Quantification of Epistemic Uncertainties in the $k - \varepsilon$ Model Coefficients

By: Saeed Salehi saeed.salehi@chalmers.se

SITY OF TECHNOLOG

Gothenburg Region OpenFOAM User Group Meeting, November $20^{\rm th},\,2019$

Chalmers University of Technology

INTRODUCTION		
•00		

"Uncertainty is the only certainty there is, and knowing how to live with insecurity is the only security."

— John Allen Paulos

• Uncertainties are present in most engineering and practical applications.

• Sources of Uncertainty:

- \checkmark physical properties
- ✓ initial conditions
- ✓ boundary conditions
- ✓ geometry
- ✓ model parameters
- 🗸 etc.

"Uncertainty is the only certainty there is, and knowing how to live with insecurity is the only security."

— John Allen Paulos

• Uncertainties are present in most engineering and practical applications.

• Sources of Uncertainty:

- \checkmark physical properties
- ✓ initial conditions
- ✓ boundary conditions
- \checkmark geometry
- ✓ model parameters
- ✓ etc.

Despite these uncertainties can predictions be trusted?

SAEED SALEHI

Quantification of epistemic uncertainties in the k - arepsilon model coefficients

- Turbomachines can be intensely sensitive to the uncertainties.
- Aleatory uncertainties:
 - $\checkmark~$ Operating conditions
 - \checkmark Geometry
- Operational: Volumetric flow rate, turbulence properties, rotational speed.
- Geometrical:
 - $\checkmark~$ Manufacturing tolerances.
 - $\checkmark\,$ Turbomachines are designed to run for years: in-service erosion and corrosion.

Uncertainty Quantification	
000	

UNCERTAINTY QUANTIFICATION USING POLYNOMIAL CHAOS EXPANSION

	Uncertainty Quantification	
	000	
UNCERTAINTY	QUANTIFICATION	

- How do input uncertainties affect objective functions are affected?
- Non-deterministic CFD is a growing field. (e.g. NUMECA)
- First step: identification of the sources of uncertainties and their PDFs.

- How do input uncertainties affect objective functions are affected?
- Non-deterministic CFD is a growing field. (e.g. NUMECA)
- First step: identification of the sources of uncertainties and their PDFs.

UNCERTAINTY QUANTIFICATION

Quantitative characterization and reduction of uncertainties in applications.

- How do input uncertainties affect objective functions are affected?
- Non-deterministic CFD is a growing field. (e.g. NUMECA)
- First step: identification of the sources of uncertainties and their PDFs.

UNCERTAINTY QUANTIFICATION

Quantitative characterization and reduction of uncertainties in applications.

- How do input uncertainties affect objective functions are affected?
- Non-deterministic CFD is a growing field. (e.g. NUMECA)
- First step: identification of the sources of uncertainties and their PDFs.

UNCERTAINTY QUANTIFICATION

Quantitative characterization and reduction of uncertainties in applications.

Saeed Salehi

SAEED SALEHI

 f_{ξ_d}

£λ

Computational Model $y = U(\xi_1, \xi_2, \cdots, \xi_d)$

OFGBG19 3/19

UQ METHODS

Introduce mathematical approaches to solve above integrals.

 f_{ξ_d}

£d

	Uncertainty Quantification	
	000	
Polynomial C	haos Expansion	

- Uncertainty Quantification approaches
 - \checkmark Sampling methods (non-intrusive)
 - ✓ Quadrature methods (non-intrusive)
 - $\checkmark\,$ Spectral methods (intrusive): Polynomial Chaos Expansion
- The stochastic field $\mathcal{U}(\boldsymbol{x};\boldsymbol{\xi})$ is decomposed

PC EXPANSION

- The number of unknown coefficients $(u_i$'s) is: $P + 1 = \begin{pmatrix} p + n_s \\ p \end{pmatrix}$
- Curse of dimensionality
- Functions $\psi_i(\xi)$'s are the orthogonal polynomials with respect to input PDFs.
- Regression approach is employed to calculate the PCE coefficients.
- Sobol' sampling scheme
- Variance based sensitivity analysis using Sobol' indices.

SAEED SALEHI

	Efficient UQ Method	
	00000	

Sparse Reconstruction of Polynomial Chaos Expansion Using Compressed Sensing

SAEED SALEHI

Quantification of epistemic uncertainties in the $k - \epsilon$ model coefficients

OFGBG19 4/19

	Efficient UQ Method 0●000	
INTRODUCTION		

- Industrial problems: large number of random variables.
- *Curse of dimensionality*: Computational cost of PCE grows exponentially with the number variables.
- Remedy: *efficient* methods

Efficient methods

- $\checkmark~$ Adaptive methods
- $\checkmark~$ Reduced basis methods
- $\checkmark~$ Multifidelity methods
- \checkmark Sparse methods
- Sparse reconstruction approaches:
 - \checkmark Hyperbolic sparse
 - \checkmark Compressed sensing

$$\mathcal{U}(\boldsymbol{x};\boldsymbol{\xi}) = \sum_{0 \leqslant |\boldsymbol{lpha}| \leqslant p} \boldsymbol{u_{\boldsymbol{lpha}}(\boldsymbol{x})} \boldsymbol{\psi_{\boldsymbol{lpha}}(\boldsymbol{\xi})}$$

