CHALMERS

Basics of C++ and object orientation in OpenFOAM

e To begin with: The aim of this part of the course is not to teach all of C++,
but to give a short introduction that is useful when trying to understand
the contents of OpenFOAM.

e After this introduction you should be able to recognize and make minor
modifications to most C++ features in OpenFOAM.

e We will first have a quick look at a piece of code in OpenFOAM, then we
will follow the book C++ direkt by Jan Skansholm (ISBN 91-44-01463-5)

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS
Basic layout of files in OpenFOAM (magU)

e All OpenFOAM applications and libraries start with a commented section:

K *\
=========
\ N\ / F ield | OpenFOAM: The Open Source CFD Toolbox
AN\ / O peration |
\\ [/ A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
\\/ M anipulation |

e The first lines of an application or a library (after the above commented section) includes
header files for the libraries of classes that will be used in the code. In OpenFOAM, all the
general classes for finite volume CFD are added by:

#include "fvCFD.H"

This file contains only the declarations in the library, while the actual contents of the library
is linked to at run-time.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

Basic layout of files in OpenFOAM (magU)

e The file £vCFD.H is included in the code according to the description in the Make/options
file:

EXE_INC = \
-IS(LIB_SRC)/finiteVolume/lnInclude

i.e. SWM_PROJECT_DIR/src/finiteVolume/lnInclude/fvCFD.H, and the libraries are
linked according to the description in the Make/options file:

EXE_LIBS = \
—1finiteVolume

and the path to the library is found using the Linux environment variables:

ldd ‘which magU“

libfiniteVolume.so =>
/local/hani/OpenFOAM/OpenFOAM-1.4.1/1ib/
1inux64GccDPOpt/libfiniteVolume. so

This library must be present both during compilation and at run-time, since OpenFOAM
uses dynamic libraries.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

Basic layout of files in OpenFOAM (magU)

e The file £vCFD.H starts with the following lines:

#ifndef fvCFD_H
#define fvCFD _H

which makes sure that the file will not ’execute’ more than once, although it may be included
multiple times. There is an #endif at the end of the file, terminating this if-statement.

e The file £vCFD.H continues with a number of include-statements, and it ends with:

#ifndef namespaceFoam
#define namespaceFoam

using namespace Foam;
#endif

which defines the namespace Foam if it has not already been defined. I.e. all declarations
made in the included library belong to the namespace Foam, and the present code should
use namespace Foam.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS
Basic layout of files in OpenFOAM (magU)

e A C++ code must contain exactly one instance of the function main, and the execution of the

code starts in this function.
e In OpenFOAM the main function takes parameters and returns an integer:

int main(int argc, char *argv[])

The arguments you give when starting an executable are thus passed on to the main func-
tion. There are argc number of arguments, and they are located in the argv list, which is

used in the code.

e The body of the main function is embraced by:

return(0);

}
where the dots represent the code, and the return statement returns the integer 0 when

finishing the main function.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics

e Variables can contain data of different types, for instance int myInteger; for a declara-
tion of an integer variable named myInteger, or const int myConstantInteger = 10;
for a declaration of an constant integer variable named myConstantInteger with value

10. In C++ it is possible to define special types, and there are many types defined for you in
OpenFOAM.

e Input and output can be done using the standard library iostream, using:

cout << "Please type an integer!" << endl;
cin >> myInteger;

where << and >> are output and input operators, and endl is a manipulator that generates
a new line (there are many other manipulators). In OpenFOAM a new output stream Info
is however defined, and it is recommended to use that one instead since it takes care of
write-outs for parallel simulations.

e Variables can be added, substracated, multiplied and divided as long as they have the same
type, or if the types have definitions on how to convert between the types. User-defined
types must have the required conversions defined. Some of the types in OpenFOAM can be
used together in arithmetic expressions, but not all of them.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics

e +, —, * and / are operators that define how the operands should be used. Other standard

operators are % (integer division modulus), ++ (add 1), —— (substract 1), += (i +=2 adds 2 to
1), -=, *=, /=, $= etc. User-defined types should define its operators.

