

Mesh motion alternatives

CFD with OpenFOAM

Andreu Oliver González

December 2009, Göteborg (Sweden)

Mesh motions alternatives Andreu Oliver González

2

INDEX

1 INTRODUCTION 3

2 MESH MOTION APPROACHES AND THE DIFFERENT CLASSES 3

3 PROCEDURE FOR DEFINING A MESH WITH MOTION 4

3.1 Mesh motion method 5

3.1.1 Automatic mesh motion (dynamicFvMesh) 5

3.1.2 Topological changes in the mesh (topoChangerFvMesh) 5

3.2 Appropiate solver 6

3.3 Diffusivity model 7

4 dynamicInkJetFvMesh 8

4.1 Explanation of dynamicInkJetFvMesh class 8

4.2 Example of use of the dynamicInkJetFvMesh class 10

4.3 Modification of the class dynamicInkJetFvMesh to dynamicMyClassFvMesh 18

4.4 Example of use of the dynamicMyClassFvMesh class 21

5 CONCLUSIONS 24

6 REFERENCES 25

APPENDIX 26

dynamicInkJetFvMesh.H 26

blockMeshDict 26

transportProperties 27

system folder codes 28

0 folder codes 29

dynamicMeshDict 30

dynamicMyClassFvMesh.C 31

dynamicMyClassFvMesh.H 33

icoDyMFoamMesh.C 34

Mesh motions alternatives Andreu Oliver González

3

1 INTRODUCTION

The aim of this project is to study different alternatives of mesh motion. There is presented

an overview of the different classes that can be used in order to define a mesh with motion

with the purpose to give some information to be able to select the appropriate class for

each situation. After this overview of the different classes available for mesh manipulation,

a deep description is carried out for the dynamicInkJetFvMesh and a modification of this

class will be done.

The solver used for problems with moving mesh is IcoDyMFoam solver; this solver is a

solver for incompressible and non turbulent flow. In the case of compressible and turbulent

flow the turbDyMFoam can be used.

The icoDyMFoam application is a transient solver for incompressible, laminar flow of

Newtonian fluids on a moving mesh; that solver is used in version 1.5.x of the OpenFOAM,

as well as the turbDyMFoam one. In 1.6.x version, they have both been collected in the

pimpleDyMFoam.

2 MESH MOTION APPROACHES AND THE DIFFERENT CLASSES

There are two mesh manipulation approaches; the difference between them is the

topology changing during the simulation or not. These two types are named

dynamicFvMesh and topoChangerFvMesh. For each approach, there are different classes

and they are the ones that follow:

- dynamicFvMesh: automatic mesh motion, for the case where the mesh topology

does not change. There are five different classes for this method:

1) staticFvMesh, where the mesh has no motion.

2) dynamicMotionSolverFvMesh, it is used in cases where the resolution is

not changing too much during the mesh motion, for relatively small changes.

3) dynamicInkJetFvMesh, similar to the one before, but in this case the mesh

movement is based on harmonic motion around a reference plane along x axis (the

subdictionary dynamicInkJetFvMeshCoeffs is used).

4) dynamicRefineFvMesh, it is similar to the staticFvMesh class but in this

case a refinement or unrefinement of the mesh in the three directions is carried out

by adding points.

Mesh motions alternatives Andreu Oliver González

4

5) solidBodyMotionFvMesh, similar to dynamicMotionSolverFvMesh used to

describe solid body motion of the mesh specified by a run-time selectable motion

function.

- topoChangerFvMesh: topological mesh changes, when the mesh topology changes

during the simulation. There are four types of classes for this approach:

1) linearValveFvMesh, to use sliding meshes at the interface of 2 pieces of

mesh in relative linear motion

2) linearValveLayersFvMesh, used as the class before but layer addition and

removal is the extra feature instead of pure squeezing or stretching of the nodes

and cells.

3) mixerFvMesh, used when sliding interface needed between one moving

part and a fixed one.

4) movingConeTopoFvMesh, first is preformed simply by squeezing and

stretching, but when cell layer thickness reach a critical value a new cell layer is

added or an old cell layer is removed.

3 PROCEDURE FOR DEFINING A MESH WITH MOTION

The structure of files in order to solve this kind of applications is the usual one, where you

find folder with the initial values (0) and two folders, which are:

- constant, where it can be found some files and folders such as dynamicMeshDict

file, transportProperties file, polyMesh folder.

- system, where it is found controlDict file, fvSchemes file and fvSolution file, but also

other files are found depending on the approach followed for the mesh motion.

First of all, the mesh has to be defined in the blockMeshDict file inside the constant folder.

In order to have mesh motion in any direction, for some classes the boundary type should

be set to patch for the moving and changing cells in the direction where motion can be

defined. Then, moving-mesh boundary conditions have to be specified to allow the

movement in the desired direction.

A part from that, dynamicMeshDict file has to be added inside the constant folder, where

the different definitions used and needed for the moving mesh are specified (mesh

manipulation dictionaries, solvers, classes, diffusivities and coefficients required for the

case).

Mesh motions alternatives Andreu Oliver González

5

3.1 Mesh motion method

3.1.1 Automatic mesh motion (dynamicFvMesh)

The mesh motion is obtained by solving a mesh motion equation, where boundary motion

acts as a boundary condition and determines the position of mesh points. The motion is

characterized by the spacing between nodes, which changes by stretching and squeezing.

This mesh motion equation can be simplified, and there are mainly four types:

- Spring analogy, which is insufficiently robust.

- Linear plus torsional spring analogy, which is complex, expensive and non-linear.

- Laplace equation with constant and variable diffusivity.

- Linear pseudo-solid equation for small deformations.

The mesh spacing and quality is controlled by variable diffusivity (3.3 Diffusivity model).

Changing the diffusivity implies redistribution of the boundary motion through the volume

of the mesh. And referring to the mesh quality, in order to preserve it, definition of valid

motion from an initially valid mesh implies that no forces or cells are inverted during

motion.

The corresponding library for this mesh manipulation approach is the

libDynamicFvMesh.so.

The most important types of classes for the automatic mesh motion, where the topology

does not change during simulation, are:

1) staticFvMesh, where the mesh has no motion.

2) dynamicMotionSolverFvMesh, it solves the cell movement equations and it is the

simplest type of mesh motion solver. There should be specified the solver and the type of

diffusivity model.