FIGURE: PCE coefficient of drag coefficient of the RAE2822 airfoil with stochastic geometry and operating condition

SAEED SALEHI

Uncertainty Quantification

Efficient UQ Method

NUMERICAL EXAMPLE

Compressed Sensing

DEFINITION

Recover a sparse signal from a set of incomplete observations

• Optimization problem (ℓ_0 -minimization):

$$\hat{\boldsymbol{u}} = \operatorname{argmin}_{\boldsymbol{u}} \| \boldsymbol{u} \|_0$$
 subject to $\boldsymbol{\Psi} \boldsymbol{u} = \boldsymbol{\mathcal{Y}}$

• ℓ_0 -minimization is NP-hard! Hence, ℓ_1 -minimization

$$\hat{\boldsymbol{u}} = \operatorname{argmin}_{\boldsymbol{u}} \|\boldsymbol{u}\|_1$$
 subject to $\boldsymbol{\Psi} \boldsymbol{u} = \boldsymbol{\mathcal{Y}}$

• Noisy signal:

 $\boldsymbol{\hat{u}} = \operatorname{argmin}_{\boldsymbol{u}} \|\boldsymbol{u}\|_1 \quad \text{subject to} \quad \|\boldsymbol{\Psi}\boldsymbol{u} - \boldsymbol{\mathcal{Y}}\|_2 \leqslant \epsilon$

Original

		Efficient UQ Method 00000	
LIMITATION OF	CLASSIC PCE		

- PCE basis should be orthogonal with respect to the PDF of the uncertain input parameters.
- The Wiener-Askey polynomial: exponential convergence for a limited number of PDFs.
- What about arbitrary PDFs?
- Gram-Schmidt orthogonalization method.
- Exponential convergence for arbitrary distributions.
- The GSPCE is revisited and for the first time used with the regression method.

Distribution	Polynomials	Support
Gaussian	Hermite	$(-\infty,\infty)$
Uniform	Legendre	[-1, 1]
Gamma	Laguerre	$[0,\infty)$
Beta	Jacobi	[-1, 1]

$$\mathcal{U}(\boldsymbol{x};\boldsymbol{\xi}) = \sum_{0 \le |\boldsymbol{\alpha}| \le n} u_{\boldsymbol{\alpha}}(\boldsymbol{x}) \boldsymbol{\psi}_{\boldsymbol{\alpha}}(\boldsymbol{\xi})$$

• One-dimensional monic orthogonal polynomials:

$$\psi_j(\xi) = e_j(\xi) - \sum_{k=0}^{j-1} c_{jk} \psi_j(\xi), \quad j = 1, 2, \cdots, p,$$

with

$$\psi_0 = 1$$
 $c_{jk} = \frac{\langle e_j(\xi), \psi_k(\xi) \rangle}{\langle \psi_k(\xi), \psi_k(\xi) \rangle},$

where the polynomials $e_j(\xi)$ are polynomials of exact degree j.

• The polynomials are normalized as:

$$\psi_j(\xi) = \frac{\psi_j(\xi)}{\langle \psi_j(\xi), \psi_j(\xi) \rangle}$$

Legendre (Uniform)

• One-dimensional monic orthogonal polynomials:

$$\psi_j(\xi) = e_j(\xi) - \sum_{k=0}^{j-1} c_{jk} \psi_j(\xi), \quad j = 1, 2, \cdots, p,$$

with

$$\psi_0 = 1$$
 $c_{jk} = \frac{\langle e_j(\xi), \psi_k(\xi) \rangle}{\langle \psi_k(\xi), \psi_k(\xi) \rangle},$

where the polynomials $e_j(\xi)$ are polynomials of exact degree j.

• The polynomials are normalized as:

$$\psi_j(\xi) = \frac{\psi_j(\xi)}{\langle \psi_j(\xi), \psi_j(\xi) \rangle}$$

Hermite (Gaussian)

	Numerical Exam
	•000000000

Numerical Example: Quantification of epistemic uncertainties in the $k - \varepsilon$ model coefficients in OpenFOAM channel flow

PLE 000

SAEED SALEHI

Quantification of epistemic uncertainties in the $k - \varepsilon$ model coefficients

OFGBG19 8/19

- Sources of uncertainties in RANS models:
 - Model formulation
 - Coefficients
- The Launder-Shrama $k-\varepsilon$ model:
 - ✓ Boussinesq (eddy-viscosity) hypothesis:

$$\overline{u_i u_j} = -\nu_t \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) + \frac{2}{3} k \delta_{ij}$$