e Mathematic standard functions are available in standard libraries. They are thus not part
of C++ itself.
Standard library cmath contains trigonometric functions, logaritmic functions and square
root. (use #include cmath; if you need them)
Standard library cstdlib contains general functions, and some of them can be used for
arithmetics. (use #include cstdlib; if you need them)

o if-statements: if (variablel > variable2) {...CODE...} else {...CODE...}
Comparing operators: < > <= >= == I=
Logical operators: && || ! (or, for some compilers: and or not)
Generates bool (boolean)

e while-statements: while (...expression...) {...CODE...}

e break; breaks the execution of while

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics

e for-statements: for (init; condition; change) {...CODE...}
e Arrays:

double £[5]; (Note: components numbered from 0!)

f[3] = 2.75; (Note: no index control!)

int a[6] = {2, 2, 2, 5, 5, 0}; (declaration and initialization)

The arrays have strong limitations, but serve as a base for array templates

e Array templates (example vector. other: 1ist, deque):
#include <vector>
using namespace std
The type of the vector must be specified upon declaration:
vector<double> v2(3); gives {0, 0, 0}
vector<double> v3(4, 1.5); gives {1.5, 1.5, 1.5, 1.5}
vector<double> v4(v3); gives a copy of v4

e Array template operations: The template classes define member functions that can be used
for those types, for instance: size(), empty(), assign(), push_back(), pop_back(),
front(), clear(), capacity() etc.
v.assign(4, 1.0); gives {1.0, 1.0, 1.0, 1.0}

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics

e Functions may, or may not, return a value
e Example function average

double average (double x1, double x2)
{

int nvalues = 2;

return (xl1+x2)/nvalues;

}

takes two arguments of type double, and returns type double. The variable nvalues is a
local variable, and is only visible inside the function. Note that any code after the return
statement will not be executed.

e A function doesn’t have to take arguments, and it doesn’t have to return anything (the
output type is then specified as void). The main function should return an integer, but it is
alright to skip the return statement in the main function.

e There may be several functions with the same names, as long as there is a difference in the
arguments to the functions - the number of arguments or the types of the arguments.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, scope of variables

e The scope and visibility of a variable depends on where it is defined.
A variable defined in a block (between { }) is visible in that block.
A variable defined in a function head (arguments) is visible in the entire function.
Other scopes are classes and name spaces, which we might discuss later.
There can be several variables with the same name, but only one in each block.
It is possible to use a global variable even if there is a local variable with the same name in

the current block. The operator : : is then used (: : x)
Example:

int x;
int fl(char c¢)
{
double vy;
while (y>0)
{
char x;

}

int w;

}

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, declaration of variables and functions

e Variables and functions must be declared before they can be used. Example:

double average (double x1, double x2)
main ()

{

mv = average(valuel, value?)

}
double average (double x1, double x2)

{

return (x1+x2)/2;

}

The second occurence of the function head is the definition of the function. The argument
names may be omitted in the declaration.

e Declarations are often included from include-files (#include "file.h" or
#include <standardfile>)

e A good way to program C++ is to make files in pairs, one with the declaration, and one with
the definition. This is done throughout OpenFOAM.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, function parameters / arguments

e If an argument variable should be changed inside a function, the type of the argument must
be a reference, i.e.
void change(double& x1)
The reference parameter x1 will now be a reference to the argument to the function in-
stead of a local variable in the function. (standard arrays are always treated as reference
parameters).

e Reference parameters can also be used to avoid copying of large fields when calling a func-
tion. To avoid changing the parameter in the function it can be declared as const, i.e.
volid checkWord(const stringé& s)

This often applies for parameters of class-type, which can be large.

e Default values can be specified, and then the function may be called without that parameter,
i.e.
void checkWord(const string& s, int nmbr=1)

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, Types

e Types define what values a variable may obtain, and what operations may be made on the
variable.

e Pre-defined C++ types are:

signed char

short int

int

unsigned char
unsigned short int
unsigned int
unsigned long int
float

double

long double

e User defined types can be defined in classes. OpenFOAM provides numerous types that are
useful for solving partial differential equations.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, Pointers

e Pointers point at a memory location.

