000

Stepped Spillway 000 000 000 Hydraulic Jump 0000 00000 Conclusion 0 References 0

Numerical modelling of air entrainment In hydraulic engineering

Silje Kreken Almeland

Department of Civil and Environmental Engineering, NTNU, Trondheim, Norway

Gothenburg Region OpenFOAM User Group Meeting November 20, 2019

00	0
	00000

Stepped Spilly 000 000 000 Hydraulic Jump

Conclusion O References 0

Numerical modelling of air entrainment

Develop a sub-grid model for air entrainment based on interFoam

(a) Stepped Spillway¹

(b) Hydraulic Jump²

¹Photo taken from [2]

²Photo taken from [1]

Silje Kreken Almeland

Numerical modelling of air entrainment

2019-11-20 2 / 35

	Stepped Spillway	Hydraulic Jump	Conclusion	References
0 000 0000000	000 000 000 0	0000 00000		

Numerical modelling of air entrainment

- Develop a sub-grid model for air entrainment based on interFoam
- Testing airInterFoam^[4]

(a) Stepped Spillway³

(b) Hydraulic Jump⁴

• = • •

³Photo taken from [2]

⁴Photo taken from [1]

Silje Kreken Almeland

Numerical modelling of air entrainment

2019-11-20 3 / 35

Air entrainment • • • • • • • • • •	Stepped Spillway 000 000 000 0	Hydraulic Jump 0000 00000	Conclusion O	References O
Defining the concept				

1 Air entrainment

- Defining the concept
- State of the art
- airInterFoam

2 Stepped Spillway

- Inception point and surface elevation
- Dependence on inputvariables
- Void fraction

3 Hydraulic Jump

- Features
- Results

4 Conclusion

Silje Kreken Almeland

Air entrainment • • • • • • •	Stepped Spillway 000 000 000 000	Hydraulic Jump 0000 00000	Conclusion O	References O
Defining the concept				

Air entrainment in free surface flow

Turbulent forces > surface forces + buoyancy forces

Image: Image:

• • = • •

Air entrainment	Stepped Spillway	Hydraulic Jump	Conclusion	References
0 •00 0000000		0000		
State of the art				

State of the art

Euler-Euler two fluid model

twoPhaseEulerFoam

Numerical diffusion at the interface for stratified flow

Interface capturing methods

interFoam

Challenging to capture the processes at the surface

Hybrid models

ir entrainment	Stepped Spillway	Hydraulic Jump	Conclusion	References
• 0 •000000		0000		

Subgrid models based on VoF

Existing subgrid models based on VoF

Hirt
$$(2003)^{[3]} \Rightarrow$$
 FLOW-3D

Lopes
$$(2017)^{[4]} \Rightarrow$$
 airInterFoam

Due to lack of grid resolution, the amount of entrained air will be underestimated by the VoF method

https://openfoamwiki.net/index.php/Contrib/airInterFoam

State of the art

Air entrainment	Stepped Spillway	Hydraulic Jump	Conclusion	References
0 000 0000000		0000 00000		
State of the art				

interFoam

Solves a single set of mass- and momentum equations

 $\nabla \boldsymbol{U} = \boldsymbol{0}$ $\frac{\partial \rho \boldsymbol{U}}{\partial t} + \nabla \cdot (\rho \boldsymbol{U} \boldsymbol{U}) = -\nabla p^* + \mathbf{g} \cdot \mathbf{x} \nabla \rho + \nabla \cdot \boldsymbol{\tau} + \mathbf{f}$

 interFoam uses a VOF method with a compression term to capture the interface

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha \boldsymbol{U}) + \nabla \cdot [\boldsymbol{U}_r \alpha (1 - \alpha)] = 0$$

where $\boldsymbol{U}_r = \boldsymbol{U}_1 - \boldsymbol{U}_2$ is the relative velocity

Air entrainment ○ ○○○ ●○○○○○○	Stepped Spillway 000 000 000 0	Hydraulic Jump 0000 00000	Conclusion O	References 0
airInterFoam				

$$\frac{\partial \alpha_g}{\partial t} + \nabla \cdot (\mathbf{u}_g \alpha_g) - b \cdot \nabla \cdot (\nu_t \nabla \alpha_g) = S_g$$

イロト イヨト イヨト イ

Air entrainment	Stepped Spillway	Hydraulic Jump	Conclusion	References
0 000 0●00000	000 000 000 0	0000 00000		
airInterFoam				

$$\begin{split} \frac{\partial \alpha_g}{\partial t} + \nabla \cdot \left(\mathbf{u}_g \alpha_g \right) - b \cdot \nabla \cdot \left(\nu_t \nabla \alpha_g \right) &= S_g \\ S_g &= \frac{a}{\phi_{ent}} \Big\langle \frac{\partial \mathbf{u}_n}{\partial \mathbf{n}} \Big\rangle \delta_{fs} \end{split}$$