 \checkmark Turbulent viscosity:

$$\nu_t = \frac{C_\mu}{\varepsilon} f_\mu \frac{k^2}{\varepsilon}$$

 \checkmark To obtain ν_t , transport equations are solved:

$$\frac{\partial}{\partial x_j}(U_j k) = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right] + P_k - \tilde{\varepsilon} - 2\nu \left(\frac{\partial \sqrt{k}}{\partial x_j} \right)^2$$
$$\frac{\partial}{\partial x_j}(U_j \tilde{\varepsilon}) = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_{\varepsilon}} \right) \frac{\partial \tilde{\varepsilon}}{\partial x_j} \right] + C_{\varepsilon 1} \frac{\tilde{\varepsilon}}{\sigma_{\varepsilon}} P_k - C_{\varepsilon 2} f_2 \frac{\tilde{\varepsilon}^2}{k} + E$$

			Numerical Example
LAUNDER-SHAR	MA $k - \varepsilon$ model coeff	ICIENTS	

• The empirical coefficients of low-Re Launder-Sharma $k-\varepsilon$ model

C_{μ}	σ_k	σ_{ϵ}	C_{ε_1}	C_{ε_2}
0.09	1.0	1.3	1.44	1.92

• The coefficients are related to some basic physical quantities (Durbin and Reif, 2011):

- $\checkmark~$ The decay exponent in decaying homogeneous, isotropic turbulence, n
- ✓ The production to dissipation in homogeneous shear flow, \mathcal{P}/ε
- $\checkmark~$ The Von-Karman constant, κ
- \checkmark The dimensionless turbulent kinetic energy in the logarithmic layer, k_{\log}/u_{τ}^2

$$C_{\mu} = \left(\frac{k_{\log}}{u_{\tau}^2}\right)^{-2}, \qquad C_{\varepsilon 1} = \frac{C_{\varepsilon 2} - 1}{\mathcal{P}/\varepsilon} + 1,$$
$$C_{\varepsilon 2} = \frac{1 - n}{n}, \qquad \sigma_{\varepsilon} = \frac{\kappa^2}{\sqrt{C_{\mu}}(C_{\varepsilon 2} - C_{\varepsilon 1})}.$$

• The reported data for these quantities in the literature are collected and presented as PDFs (Margheri et al., 2014)

PDFs of Basic Physical Quantities

Uncertainty Quantification

Efficient UQ Method

PDFs of $k - \varepsilon$ Coefficients

- The PDFs of Launder-Sharma Coefficients are computed using a Monte-Carlo simulation
- Reported standard values lie within its PDF range

SAEED SALEHI

OFGBG19 12/19

		Numerical Example
TEST CASE: (Channel Flow	

- Fully-developed turbulent channel flow
- Friction Reynolds number

$$\operatorname{Re}_{\tau} = \frac{u_{\tau}H}{\nu} = 950$$

- OpenFOAM Solver: boundaryFoam
- Steady-state solver for incompressible, 1D turbulent flow
- grad $\bar{p} = \operatorname{div} \bar{\tau}$
- Number of stochastic parameters $n_s = 4$
- UQ analyses preformed with p = 7
- Reference solution: 8th order full PC

- Turbulence model: LaunderSharmaKE
- Discretization:
 - ✓ gradSchemes: linear
 - 🗸 divSchemes: linear
 - 🗸 divSchemes: linear
- Linear solvers:
 - ✓ U: PCG, DIC
 - ✓ k: smoothSolver, symGaussSeidel
 - ✓ epsilon: smoothSolver, symGaussSeidel

OFGBG19 14/19

UNCERTAINTY QUANTIFICATION

Efficient UQ Method 00000 Numerical Example

2D PDFs of Velocity Field

- Normalized 2D PDFs (PDF/max(PDF)).
- Increasing number of samples improves reconstructed 2D PDFs.
- Using N = 100 samples the constructed 2D PDF is very similar to the full PC.
- The sparse method is 9 times faster!

Uncertainty Quantification

Efficient UQ Method

Numerical Example

2D PDFs of Turbulence Field

- Normalized 2D PDFs (PDF/max(PDF)).
- Increasing number of samples improves reconstructed 2D PDFs.
- Using N = 100 samples the constructed 2D PDF is very similar to the full PC.
- The sparse method is 9 times faster!

Uncertainty Quantification

Efficient UQ Method

Numerical Example

2D PDFs of Turbulence Field

- Normalized 2D PDFs (PDF/max(PDF)).
- Increasing number of samples improves reconstructed 2D PDFs.
- Using N = 100 samples the constructed 2D PDF is very similar to the full PC.
- The sparse method is 9 times faster!

Uncertainty Quantification

Efficient UQ Method

Numerical Example

2D PDFs of Turbulence Field

- Normalized 2D PDFs (PDF/max(PDF)).
- Increasing number of samples improves reconstructed 2D PDFs.
- Using N = 100 samples the constructed 2D PDF is very similar to the full PC.
- The sparse method is 9 times faster!

Comparing with DNS Data

SAEED SALEHI

Quantification of epistemic uncertainties in the $k - \epsilon$ model coefficients

19/19

Efficient UQ Method 00000

SAEED SALEHI

OFGBG19 19/19

00		

Efficient UQ Method 00000

SAEED SALEHI