¢ A pointer is recognized by its definition (*):
int *pint;
double *pdouble;
char *pchar;

e Turbulence models are treated with the turbulence pointer in OpenFOAM.

e We will not discuss pointers any further at the moment.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, typedef

e Type declarations in C++ may be quite complicated. By using typedef, the type can be
given a new name, i.e.
typedef vector<int> integerVector;
An integer vector can then simply be defined as
integerVector 1V;
This is used to a large extent in OpenFFOAM, and the reason for this is to make the code
easier to read.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, object orientation

e Object orientation focuses on the objects instead of the functions.

e An object belongs to a class of objects with the same attributes. The class defines the con-
struction of the object, destruction of the object, attributes of the object and the functions
that can manipulate the object.

e The objects may be related in different ways, and the classes may inherit attributes from
other classes.

e A benefit of object orientation is that the classes can be re-used, and that each class can be
designed and bug-fixed for a specific task.

e In C++ a class is the same thing as a type, so the classes can be seen as new types that are
designed for specific tasks.

e In OpenFOAM, the classes are designed to define, discretize and solve PDE’s.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, class definition

e The following structure defines the class Name and its public and hidden member functions
and memer data.

class name {
public:

declarations of public member functions and data members
private:

declaration of hidden member functions and data members

}i
e public attributes are visible from outside the class.
e private attributes are only visible within the class.
e In neither public nor private are specified, all attributes will be private.

e Declarations of member functions and data members are done as usual.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, using a class

e An object of a class name is defined in the main code as:
name nameObject; (c.f. int 1)

e nameObject will then have all the attributes defined in the class name.

e Any number of objects may belong to a class, and the attributes of each object will be sepa-
rated.

e There may be pointers and references to any object.

e The member functions operate on the object according to its implementation.
If there is a member function write that writes out the contents of an object of the class
name, it is called in the main code as:
nameObject.write();

e When using the memberfunctions through a pointer, the syntax is slightly different (here
pl is a pointer to the object nameObject, and p2 is a pointer to a nameless new name:

pl = &nameObject;
P2 = new name;
pl->write();

p2->write();

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, member functions

e The member functions may be defined either in the definition of the class, or outside the
definition of the class. We will see this when we look inside OpenFOAM. The syntax is
basically:

inline void name::write()

{

Contents of the member function.

}

where name: : tells us that the member function write belongs to the class name., void
tells us that the function does not return anything, and inline tells us that the function
will be inlined into the code where it is called instead of jumping to the memory location
of the function at each call (good for small functions). Member functions defined directly in
the class definition will automatically be inlined if possible.

e The member functions have direct access to all the data members and member functions of
the class.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, organization of classes

e A good programming standard is to make the class files in pairs, one with the class defini-
tion, and one with the function declarations.

e Classes that are closely related to each other can share files, but keep the class definitions
and function declarations separate. This is done throughout OpenFOAM.

e The class definitions must be included in the object file that will use the class, and in
the function declarations file. The object file from the compilation of the declaration file is
statically or dynamically linked to the executable by the compiler.

e Inline functions must be implemented in the class definition file, since they must be in-
lined without looking at the function declaration file. In OpenFOAM there are usually files
named as VectorI.H containing inline functions, and those files are included in the cor-
responding Vector . H file.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, OpenFOAM examples

e src/OpenFOAM/primitives/Vector

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, Constructors

e A constructor is a special initialization function that is called each time a new object of
that class is defined. Without a specific constructor all attributes will be undefined. A null
constructor must always be defined.

e A constructor can be used to initialize the attributes of the object. A constructor is recog-
nized by it having the same name as the class (here Vector. Cmpt is typedef for compo-
nent type, i.e. the Vector class works for all component types):