3) dynamicInkJetFvMesh, the subdictionary dynamicInkJetFvMeshCoeffs is used. In that

class, an equation defines the motion and neither the solver nor the diffusivity model are

needed.

3.1.2 Topological changes in the mesh (topoChangerFvMesh)

The number of points, faces, cells and/or mesh connectivity changes during simulation. It

is used for more demanding and complex mesh motion than the automatic approach

where the original topology cannot be kept or the precision of the solution would be

affected by keeping the original mesh settings during the simulations. For that, mesh

modifiers are required to describe what kind of mesh manipulation action is carried out:

- Attach or detach of boundary.

Mesh motions alternatives Andreu Oliver González

6

- Layer addition or removal.

- Sliding interface.

The class polyTopoChanger will look for the necessary data and extract it from the extra

dictionary meshModifiers, otherwise, the data will be read from the dynamicMeshDict. The

corresponding dynamic library is libtopoChangerFvMesh.so.

There are four types of classes for this approach, as it was presented before and now

more things are said about them:

1) linearValveFvMesh, the dictionary linearValveFvMeshCoeffs to select motion solver

type for mesh handling is used.

2) linearValveLayersFvMesh, the input variables needed are the same as the ones for the

class presented before and, moreover, the ones found in the extra subdictionary layer.

3) mixerFvMesh, a part from the dynamicMeshDict, the dictionary MRFZones is important

because it is where the moving parts are determined. From this dictionary, different zones

are generated and those are used by the slidingInterface class which gives the relative

motion between the two sides of the sliding interface.

4) movingConeTopoFvMesh, a part from the dynamicMeshDict file and the extra dictionary

meshModifiers in the movingConeTopoFvMesh.C is required a sub-dictionary to specify

the coefficients to define the moving and fixed boundaries and characteristics, besides the

minimum and maximum cell layer thickness in each region.

3.2 Appropiate solver

Once the mesh is set, the moving points of the grid require models and corresponding

mesh motion equations to be solved. The most used ones are:

- displacementLaplacian, the equations of cell motion are solved based on the

Laplacian of the diffusivity and the cell displacement (pointDisplacement extra file is

required in the starting time folder). For this solver, the final displacement of the

mesh components is needed as well as the mesh displacement of the internal field.

- velocityLaplacian, similar to the previous solver with the difference being the

equation solved, which is the Laplacian of the diffusivity and the cell motion velocity

(pointMotionU file has to be available to be read). A part from the input variables

that are the same as those in the displacementLaplacian case, the user has to be

aware that the code deals with the boundary velocities instead of the final motions,

so care have to be taken when determining the dimensions. It is used when each

Mesh motions alternatives Andreu Oliver González

7

time an order of magnitude of the maximum displacement is known to be not too

big.

- LaplaceFaceDecomposition, used when the order of magnitude of the maximum

displacement is not known or known to be big. The mesh is rebuild after a

decomposition of all cells and faces and the Laplace smoothing equation is solved

by the Finite Element Method. It increases the robustness but, in the other hand, it

increases the computational cost compared to the velocityLaplacian solver.

- SBRStress, it is a displacement model, solving Laplacian of diffusivity and the

cellDisplacement and it considers also the solid body rotation term in calculations

(pointDisplacement file is also required in the constant directory).

It has to be added that not always a solver is required because sometimes the motion is

described by an equation inside the class definition and it is solved internally.

3.3 Diffusivity model

The diffusivity model is used to determine how the points should be moved after solving

the cell motion equation for each time step. There are two groups of diffusivity models:

1) Quality based methods, where diffusion field is function of cell quantity measure.

There four types and they are the following ones:

a. uniform, the mesh manipulation is done uniformly for all moving boundaries by

stretching or squeezing with the same ratio all the cells in each region.

b. directional, the mesh stretching or squeezing is done proportionally to the

direction of the motion. The main idea in this case is that the mesh manipulation

is done by considering the slipping boundaries. Two scalar coefficients are

required, one defining the mean cell non orthogonality and the other one to

determine the mean cell skewness.

c. motionDirectional, where the mesh manipulation is done by prioritizing the

moving body and adjusting the cells in a way that is more appropriate for the

moving body. The same coefficients than for the above method have to be

specified.

d. inverseDistance, where the user specifies one or more boundaries and the

diffusivity of the field is based on the inverse of the distance from that boundary.

2) Distance based methods, used together with the quality based methods and in

which the diffusion field will be a function of the inverse of cell centre distance ‘l’ to

the nearest selected boundary. There are three of them, which are:

Mesh motions alternatives Andreu Oliver González

8

a. linear, the diffusivity field is based linearly on the inverse of the cell center

distance to the nearest boundary.

b. quadratic, as the one above except being a quadratic relation instead of a linear

one.

c. exponential, in this case the diffusivity of the field is based on the exponential of

the inverse of cell-center distance to the selected boundaries.

As said for the solvers, for the classes where the motion is solved internally in the mesh

class, the diffusivity model is not needed.

4 dynamicInkJetFvMesh

At this point, as for my master thesis I will have to model the vertebral column to make

some CFD simulations with the purpose to evaluate and study the whiplash pain causes,

the dynamicInkJetFvMesh is studied deeply. This class is the appropriate one because the

motion of the model will be given, meaning that the motion is known for a different number

of time steps by analyzing some experiments with FEM; due to that no solver is needed.

Even though dynamicInkJetFvMesh is the suitable class, some changes will have to be

done on it. In this project only a simple modification will be done in order to get a better

understanding of the class and how to make motion modifications in that particular class.