メロト メポト メヨト メヨト

Air entrainment	Stepped Spillway	Hydraulic Jump	Conclusion	References
0 000 00●0000		0000 00000		
airInterFoam				

$$\frac{\partial \alpha_g}{\partial t} + \nabla \cdot (\mathbf{u}_g \alpha_g) - b \cdot \nabla \cdot (\nu_t \nabla \alpha_g) = S_g$$

$$S_g = \frac{a}{\phi_{ent}} \Big\langle \frac{\partial \mathbf{u}_n}{\partial \mathbf{n}} \Big\rangle \delta_{fs}$$

 $k > k_c, u > u_c$

イロト イヨト イヨト イヨト

Air entrainment	Stepped Spillway	Hydraulic Jump	Conclusion	References
0 000 000●000	000 000 000 0	0000 00000		
airInterFoam				

$$\frac{\partial \alpha_g}{\partial t} + \nabla \cdot (\mathbf{u}_g \alpha_g) - b \cdot \nabla \cdot (\nu_t \nabla \alpha_g) = S_g$$

$$S_g = \frac{a}{\phi_{ent}} \Big\langle \frac{\partial \mathbf{u}_n}{\partial \mathbf{n}} \Big\rangle \delta_{fs}$$

$$k > k_c, u > u_c$$

$$\mathbf{u}_g = \mathbf{u}_l + \mathbf{u}_r$$

Air entrainment	Stepped Spillway	Hydraulic Jump	Conclusion	References
0 000 0000●00	000 000 000 0	0000 00000		
airInterFoam				

• α_g is calculated

$\blacksquare \alpha_l$ is calculated independent of α_g

$$\alpha_2 = 1 - \alpha_l - \alpha_g$$

Air entrainment ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Stepped Spillway 000 000 000 0	Hydraulic Jump 0000 00000	Conclusion O	References O
airInterFoam				

Interacts with the α_l -equation by reducing the compression

```
fvc::flux
(
  -fvc::flux(-phir, alpha2, alpharScheme),
  alpha1,
  alpharScheme
)
```

Air	entra	inm	ent
			~

0 000 0000000 Stepped Spillwa

Hydraulic Jump 0000 00000 Conclusion 0 References 0

airInterFoam

Test cases

Stepped spillwayHydraulic jump

(b) Hydraulic Jump⁶

⁵Photo taken from [2]

⁶Photo taken from [1]

Silje Kreken Almeland

Numerical modelling of air entrainment

2019-11-20 14 / 35

	Stepped Spillway	Hydraulic Jump	Conclusion	References
0 000 0000000	• 00 000 000 0	0000 00000		

Stepped Spillway

Sketch taken from [6]

Silje Kreken Almeland

• • • • • • • • • • • •

Air entrainment 0 000 0000000 Stepped Spillway 000 000 000 Hydraulic Jump 0000 00000 Conclusion 0 References 0

Stepped Spillway

(a) Step 3

(c) Step 5 (IP)

(d) Step 6

(f) Step 8

Photos taken from [6]

Silje Kreken Almeland

Numerical modelling of air entrainment

2019-11-20 16 / 35

Air entrainment 0 000 0000000	Stepped Spillway 00● 000 000 0	Hydraulic Jump 0000 00000	Conclusion O	Referend O
Stepped Spilly	way			
H= 1.68 m	and a start of the	28 steps Slope: 26.6°	Inception foun experime at 5th ste	n point d entally p edge
	airInterFoa been verifie • Inception po • Surface eleva	m and the Flow3D-mc d for this stepped spil int ation curve	odel has Iway	

∃ ∽ へ (~

イロト イヨト イヨト イヨト

Silje Kreken Almeland

2019-11-20 19 / 35

Stepped Spillway

Hydraulic Jump 0000 00000 Conclusion 0 References 0

Dependence on inputvariables

Dependent on inputvariables

Air entrainment o ooo ooooooo	Stepped Spillway ○○○ ○●○ ○	Hydraulic Jump 0000 00000	Conclusion O	References O
Dependence on inputvaria	ables			
Inception poir	nt and surface ele	evation		
0.08 0.07 E 0.06 V 0.05 V 0.05 0.04 0.03 0.02 0.0 0.0 0.5	Lio Length X fm1	rerFoam_kc02 Foam 2.0 2.5	rouger the	Borated Booling Boo
		^a Sketo	h taken from [6]	

Silje Kreken Almeland

2019-11-20 22 /

Air entrainment o ooo ooooooo	Stepped Spillway ○○○ ○○● ○	Hydraulic Jump oooo ooooo	Conclusion O	References O
Dependence on inputvariables	5			
Inception point	and surface elevat	ion growing turbulent boundary layer	nonaerated	
0.08 0.07 N 0.05 H 0.04 0.03 0.02 0.0 0.5	interFoam expdata	n_kc02	Stop Generation Now region wont of the stop of the sto	
		^a Sketch take	n from [6]	

2019-11-20 23 / 3

Air entrainment 0 000

Void fraction

Void fraction

Stepped Spillway

Conclusion 0 References 0

(a) Step 5

(b) Step 6

(c) Step 7

Photos taken from [6]