// Constructors
//- Construct null
inline Vector();
//— Construct given VectorSpace
inline Vector(const VectorSpace<Vector<Cmpt>, Cmpt, 3>&);
//- Construct given three components
inline Vector(const Cmpt& vx, const Cmpt& vy, const Cmpté& vz);
//—- Construct from Istream
inline Vector(Istreamé&);

e The vector will be initialized differently depending on which of these constructors is chosen.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, Constructors

e The actual initialization usually takes place in the corresponding . C file, but since the con-
structors for the Vector are inlined, it takes place in the Vectorl.H file:

// Construct given three Cmpts
template <class Cmpt>
inline Vector<Cmpt>::Vector(const Cmpt& vx, const Cmpt& vy, const Cmpt& vz)

{

this->v_ [X] = vXx;
this->v_[Y] = vy;
this->v_[2] = vz;

}

(here this is a pointer to the current object of the current class, i.e. we here set the static
data member v_ (inherited from class VectorSpace.H) to the values supplied as argu-
ments to the constructor.

e It is here obvious that the member function Vector belongs to the class Vector, and that
it is a constructor since it has the same name as the class.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, Constructors

e A copy constructor has a parameter that is a reference to another object of the same class.
(className(const className&) ;). The copy constructor copies all attributes. A copy
constructor can only be used when initializing an object (since a constructor ’constructs’ a
new object). Ususlly there is no need to define a copy destructor since the default one does
what you need. There are however exceptions.

e A type conversion constructor is a constructor that takes a single parameter of a different
class than the current class, and it describes explicitly how to convert between the two
classes. (There can actually be more parameters, but then they have to have default values)

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, Destructors

e When using dynamically allocated memory it is important to be able to destruct an object.

e A destructor is a member function without parameters, with the same name as the class,
but with a ~ in front of it.

e An object should be destructed when leaving the block it was constructed in, or if it was
allocated with new it should be deleted with delete

e To make sure that all the memory is returned it is preferrable to define the destructor
explicitly.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, Constant member functions

e An object of a class can be constant (const). Some member functions might not change the
object (constant functions), but we need to tell the compiler that it doesn’t. That is done by

adding const after the parameter list in the function definition. Then the function can be
used for constant objects:

template <class Cmpt>
inline const Cmpt& Vector<Cmpt>::x() const

{
return this->v_[X];

}

This function returns a constant reference to the X-component of the object (first const)
without modifying the original object (second const)

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, Friends

e A friend is a function (not a member function) or class that has access to the private
members of a particular class.

e A class can invite a function or another class to be its friend, but it cannot require to be a
friend of another class.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, Operators

e Operators define how to manipulate objects.

e Standard operator symbols are:

new delete new/] delete]]

+ — * / % B & | B
! = < > += —= * = /= o=
T = &= | = << >> >>= <<= == =
<= >= && | | ++ —— , —>* —>

When defining operators, one of these must be used.

e Operators are defined as member functions or friend functions with name operatorX,
where X is an operator symbol.

e OpenFFOAM has defined operators for all classes, including iostream << and >>

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, Static members

e Static members of a class only exist in a single instance in a class, for all objects, i.e. it will
be equivalent in all objects of the class.

e They are defined as static, which can be applied to data members or member functions.

e Static members do not belong to any particular object, but to a particular class, so they are
used as:

className: :staticFunction(parameters);

(They can actually also be used as object.staticFunction(parameters), but that
would be a bit mis-leading since nothing happens explicitly to cbject, and that all objects
of the class will notice the effect of the staticFunction)

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, Inheritance

e A class can inherit attributes from already existing classes, and extend with new attributes.
e Syntax, when defining the new class:
class newClass : public oldClass { ...members... }

where newClass will inherit all the attributes from c1dClass.
newClass is now a sub class to o1dClass.

e OpenFOAM example:

template <class Cmpt>
class Vector

public VectorSpace<Vector<Cmpt>, Cmpt, 3>

where Vector is a sub class to VectorSpace.

e A member of newClass may have the same name as one in o1dClass. Then the newClass
member will be used for newClass objects and the c1dClass member will be hidden. Note
that for member functions, all of them with the same name will be hidden, irrespectively of
the number of parameters.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, Inheritance/visibility

e A hidden member of a base class can be reached by c1dClass: :member
e Members of a class can be public, private or protected.

e private members are never visible in a sub class, while public and protected are. How-
ever, protected are only visible in a sub class (not in other classes).

e The visibility of the inherited members can be modified in the new class using the reserved
words public, private or protected when defining the class. (public in the previous
example). It is only possible to make the members of a base class less visible in the sub
class.

e A class may be a sub class to several base classes (multiple inheritance), and this is used to
combine features from several classes. Watch out for ambigous (tvetydiga) members!