4.1 Explanation of dynamicInkJetFvMesh class

The code of dynamicInkJetFvMesh.C is provided just below with some comments to

understand how it works:

00027 #include "dynamicInkJetFvMesh.H"

00028 #include "addToRunTimeSelectionTable.H"

00029 #include "volFields.H"

00030 #include "mathematicalConstants.H"

00032 // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * *

* //

00034 namespace Foam

00035 {

00036 defineTypeNameAndDebug(dynamicInkJetFvMesh, 0); //It call the functions

typeName and debug to specify the type class used, which is dynamicInkJetFvMesh in this case,
and some information for debugging.
00037 addToRunTimeSelectionTable(dynamicFvMesh, dynamicInkJetFvMesh,

IOobject); //It adds the dynamicInkJetFvMesh (which is thisType, dynamicInkJetFvMesh,

inside the baseType, dynamicFvMesh) to the table where the classes used are defined
00038 }

00041 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * *

* //

00043 Foam::dynamicInkJetFvMesh::dynamicInkJetFvMesh(const IOobject& io)

00044 :

00045 dynamicFvMesh(io),

00046 dynamicMeshCoeffs_

http://foam.sourceforge.net/doc/Doxygen/html/dynamicInkJetFvMesh_8H.html
http://foam.sourceforge.net/doc/Doxygen/html/addToRunTimeSelectionTable_8H.html
http://foam.sourceforge.net/doc/Doxygen/html/volFields_8H.html
http://foam.sourceforge.net/doc/Doxygen/html/mathematicalConstants_8H.html
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1dynamicInkJetFvMesh.html#54426e6c207dbc782c3cf22b27c04524
http://foam.sourceforge.net/doc/Doxygen/html/namespaceFoam.html#e37266c5b702fd5021abddd52f675f26
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1dynamicInkJetFvMesh.html
http://foam.sourceforge.net/doc/Doxygen/html/namespaceFoam.html#fa9b44b3e43e788db69b2360f64c0aef
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1dynamicFvMesh.html
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1dynamicInkJetFvMesh.html
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1IOobject.html
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1IOobject.html
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1dynamicFvMesh.html

Mesh motions alternatives Andreu Oliver González

9

00047 (

00048 IOdictionary

00049 (

00050 IOobject

00051 (

00052 "dynamicMeshDict",

00053 io.time().constant(), //dynamicMeshDict is located in

the folder constant
00054 *this,

00055 IOobject::MUST_READ,

00056 IOobject::NO_WRITE

00057)

00058).subDict(typeName + "Coeffs") //A subdictionary called

dynamicInkJetFvMeshCoeffs exist inside the dynamicFvMesh with the following scalar numbers
00059),

00060 amplitude_(readScalar(dynamicMeshCoeffs_.lookup("amplitude"))),

00061 frequency_(readScalar(dynamicMeshCoeffs_.lookup("frequency"))),

00062 refPlaneX_(readScalar(dynamicMeshCoeffs_.lookup("refPlaneX"))),

00063 stationaryPoints_

00064 (

00065 IOobject

00066 (

00067 "points",

00068 io.time().constant(), //the file points is also located in

the folder constant
00069 meshSubDir,

00070 *this,

00071 IOobject::MUST_READ,

00072 IOobject::NO_WRITE

00073)

00074)

00075 {

00076 Info<< "Performing a dynamic mesh calculation: " << endl

00077 << "amplitude: " << amplitude_

00078 << " frequency: " << frequency_

00079 << " refPlaneX: " << refPlaneX_ << endl;

00080 }

00082 // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * *

* //

00084 Foam::dynamicInkJetFvMesh::~dynamicInkJetFvMesh()

00085 {}

00088 // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * *

* //

00090 bool Foam::dynamicInkJetFvMesh::update() //member function for this class

where the motion equation is defined and it updates the mesh
00091 {

00092 scalar scalingFunction =

00093 0.5*(::cos(2*mathematicalConstant::pi*frequency_*time().value()) -

1.0);

00095 Info<< "Mesh scaling. Time = " << time().value() << " scaling: "

00096 << scalingFunction << endl;

00097

00098 pointField newPoints = stationaryPoints_; //new points are given the values

of the stationary ones
00100 newPoints.replace

00101 (

00102 vector::X,

00103 stationaryPoints_.component(vector::X)*

00104 (

00105 1.0

00106 + pos

http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1IOdictionary.html
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1IOobject.html
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1IOobject.html
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1IOobject.html
http://foam.sourceforge.net/doc/Doxygen/html/doubleScalar_8C.html#e60dd7219bd73316385eb9b8f9802227
http://foam.sourceforge.net/doc/Doxygen/html/doubleScalar_8C.html#e60dd7219bd73316385eb9b8f9802227
http://foam.sourceforge.net/doc/Doxygen/html/doubleScalar_8C.html#e60dd7219bd73316385eb9b8f9802227
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1IOobject.html
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1IOobject.html
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1IOobject.html
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1dynamicInkJetFvMesh.html#8c0e0dfb03b4dcebb015ceff98f5a9f5
http://foam.sourceforge.net/doc/Doxygen/html/namespaceFoam.html#501e80d1e14c94973e82f1555e7eb711
http://foam.sourceforge.net/doc/Doxygen/html/namespaceFoam.html#2db8fe02a0d3909e9351bb4275b23ce4
http://foam.sourceforge.net/doc/Doxygen/html/namespaceFoam.html#2db8fe02a0d3909e9351bb4275b23ce4
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1dynamicInkJetFvMesh.html#8c0e0dfb03b4dcebb015ceff98f5a9f5
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1dynamicInkJetFvMesh.html#a2aac016e2bf7b5bd2b271786c2791aa
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1scalar.html
http://foam.sourceforge.net/doc/Doxygen/html/namespaceFoam.html#ebb41a148f7cf44b63e12f69e487e49f
http://foam.sourceforge.net/doc/Doxygen/html/namespaceFoam_1_1mathematicalConstant.html#d5e7c97ea4cf5eeb709903a89a92add9
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1fvMesh.html#48fcf6de2789aff6b430b5fc1a05693f
http://foam.sourceforge.net/doc/Doxygen/html/namespaceFoam.html#501e80d1e14c94973e82f1555e7eb711
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1fvMesh.html#48fcf6de2789aff6b430b5fc1a05693f
http://foam.sourceforge.net/doc/Doxygen/html/namespaceFoam.html#2db8fe02a0d3909e9351bb4275b23ce4
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1pointField.html
http://foam.sourceforge.net/doc/Doxygen/html/namespaceFoam.html#09a190b59f3d01b258bca0fa964a6212

Mesh motions alternatives Andreu Oliver González

10

00107 (

00108 - (stationaryPoints_.component(vector::X))

00109 - refPlaneX_

00110)*amplitude_*scalingFunction

00111)

00112); //with the function replace the new points are recalculated following the motion

equation described just above. With vector::X specification it is said that the motion is only
changing the mesh in one direction, in this case in the X direction
00113

00114 fvMesh::movePoints(newPoints); //Mesh points are moved to the new points

calculated
00116 volVectorField& U =

00117 const_cast<volVectorField&>(lookupObject<volVectorField>("U"));

00118 U.correctBoundaryConditions();

00120 return true;

00121 }

The code of dynamicInkJetFvMesh.H is provided in the Appendix.