Silje Kreken Almeland

Numerical modelling of air entrainment

2019-11-20 24

24 / 35

Air entrainment o ooo ooooooo	Stepped Spillway 000 000 000 0	Hydraulic Jump ●ooo ○○○○○	Conclusion O	References O
Features				
Hydraulic Jump				
Froude n	umber, Fr =	$= \frac{u}{\sqrt{gh}}$		
		10		
— si	uice gate		y	
			L,	:
		- Toe		
		0°00,000,00,00,00,00,00,00,00,00,00,00,0	drw	Weir
Upstream jet -	\rightarrow d	Turbulent s	hear region	Ś
	,			

Figure: Hydraulic jump

	Sketch	taken	from	[7]
Silje	Kreken	Almela	and	

★ ∃ ► ★

Air entrainment o ooo ooooooo	Stepped Spillway 000 000 000 0	Hydraulic Jump O●OO ○○○○○	Conclusion O	References O
Footures				

Hydraulic Jump

- Void fraction profiles
- Velocity profiles
- Free surface contour

Air entrainment o ooo ooooooo	Stepped Spillway 000 000 000 0	Hydraulic Jump oo●o ○○○○○	Conclusion O	References O
Features				

Hydraulic Jump

- Void fraction profiles
- Velocity profiles
- Free surface contour

Figure: Hydraulic jump

Sketch	taken	from	[7]
--------	-------	------	-----

Air entrainment 0 000 0000000	Stepped Spillway 000 000 000 000	Hydraulic Jump ooo● ○○○○○	Conclusion O	References O
Features				

Test Case

- Froude number 4.8
- Physical experiments by Murzyn^[5], reproduced by Witt^[7] using interFoam

Figure: Hydraulic jump

Sketch	taken	from	[7]
--------	-------	------	-----

Air entrainment o ooo ooooooo	Stepped Spillway 000 000 000 0	Hydraulic Jump ○○○○ ●○○○○	Conclusion O	References 0

Results

interFoam - reproduction

(a) Current work , realizableKE

	Stepped Spillway	Hydraulic Jump	Conclusion	References
0 000 0000000	000 000 000 0	0000 00000		

Results

interFoam - realizableKE vs k- ϵ

→ Ξ → э.

Air entrainment 0 000 0000000	Stepped Spillway 000 000 000 0	Hydraulic Jump ○○○○ ○○●○○	Conclusion O	References O
Results				

$interFoam - k-\epsilon$

 $\Delta x = 0.005$

Toe placement = 25.2

 $\Delta x = 0.0025$

< 3 >

	Stepped Spillway	Hydraulic Jump	Conclusion	References
0 000 0000000	000 000 000 0	0000 00000		

Results

interFoam – airInterFoam – $k-\epsilon$

$\Delta x=0.0025,\, {\rm interFoam}$

	Stepped Spillway	Hydraulic Jump	Conclusion	References
0 000 0000000	000 000 000 0	0000 00000		

Results

Dependence on parameters

Air entrainment 0 000 0000000	Stepped Spillway 000 000 000 0	Hydraulic Jump 0000 00000	Conclusion ●	References O

Conclusion

- Using a local reduction in interface compression gave some air entrained into the flow
- Gave results close to the experimental for prediction of
 - Inception point
 - Surface elevation curve
 - Void fraction (at lower parts of the spillway)

Sensitive to

- Grid refinement
- Input parameters

Behavior of hydraulic jump sensitive to choice of turbulence model

• too little air transported in lower parts and towards the end of the jump

		ainm	
000	С		
	2000	00	

Stepped Spillway 000 000 000 Hydraulic Jump

Conclusion 0

< □ > < 凸

References

References I

- [1] J. Ball.
 - Hydraulic Jump.

Available at https://www.flickr.com/photos/jball359/6998692825, 2019-11-20.

[2] C. Gonzalez.

International symposium on hydraulic structures ciudad guayana, venezuela, october 2006 air entrainment and energy dissipation on embankment spillways. 11 2019.

- [3] C. Hirt. Modeling turbulent entrainment of air at a free surface. *Flow Science, Inc*, 2003.
- [4] P. Lopes, J. Leandro, and R. F. Carvalho. Self-aeration modelling using a sub-grid volume-of-fluid model. International Journal of Nonlinear Sciences and Numerical Simulation, 18(7-8), dec 2017.
- [5] F. Murzyn, D. Mouaze, and J. Chaplin. Optical fibre probe measurements of bubbly flow in hydraulic jumps. International Journal of Multiphase Flow, 31(1):141–154, jan 2005.
- [6] D. Valero and D. Bung. Hybrid investigation of air transport processes in moderately sloped stepped spillway flows. In E-proceedings of the 36th IAHR World Congress 28 June - 3 July, 2015, The Hague, the Netherlands, pages 1 – 10, 2015.
- [7] A. Witt, J. Gulliver, and L. Shen.
 Simulating air entrainment and vortex dynamics in a hydraulic jump. International Journal of Multiphase Flow, 72:165 – 180, 2015.

→ ∃ →