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, Virtual member functions

e Virtual member functions are used for dynamic binding, i.e. the function will work differ-
ently depending on how it is called, and it is determined at run-time.

e The reserved word virtual is used in front of the member function declaration to declare
it as virtual.

e A sub-class to a class with a virtual function should have a member function with the same
name and parameters, and return the same type as the virtual function. That sub-class
member function will automatically be a virtual function.

e By defining a pointer to the base class a dynamic binding can be realized. The pointer can
be made to point at any of the sub-classes to the base class.

e The pointer to a specific sub class is defined as: p = new subClass (...parameters...).
e Member functions are used as p—>memberFunction (since p is a pointer)
e OpenFOAM uses this to dynamically choose turbulence model.

¢ Virtual functions make it easy to add new turbulence models without changing the original
classes (as long as the correct virtual functions are defined).

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, Abstract classes

e A class with at least one virtual member function that is undefined (a pure virtual function)
is an abstract class.

e The purpose of an abstract class is to define how the sub classes should be defined.
e An object can not be created for an abstract class.

e The OpenFOAM turbulenceModel is such an abstract class since it has a number of pure
member functions, such as

//- Return the turbulence viscosity
virtual tmp<volScalarField> nut() const = 0;

(you see that it is pure virtual by = 0’).

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, Container classes

e A container class contains and handles data collections. It can be viewed as a list of entries
of objects a specific class. A container class is a sort of template, and can thus be used for
objects of any class.

e The member functions of a container class are called algorithms. There are algorithms that
search and sort the data collection etc.

e Both the container classes and the algorithms use iterators, which are pointer-like objects.

e The container classes in OpenFOAM can be found in src/OpenFOAM/containers, for ex-
ample UList

e forAll is defined to help us march through all entries of a list of objects of any class.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, Templates

e The most obvious way to define a class is to define it for a specific type of object. However,
often similar operations are needed regardless of the object type. Instead of writing a num-
ber of identical classes where only the object type differs, a generic template can be defined.
The compiler then defines all the specific classes that are needed.

e Container classes should be implemented as class templates, so that they can be used for
any object. (i.e. List of integers, List of vectors ...)

e Function templates define generic functions that work for any object.

e A template calss is defined by a line in front of the class definition, similar to:
template<class T>

where T is the generic parameter (there can be several in a ’comma’ separated list), defining
any type. The word class defines T as a type parameter.

e The generic parameter(s) are then used in the class definition instead of the specific type
name(s).

e A template class is used to construct an object as:

templateClass<type> templateClassObject;

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, typedef

e OpenFOAM is full of templates.

e To make the code easier to read OpenFOAM re-defines the templated class names, for in-
stance:

typedef List<vector> vectorlist;

so that an object of the class template List of type vector is called vectorList.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, Namespace

e When using pieces of C++ code developed by different programmers there is a risk that the
same name has been used for the same declaration, for instance two constants with the
name size.

e By associating a declaration with a namespace the declaration will only be visible if that
namespace is used. Remember that the standard declarations are used by starting with:

using namespace std;
e OpenFOAM declarations belong to namespace Foam, so in OpenFOAM we use:
using namespace Foam;
to make all declarations in namespace Foam visible.
e Explicit naming in OpenFOAM:
Foam: :function();

where function() is a function defined in namespace Foam. This must be used if any other
namespace containing a declaration of another function() is also visible.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

C++ basics, Namespace

¢ A namespace with the name name is defined as

namespace name {
declarations

}

e New declarations can be added to the namespace using the same syntax in another part of
the code.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