In order to get a better idea of how it works an example is developed to show it.

4.2 Example of use of the dynamicInkJetFvMesh class

The example is going to show the motion of a very simple mesh by using the icoDyMFoam

solver, but only using from it the part that solves the mesh manipulation.

To start to make the example, create the example folder:

>> mkdir $WM_PROJECT_USER_DIR/myExample

This folder has to have the following structure with the following three folders:

- 0

- p

- U

- constant

- dynamicMeshDict.

- polyMesh, where the blockMeshDict is located.

- transportProperties.

- system

- controlDict.

- fvSchemes.

- fvSolution.

First of all a simple mesh is defined in the blockMeshDict (code attached in the Appendix,

like also the codes for p, U, transportProperties, controlDict, fvSchemes and fvSolution);

the geometry chosen is a long and thin rectangle (0.006x0.075x0.001m) which is fixed

from the bottom part, shown in Figure 1. The mesh is defined in the negative side of the x

axis, which means that it goes from -0.006 until 0.

http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1surfaceInterpolation.html#049fe0a86e2c86b4c0bb5fe02583bea4
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1GeometricField.html
http://foam.sourceforge.net/doc/Doxygen/html/combustion_2dieselEngineFoam_2pEqn_8H.html#81cf6107131a3583e2b0b762cb9c2862
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1GeometricField.html
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1GeometricField.html#caf6878ef900e593c4b20812f1b567d6

Mesh motions alternatives Andreu Oliver González

11

Figure 1: Mesh geometry.

Once the mesh is defined, the utility to generate the mesh is called:

>> blockMesh

Then, the file dynamicMeshDict has to be created inside the constant folder where the

class for the mesh manipulation is specified and where the subdictionary

dynamicInkJetFvMEshCoeffs has to be described with the values of the coefficients

required for the class (amplitude, frequency and plane of reference). The code for

dynamicMeshDict is shown below:

{

 version 2.0;

 format ascii;

 class dictionary;

 object motionProperties;

}

// * //

dynamicFvMesh dynamicInkJetFvMesh;

motionSolverLibs ("libfvMotionSolvers.so");

dynamicInkJetFvMeshCoeffs

{

 amplitude 0.06;

 frequency 2;

 refPlaneX 0;

}

// *** //

Mesh motions alternatives Andreu Oliver González

12

The motion defined with this class makes the set of points to be compressed and

expanded sinusoidally to impose a sinusoidal variation (Eq. 1 & 2):

scaling_function = 0.5·(cos (2πtf) – 1) Eq. 1

x = xold·(1 + pos(-xold - refPlaneX)·amplitude·scaling_function) Eq. 2

The coefficients, as seen in the code from dynamicMeshDict, are set to:

Amplitude = 0.06 Frequency = 2 Reference_Plane_X = 0

At this point, the mesh can be moved. As it is going to be used the icoDyMFoam solver to

do that, the parts from the solver that are not used to manipulate the mesh are going to be

deleted and therefore the solver is renamed as icoDyMFoamMesh; the code for

icoDyMFoamMesh.C is shown in the Appendix. For that, the following steps should be

followed:

>> cp –r $FOAM_SOLVERS/incompressible/icoDyMFoam \

$WM_PROJECT_USER_DIR/icoDyMFoamMesh

>> cd icoDyMFoamMesh

>> wclean

>> mv icoDyMFoam.C icoDyMFoamMesh.C

The parts from icoDyMFoamMesh.C that can be deleted are:

- Make the fluxes absolute.

- Make the fluxes relative to the mesh motion.

- Pimple loop.

After those modifications, the solver should be recompiled and to be able to do it the file

Make/files should be as follows:

icoDyMFoamMesh.C

EXE = $(FOAM_USER_APPBIN)/icoDyMFoamMesh

Now, the solver can be compiled:

>> wmake

Finally by calling the solver, the mesh manipulation can be seen in the paraFoam:

>> icoDyMFoamMesh

>> paraFoam

The example is used with different values for the three constants and the results achieved

are shown in the figures below:

Mesh motions alternatives Andreu Oliver González

13

Figure 2: Initial position where motion is still not applied (t = 0s).

Figure 2 is showing the mesh in its initial position for all the cases that have been run, at t

= 0s. And the arrow shown appears in all the figures to have the initial width of the mesh,

which is 0.006m, and therefore have a reference to appreciate the mesh motion. In Figure

3, it is shown the mesh motion for the case using the constants defined before and it will

be the reference to analyze how the three constants influence the mesh motion.

Mesh motions alternatives Andreu Oliver González

14

Figure 3: Mesh motion with 0.06m of amplitude, 2Hz of frequency and 0m of refPlaneX for t = 0.1, 0.25, 0.3 and
0.4s.

Figure 4: Mesh motion with 0.03m of amplitude, 2Hz of frequency and 0m of refPlaneX for t = 0.1, 0.2, 0.25 and
0.4s.

Mesh motions alternatives Andreu Oliver González

15

Figure 5: Mesh motion with 0.06m of amplitude, 4Hz of frequency and 0m of refPlaneX for t = 0.05, 0.125, 0.25
and 0.375s.

Figure 6: Mesh motion with 0.06m of amplitude, 2Hz of frequency and -0.003m of refPlaneX for t = 0.1, 0.25, 0.3
and 0.4s.

Mesh motions alternatives Andreu Oliver González

16

Figure 7: Mesh motion with 0.06m of amplitude, 2Hz of frequency and 0.003m of refPlaneX for t = 0.1, 0.15, 0.2,
0.25, 0.3 and 0.4s.

Mesh motions alternatives Andreu Oliver González

17

Figure 8: Mesh motion with 0.06m of amplitude, 2Hz of frequency and 0.006m of refPlaneX for t = 0.1, 0.2, 0.25
and 0.4s.

Observing the figures above and analyzing the equation of motion (Eq. 2), it can be seen

that the three constants modify the motion in the following way:

- amplitude: varies the length the mesh is deformed in x direction. Looking at Figure 3 and

4, it can easily be seen how for the same time steps the position of the left side of the

mesh has moved less; at t = 0.25s, when the maximum displacement takes place is the

double in the Figure 3 because the amplitude value is the double.

