project work for the
PhD course in OpenFOAM, Chalmers University of Technology, Goéteborg,
Sweden, Spring 2009.

Erik Ekedahl, 6-DOF VOF-solver without Damping in OpenFOAM, Project work
for the PhD course in OpenFOAM, Chalmers University of Technology,
Goteborg, Sweden, Winter 2008.

Pirooz Moradnia, A tutorial on how to use Dynamic Mesh solver IcoDyMFOAM,

Project work for the PhD course in OpenFOAM, Chalmers University of
Technology, Goteborg, Sweden, Spring 2008.

15

Appendix A
Grid Generation Applying blockMesh

(-5,5,0) (5,5,0)

y

I (-5,-5,0) (5,-5,0)
X

Figure A. 1: Dimensions of the generated grid

Following Lines presents the grids generated and employed in this tutorial.

// Parametric description

vertices

(

// Back Vertexes /////////
(-5-5-0.5) //Vertex No.=0
(-1-5-0.5) //Vertex No.=1
(0-5-0.5) //Vertex No.=2
(1-5-0.5) //Vertex No.=3
(5-5-0.5) //Vertex No.=4

(-5-1-0.5) //Vertex No.=5
(-1-1-0.5) //Vertex No.=6
(0-1-0.5) //Vertex No.=7
(1-1-0.5) //Vertex No.=38
(5-1-0.5) //Vertex No.=9

16

(-50-0.5)
(-10-0.5)
(10-0.5)
(50-0.5)

(-51-0.5)
(-11-0.5)
(01-0.5)
(11-0.5)
(51-0.5)

(-5 5 -0.5)
(-15-0.5)
(05-0.5)
(15-0.5)
(55 -0.5)

//Vertex No. =
//Vertex No. =
//Vertex No. =
//Vertex No. =

//Vertex No. =
//Vertex No. =
//Vertex No. =
//Vertex No. =
//Vertex No. =

//Vertex No. =
//Vertex No.
//Vertex No. =
//Vertex No.
//Vertex No. =

//Front Vertexes ///////

);

(-5-50.5)
(-1-50.5)
(0-50.5)
(1-50.5)
(5-50.5)

(-5-10.5)
(-1-10.5)
(0-10.5)
(1-10.5)
(5-10.5)

(-500.5)
(-100.5)
(100.5)
(500.5)

(-510.5)
(-110.5)
(010.5)
(110.5)
(510.5)

(-550.5)
(-150.5)
(050.5)
(150.5)
(55 0.5)

//Vertex No. =
//Vertex No. =
//Vertex No. =
//Vertex No. =
//Vertex No. =

//Vertex No.
//Vertex No.
//Vertex No. =
//Vertex No.
//Vertex No. =

//Vertex No.
//Vertex No.
//Vertex No.
//Vertex No.

//Vertex No. =
//Vertex No.
//Vertex No.
//Vertex No.
//Vertex No.

//Vertex No. =
//Vertex No.
//Vertex No.
//Vertex No.
//Vertex No. =

//Blocks///////
blocks

(

hex (0165 24 25 30 29)
hex (12 7 6 25 26 31 30)
hex (23872627 32 31)
hex (3498272833 32)
hex (56 11 1029 3035 34) (2010 1) simpleGrading (0.23 1) //Block No.=4

20201) simpleGrading (0.20.21) //Block No.=0
1020 1) simpleGrading (3 0.2 1) //Block No. = 1
1020 1) simpleGrading (0.3333 0.2 1) //Block No. =2
20201) simpleGrading (50.2 1) //Block No. = 3

—_— e~ —~ —

17

hex (891312 32333736) (2010 1) simpleGrading (53 1) //Block No. =5
hex (10 11 15 14 34 35 39 38) (20 10 1) simpleGrading (0.2 0.3333 1) //Block No. =6
hex (12 13 18 17 36 37 42 41) (20 10 1) simpleGrading (50.33331) //Block No. =7
hex (14 15 20 19 38 39 44 43) (20 20 1) simpleGrading (0.2 5 1) //Block No. =8
hex (15 16 21 20 39 40 45 44) (10 20 1) simpleGrading (35 1) //Block No. =9
hex (16 17 22 21 40 41 46 45) (10 20 1) simpleGrading (0.3333 5 1) //Block No. = 10
hex (17 18 23 22 41 42 47 46) (20 20 1) simpleGrading (55 1) //Block No. =11

);

//Edges///]/]1]

edges

(

);

//Patches////]]/

patches

(

wall box

(

63035 11)
11 35 39 15)
1539 40 16)
164041 17)
17 41 36 12)
12 36 32 8)
832317)
731306)

—~ e~~~ o~ o~ — —

wall tank
(
(024 295)
(52934 10)
(10 34 38 14)
(14 38 43 19)
(19 43 44 20)
(20 44 45 21)
(21 45 46 22)
(22 46 47 23)
(23 47 42 18)
(18 42 37 13)
(1337339)
(933284)
(428273)
(327262)
(226251)
(125240)

)

empty front
(

(24 25 30 29)
(25 26 31 30)
(26 27 32 31)
(27 28 33 32)
(29 30 35 34)
(3233 3736)
(34 35 39 38)

18

(3637 42 41)
(3839 44 43)
(39 40 45 44)
(40 41 46 45)
(41 42 47 46)

empty back
(

(0561)
(1672)
(2783)
(3894)
(51011 6)
(812139)

(10 14 15 11)
(1217 18 13)
(14 19 20 15)
(15 20 21 16)
(162122 17)
(17 22 23 18)

)
);

19

Appendix 2
Velocity setting on boundaries at time 0

FoamFile
{
version 2.0;
format ascii;
class volVectorField;
object U;
}

dimensions [01-10000];

internalField uniform (0 0 0);

boundaryField

{

front

{
type empty;

}

back

{
type empty;

}

box

{
type movingWallVelocity;
value uniform (0 0 0);

}

tank

{
type movingWallVelocity;
value uniform (0 0 0);

}

}

20

Appendix 3
Pressure setting on boundaries at time 0

FoamFile

{

version 2.0;
format ascii;
class volScalarField;
object p;
}

dimensions [1-1-20000];
internalField uniform O;

boundaryField

{

box

{
type buoyantPressure;
value uniform 0;

}

tank

{
type buoyantPressure;
value uniform 0;

}

front

{
type empty;

}

back

{
type empty;

}

}

21

Appendix 4
alphal setting on boundaries at time 0

FoamFile
{
version 2.0;
format ascii;
class volScalarField;
object alphal;
}

dimensions [000000QO0];

internalField uniform O;
boundaryField

{
box
{
type zeroGradient;
}
tank
{
type zeroGradient;
}
front
{
type empty;
}
back
{
type empty;
1
}

22

Appendix 5
alphal field setting using “boxToCell” application

defaultFieldValues
(

volScalarFieldValue alphal 0
);

regions
(
boxToCell
{
box (-0.5-5-5)(0.550);
fieldValues
(
volScalarFieldValue alphal 1
e
}
5

23