- frequency: modifies the number of periods for the same total time and therefore varies

the speed of change. Comparing Figure 3 and 5, it can be seen that with the same time

(0.5s) the sinusoidal motion in Figure 5 has been done twice and that is because the

frequency is the double that configuration. In order to see it easily, the equation (Eq. 1) has

been analyzed; as the scaling_function is a cosinus function which is multiplied by 0.5 after

1 is substracted to it, therefore it goes from -1 to 0 which makes the motion to follow the

sinus shape, as shown in the following figure:

Mesh motions alternatives Andreu Oliver González

18

Figure 9: Scaling function for 2Hz and 4Hz of frequency from 0 to 0.5s.

- refPlaneX: from the equation (Eq. 2), it can be noted that the sinusoidal motion is with

respect to refPlaneX. But it affects in different ways depending on the intervals where it is

located, all considering that the mesh defined is going in x direction from -0.006 until 0:

 - For refPlaneX]0,[ , the values given by pos function are 1 for all the points of

the mesh; therefore, the mesh motion will be the same for this interval of refPlaneX values.

 - For refPlaneX]006.0,0( , the values given by pos function are 1 only for the points

that has an x position smaller than –refPlaneX; therefore, only these points are moved,

while the rest are kept in the initial position.

 - For refPlaneX],006.0( , the values given by pos function are 0 for all the points

of the mesh; so there is no motion.

4.3 Modification of the class dynamicInkJetFvMesh to dynamicMyClassFvMesh

In this part of the project it is going to be shown how to modify the class

dynamicInkJetFvMesh with the purpose to define the desired motion.

The new class it is called dynamicMyClassFvMesh where a polynomial motion is going to

be carried out; shown in Figure 5.

Mesh motions alternatives Andreu Oliver González

19

Figure 10: Motion schema for the new class.

The equation to define this motion is the one that follows:

x = a·t·y2 + b Eq. 3

where x is the displacement in x direction and y is the position form the bottom part of the

geometry. It is dependent on time to see the movement step by step, where time will be

going from 0 to 1s. As the bottom part is fixed:

for 0y  0x  0b

Defining a displacement in the top part, for example 10cm, when t = 1s:

for 75.0y  1.0x  1778.0a

Then the coordinate x is updated with the next function:

x = xold + a·t·y2 Eq. 4

A scaling function has been added (Eq. 5) to provide a more complex motion giving then a

displacement in x direction but in both sides. Therefore the updating function for the x

coordinate is shown below:

scaling_function = cos (2πtf) Eq. 5

x = xold + a·t·y2·scaling_function Eq. 6

In order to change the class, first the new class have to be created from the existing one:

Mesh motions alternatives Andreu Oliver González

20

>> cp –r $FOAM_SRC/dynamicFvMesh/dynamicInkJetFvMesh \

$WM_PROJECT_USER_DIR/dynamicMyClassFvMesh

>> cd $WM_PROJECT_USER_DIR/dynamicMyClassFvMesh

>> sed s/dynamicInkJetFvMesh/dynamicMyClassFvMesh/g <dynamicInkJetFvMesh.C \

>dynamicMyClassFvMesh.C

>> sed s/dynamicInkJetFvMesh/dynamicMyClassFvMesh/g <dynamicInkJetFvMesh.H \

>dynamicMyClassFvMesh.H

>> rm –r dynamicInkJetFvMesh.*

>> cp –r $FOAM_SRC/dynamicFvMesh/Make $WM_PROJECT_USER_DIR/dynamicMyClassFvMesh

At this point the new class has been created but only by changing the names from the

original dynamicInkJetFvMesh class, therefore, it has to be compiled. To compile the

dynamicMyClassFvMesh class, the files file and the options file have to be modified:

- files, rewritten as follows to only compile the dynamicMyClassFvMesh library:

dynamicMyClassFvMesh.C

LIB=$(FOAM_USER_LIBBIN)/libdynamicMyClassFvMesh

- options, the next line has been added to include the files from the original library:

-I$(LIB_SRC)/dynamicFvMesh/lnInclude

Now the compilation can be done:

>> cd $WM_PROJECT_USER_DIR/dynamicMyClassFvMesh

>> wmake libso

When the compilation is done properly, then the modification can be done. This step

defined just above, it is only done to ensure that the modification of name is done properly.

To modify the motion equation, dynamicMyClassFvMesh.C has to be modified in the part

where the equation is defined:

00060 a_(readScalar(dynamicMeshCoeffs_.lookup("a"))),

00061 frequency_(readScalar(dynamicMeshCoeffs_.lookup("frequency"))),

00062 // refPlaneX_(readScalar(dynamicMeshCoeffs_.lookup("refPlaneX"))),

00077 << "a: " << a_

00078 << " frequency: " << frequency_ << endl;

00079 // << " refPlaneX: " << refPlaneX_ << endl;

00092 scalar scalingFunction =

00093 (::cos(2*mathematicalConstant::pi*frequency_*time().value());

00100 newPoints.replace

00101 (

00102 vector::X,

00103 stationaryPoints_.component(vector::X)+

00104 a-*time().value()*(stationaryPoints_.component(vector::Y))*

(stationaryPoints_.component(vector::Y))*scalingFunction

00105);

The class has to be recompiled by typing:

>> wmake libso

http://foam.sourceforge.net/doc/Doxygen/html/doubleScalar_8C.html#e60dd7219bd73316385eb9b8f9802227
http://foam.sourceforge.net/doc/Doxygen/html/doubleScalar_8C.html#e60dd7219bd73316385eb9b8f9802227
http://foam.sourceforge.net/doc/Doxygen/html/doubleScalar_8C.html#e60dd7219bd73316385eb9b8f9802227
http://foam.sourceforge.net/doc/Doxygen/html/namespaceFoam.html#2db8fe02a0d3909e9351bb4275b23ce4
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1scalar.html
http://foam.sourceforge.net/doc/Doxygen/html/namespaceFoam.html#ebb41a148f7cf44b63e12f69e487e49f
http://foam.sourceforge.net/doc/Doxygen/html/namespaceFoam_1_1mathematicalConstant.html#d5e7c97ea4cf5eeb709903a89a92add9
http://foam.sourceforge.net/doc/Doxygen/html/classFoam_1_1fvMesh.html#48fcf6de2789aff6b430b5fc1a05693f

Mesh motions alternatives Andreu Oliver González

21

4.4 Example of use of the dynamicMyClassFvMesh class

The example is the same that was done in part 4.2, but now it is going to show the motion

of the mesh by using the new class.

The example defined in part 4.2 can be copied:

>> cp –r $WM_PROJECT_USER_DIR/myExample $WM_PROJECT_USER_DIR/myClassExample

But some changes have to be done in controlDict (where now the endTime is 1s, code

attached in the Appendix) and dynamicMeshDict:

- reference to the new class library

- the needed coefficients (a and frequency) have to be redefined in the subdictionary

dynamicMyClassFvMeshCoeffs inside the dynamicMeshDict. The values for the

coefficients have been taken:

a = 0.4 frequency = 2

{

 version 2.0;

 format ascii;

 class dictionary;

 object motionProperties;

}

// * //

dynamicFvMeshLibs (“libdynamicMyClassFvMesh.so”);

dynamicFvMesh dynamicMyClassFvMesh;

motionSolverLibs ("libfvMotionSolvers.so");

dynamicMyClassFvMeshCoeffs

{

 a 0.4;

 frequency 2;

}

// *** //

Now, the mesh can be moved and icoDyMFoamMesh is going to be used. By calling the

solver, the mesh manipulation can be seen in the paraFoam:

>> icoDyMFoamMesh

>> paraFoam

As for the example shown for the original class, different values for the two constants are

defined and the results achieved are shown in the figures below:

Mesh motions alternatives Andreu Oliver González

22

Figure 11: Mesh motion with 0.4m of amplitude and 2Hz of frequency for t = 0.05, 0.1, 0.15, 0.2, 0.25, 0.4 and 0.5s.

Figure 12: Mesh motion with 0.8m of amplitude and 2Hz of frequency for t = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4
and 0.5s.

Mesh motions alternatives Andreu Oliver González

23

Figure 13: Mesh motion with 0.4m of amplitude and 4Hz of frequency for t = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
0.4, 0.45 and 0.5s.

It can be seen that the two constants modify the motion in the following way:

- a: varies the total displacement in x direction. Comparing Figure 11 and 12, it can be

observed how the displacement of the top part of the mesh in the last time step (0.5s) for a

equal to 0.8 is bigger than the one for a with a value of 0.4.

- frequency: varies the speed of change; depending on the value it can be needed to

change the write interval in the controlDict file to see the results of the change in the

paraFoam. Comparing Figure 11 and 13, where Figure 13 has a frequency which is the

double of the one for the case solved in Figure 11, it can be observed that the mesh is

making more fluctuations around the vertical axis for the same time. The frequency

constant is used inside the scaling function (Eq. 5) and it is similar to the one used for the

dynamicInkJetFvMesh class but in this case it is going from -1 to 1, therefore, plotting the x

position without considering the dependency on the y position the following picture is

gotten:

Mesh motions alternatives Andreu Oliver González

24

Figure 14: X position for 2Hz and 4Hz of frequency and time from 0 to 1s.

From Figure 14, it can be seen the motion that is applied to the mesh, which is a

sinusoidal movement which is amplitude is increasing with time. As the motion is

dependent on y, the displacement for the x coordinates shown in Figure 14 is multplied by

the y coordinate squared therefore for the bottom points the movement is zero while for

the top points the motion is the highest one.

5 CONCLUSIONS

It can be concluded that in order to have a mesh with motion there are two main ways two

follow:

- The automatic mesh motion (dynamicFvMesh) with which the mesh topology does

not change.

- The topological changes in the mesh (topoChangerFvMesh).

Inside this two options of mesh motion manipulation, there are different classes with

different motions specified.

It has to be added that dynamicInkJetFvMesh defines a movement based on harmonic

motion around a reference plane solved internally in the class, which means that a solver

is not needed. The modification of this class, dynamicMyClassFvMesh, defines another

motion, a sinusoidal one along y direction depending on y position.

Finally, as it has been seen with the dynamicInkJetFvMesh from the dynamicFvMesh,

when the motion specified originally is not the demanded by the user, the class can be

modified in order to define the desired motion.

Mesh motions alternatives Andreu Oliver González

25

6 REFERENCES

Håkan Nilsson (2009-09). PhD course in CFD with OpenSource software, 2009. Slides

from the homepage of the course, which is given at Chalmers TH (Göteborg, Sweden).

OpenFOAM website – The Open Source CFD Toolbox. Retrieved November 2009 from:

www.opencfd.co.uk/openfoam/

OpenFOAM Wiki. Retrieved November 2009 from:

www.openfoamwiki.net

CFD Online Forums about OpenFOAM. Retrieved November 2009 from:

www.cfd-online.com

Hrvoje Jasak and Henrik Rusche (2009-06). Dynamic Mesh Handling in OpenFOAM.

Slides from the 4th OpenFOAM workshop (Montreal, Canada).

Pirooz Moradnia (2008). A tutorial on how to use Dynamic Mesh solver IcoDyMFoam.

Report for the PhD course in OpenFOAM at Chalmers TH (Göteborg, Sverige).

Olivier Petit (2008). Different ways to treat rotating geometries. Report for the PhD course

in OpenFOAM at Chalmers TH (Göteborg, Sverige).

Erik Bjerklund (2009). A modification of the movingConeTopoFvMesh library. Report for

the PhD course in OpenFOAM at Chalmers TH (Göteborg, Sverige).

The OpenFOAM – The Open Source CFD Toolbox. Retrieved November 2009 from:

http://foam.sourceforge.net

The ‘SfR Fresh’ Software Archive. Retrieved November 2009 from:

www.sfr-fresh.com

http://www.opencfd.co.uk/openfoam/
http://www.openfoamwiki.net/
http://www.cfd-online.com/
http://foam.sourceforge.net/
http://www.sfr-fresh.com/

Mesh motions alternatives Andreu Oliver González

26

APPENDIX

The most important and used codes for this project are presented now:

dynamicInkJetFvMesh.H

#ifndef dynamicInkJetFvMesh_H

#define dynamicInkJetFvMesh_H

#include "dynamicFvMesh.H"

#include "dictionary.H"

#include "pointIOField.H"

// * //

 namespace Foam

{

 Class dynamicInkJetFvMesh Declaration

---/

class dynamicInkJetFvMesh

:

 public dynamicFvMesh

{

 // Private data

 dictionary dynamicMeshCoeffs_;

 scalar amplitude_;

 scalar frequency_;

 scalar refPlaneX_;

 pointIOField stationaryPoints_;

 // Private Member Functions

 //- Disallow default bitwise copy construct

 dynamicInkJetFvMesh(const dynamicInkJetFvMesh&);

 //- Disallow default bitwise assignment

 void operator=(const dynamicInkJetFvMesh&);

public:

 //- Runtime type information

 TypeName("dynamicInkJetFvMesh");

 // Constructors

 //- Construct from IOobject

 dynamicInkJetFvMesh(const IOobject& io);

 // Destructor

 ~dynamicInkJetFvMesh();

 // Member Functions

 //- Update the mesh for both mesh motion and topology change

 virtual bool update();

};

// * //

} // End namespace Foam

// * //

#endif

blockMeshDict

The code where the mesh is defined:

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object blockMeshDict;

}

// * //

convertToMeters 0.1;

http://www.sfr-fresh.com/unix/privat/OpenFOAM-1.6.General.gtgz:a/OpenFOAM-1.6/doc/Doxygen/html/dynamicFvMesh_8H.html
http://www.sfr-fresh.com/unix/privat/OpenFOAM-1.6.General.gtgz:a/OpenFOAM-1.6/doc/Doxygen/html/dictionary_8H.html
http://www.sfr-fresh.com/unix/privat/OpenFOAM-1.6.General.gtgz:a/OpenFOAM-1.6/doc/Doxygen/html/pointIOField_8H.html
http://www.sfr-fresh.com/unix/privat/OpenFOAM-1.6.General.gtgz:a/OpenFOAM-1.6/doc/Doxygen/html/classFoam_1_1dynamicInkJetFvMesh.html
http://www.sfr-fresh.com/unix/privat/OpenFOAM-1.6.General.gtgz:a/OpenFOAM-1.6/doc/Doxygen/html/classFoam_1_1dynamicFvMesh.html
http://www.sfr-fresh.com/unix/privat/OpenFOAM-1.6.General.gtgz:a/OpenFOAM-1.6/doc/Doxygen/html/classFoam_1_1dictionary.html
http://www.sfr-fresh.com/unix/privat/OpenFOAM-1.6.General.gtgz:a/OpenFOAM-1.6/doc/Doxygen/html/classFoam_1_1scalar.html
http://www.sfr-fresh.com/unix/privat/OpenFOAM-1.6.General.gtgz:a/OpenFOAM-1.6/doc/Doxygen/html/classFoam_1_1scalar.html
http://www.sfr-fresh.com/unix/privat/OpenFOAM-1.6.General.gtgz:a/OpenFOAM-1.6/doc/Doxygen/html/classFoam_1_1scalar.html
http://www.sfr-fresh.com/unix/privat/OpenFOAM-1.6.General.gtgz:a/OpenFOAM-1.6/doc/Doxygen/html/classFoam_1_1pointIOField.html
http://www.sfr-fresh.com/unix/privat/OpenFOAM-1.6.General.gtgz:a/OpenFOAM-1.6/doc/Doxygen/html/classFoam_1_1dynamicInkJetFvMesh.html
http://www.sfr-fresh.com/unix/privat/OpenFOAM-1.6.General.gtgz:a/OpenFOAM-1.6/doc/Doxygen/html/classFoam_1_1dynamicInkJetFvMesh.html
http://www.sfr-fresh.com/unix/privat/OpenFOAM-1.6.General.gtgz:a/OpenFOAM-1.6/doc/Doxygen/html/classFoam_1_1dynamicInkJetFvMesh.html
http://www.sfr-fresh.com/unix/privat/OpenFOAM-1.6.General.gtgz:a/OpenFOAM-1.6/doc/Doxygen/html/classFoam_1_1dynamicInkJetFvMesh.html#b783f45d19a96d6a5cf6aff3d0f4c35b
http://www.sfr-fresh.com/unix/privat/OpenFOAM-1.6.General.gtgz:a/OpenFOAM-1.6/doc/Doxygen/html/classFoam_1_1dynamicInkJetFvMesh.html
http://www.sfr-fresh.com/unix/privat/OpenFOAM-1.6.General.gtgz:a/OpenFOAM-1.6/doc/Doxygen/html/classFoam_1_1IOobject.html
http://www.sfr-fresh.com/unix/privat/OpenFOAM-1.6.General.gtgz:a/OpenFOAM-1.6/doc/Doxygen/html/classFoam_1_1dynamicInkJetFvMesh.html#8c0e0dfb03b4dcebb015ceff98f5a9f5
http://www.sfr-fresh.com/unix/privat/OpenFOAM-1.6.General.gtgz:a/OpenFOAM-1.6/doc/Doxygen/html/classFoam_1_1dynamicInkJetFvMesh.html#a2aac016e2bf7b5bd2b271786c2791aa

Mesh motions alternatives Andreu Oliver González

27

vertices

(

 (-0.006 0 0)

 (0 0 0)

 (0 0.075 0)

 (-0.006 0.075 0)

 (-0.006 0 0.001)

 (0 0 0.001)

 (0 0.075 0.001)

 (-0.006 0.075 0.001)

);

blocks

(

 hex (0 1 2 3 4 5 6 7) (4 50 1) simpleGrading (1 1 1)

);

edges

(

);

patches

(

 wall movingWall

 (

 (3 7 6 2)

 (0 4 7 3)

 (1 2 6 5)

)

 wall fixedWalls

 (

 (1 5 4 0)

)

 empty frontAndBack

 (

 (0 3 2 1)

 (4 5 6 7)

)

);

mergePatchPairs

(

);

// *** //

transportProperties

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object transportProperties;

}

// * //

nu nu [0 2 -1 0 0 0 0] 0.01;

Mesh motions alternatives Andreu Oliver González

28

// *** //

system folder codes

controlDict

For myExample:

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object controlDict;

}

// * //

application icoFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 0.5;

deltaT 0.005;

adjustTimeStep no; //added

maxCo 0.5;

writeControl timeStep;

writeInterval 5;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression uncompressed;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

// *** //

For myClassExample, endTime is 1.

fvSchemes

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSchemes;

}

// * //

gradSchemes

{

 default Gauss linear;

 grad(p) Gauss linear;

}

divSchemes

{

 default none;

 div(phi,U) Gauss linear;

Mesh motions alternatives Andreu Oliver González

29

}

laplacianSchemes

{

 default none;

 laplacian(nu,U) Gauss linear corrected;

 laplacian((1|A(U)),p) Gauss linear corrected;

}

// *** //
fvSolution

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSolution;

}

// * //

PISO

{

 nCorrectors 2;

 nNonOrthogonalCorrectors 0;

 pRefCell 0;

 pRefValue 0;

}

// *** //

0 folder codes

p

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 object p;

}

// * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

 movingWall

 {

 type zeroGradient;

 }

 fixedWalls

 {

 type zeroGradient;

 }

 frontAndBack

 {

 type zeroGradient;

Mesh motions alternatives Andreu Oliver González

30

 }

}

// *** //

U

FoamFile

{

 version 2.0;

 format ascii;

 class volVectorField;

 object U;

}

// * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

 movingWall

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 frontAndBack

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 fixedWalls

 {

 type fixedValue;

 value uniform (0 0 0);

 }

}

// *** //

dynamicMeshDict

The code where the mesh class and the library for the class is specified. For myExample:

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object motionProperties;

}

// * //

dynamicFvMesh dynamicInkJetFvMesh;

motionSolverLibs ("libfvMotionSolvers.so");

dynamicInkJetFvMeshCoeffs

{

 amplitude 0.06;

Mesh motions alternatives Andreu Oliver González

31

 frequency 2;

 refPlaneX 0;

}

// *** //

And the code for myClassExample:

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object motionProperties;

}

// * //

dynamicFvMeshLibs ("libdynamicMyClassFvMesh.so");

dynamicFvMesh dynamicMyClassFvMesh;

motionSolverLibs ("libfvMotionSolvers.so");

dynamicMyClassFvMeshCoeffs

{

 a 0.4;

 frequency 2;

}

// *** //

dynamicMyClassFvMesh.C

#include "dynamicMyClassFvMesh.H"

#include "addToRunTimeSelectionTable.H"

#include "volFields.H"

#include "mathematicalConstants.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam

{

 defineTypeNameAndDebug(dynamicMyClassFvMesh, 0);

 addToRunTimeSelectionTable(dynamicFvMesh, dynamicMyClassFvMesh, IOobject);

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::dynamicMyClassFvMesh::dynamicMyClassFvMesh(const IOobject& io)

:

 dynamicFvMesh(io),

 dynamicMeshCoeffs_

 (

 IOdictionary

 (

 IOobject

 (

 "dynamicMeshDict",

 io.time().constant(),

 *this,

 IOobject::MUST_READ,

Mesh motions alternatives Andreu Oliver González

32

 IOobject::NO_WRITE

)

).subDict(typeName + "Coeffs")

),

 a_(readScalar(dynamicMeshCoeffs_.lookup("a"))),

 frequency_(readScalar(dynamicMeshCoeffs_.lookup("frequency"))),

 stationaryPoints_

 (

 IOobject

 (

 "points",

 io.time().constant(),

 meshSubDir,

 *this,

 IOobject::MUST_READ,

 IOobject::NO_WRITE

)

)

{

 Info<< "Performing a dynamic mesh calculation: " << endl

 << "a: " << a_

 << " frequency: " << frequency_ << endl;

}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

Foam::dynamicMyClassFvMesh::~dynamicMyClassFvMesh()

{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

bool Foam::dynamicMyClassFvMesh::update()

{

 scalar scalingFunction =

 (::cos(2*mathematicalConstant::pi*frequency_*time().value());

 Info<< "Mesh scaling. Time = " << time().value() << " scaling: "

 << scalingFunction << endl;

 pointField newPoints = stationaryPoints_;

 newPoints.replace

 (

 vector::X,

 stationaryPoints_.component(vector::X)+

 a_*time().values()*(stationaryPoints_.component(vector::Y))*

(stationaryPoints_.component(vector::Y))*scalingFunction

);

 fvMesh::movePoints(newPoints);

 volVectorField& U =

 const_cast<volVectorField&>(lookupObject<volVectorField>("U"));

 U.correctBoundaryConditions();

 return true;

}

// *** //

Mesh motions alternatives Andreu Oliver González

33

dynamicMyClassFvMesh.H

#ifndef dynamicMyClassFvMesh_H

#define dynamicMyClassFvMesh_H

#include "dynamicFvMesh.H"

#include "dictionary.H"

#include "pointIOField.H"

// * //

namespace Foam

{

/*---*\

 Class dynamicMyClassFvMesh Declaration

---/

class dynamicMyClassFvMesh

:

 public dynamicFvMesh

{

 // Private data

 dictionary dynamicMeshCoeffs_;

 scalar a_;

 scalar frequency_;

 pointIOField stationaryPoints_;

 // Private Member Functions

 //- Disallow default bitwise copy construct

 dynamicMyClassFvMesh(const dynamicMyClassFvMesh&);

 //- Disallow default bitwise assignment

 void operator=(const dynamicMyClassFvMesh&);

public:

 //- Runtime type information

 TypeName("dynamicMyClassFvMesh");

 // Constructors

 //- Construct from IOobject

 dynamicMyClassFvMesh(const IOobject& io);

 // Destructor

 ~dynamicMyClassFvMesh();

 // Member Functions

 //- Update the mesh for both mesh motion and topology change

 virtual bool update();

};

// * //

Mesh motions alternatives Andreu Oliver González

34

} // End namespace Foam

// * //

#endif

// *** //

icoDyMFoamMesh.C

The code of the solver modified in order to solve only the mesh motion:

#include "fvCFD.H"

#include "dynamicFvMesh.H"

// * //

int main(int argc, char *argv[])

{

include "setRootCase.H"

include "createTime.H"

include "createDynamicFvMesh.H"

include "readPISOControls.H"

include "initContinuityErrs.H"

include "createFields.H"

include "readTimeControls.H"

// * //

 Info<< "\nStarting time loop\n" << endl;

 while (runTime.run())

 {

include "readControls.H"

include "CourantNo.H"

include "setDeltaT.H"

 runTime++;

 Info<< "Time = " << runTime.timeName() << nl << endl;

 mesh.update();

 runTime.write();

 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

 << " ClockTime = " << runTime.elapsedClockTime() << " s"

 << nl << endl;

 }

 Info<< "End\n" << endl;

 return(0);

}

// *** //

