Tip Vortex Flows in Marine Applications

Dr. Abolfazl Asnaghi Postdoc, Division of Marine Technology, M2, Chalmers

RoughProp Project Suppress tip vortex cavitation by using roughness

Prof. Rickard E. Bensow Manager of the project, Division of Marine Technology, M2, Chalmers

Dr. Urban Svennberg

Coordinator/supervisor, Kongsberg Hydrodynamic Research Center, Kristinehamn

11/20/19

Tip Vortex Formation

Tip Vortex Formation

Challenges:

- Providing very fine spatial resolution
 - A few bad quality cells on the vortex trajectory impair the results
- Very low dissipative numerical schemes
- Stable schemes to prevent early vortex breakdown
- Turbulence modelling impact

<section-header><section-header>

Tip Vortex Cavitation (TVC)

Numerical Specifications

Task	ΤοοΙ	
Mesh generation	Pointwise or StarCCM+	
Simulation	OpenFOAM (2.3x and v1806)	
Solvers	simpleFoam, pimpleFoam, interPhaseChangeFoam	
Propeller rotation	MRF in steady simulations or SolidBodyMotion in unsteady simulations	
Cavitation modelling	modified version of Schnerr-Sauer	
Turbulence modelling	Implicit LES, One Equation Eddy Viscosity Model (kEqn)	
	SST kOmega + CC	

Modelling Roughness

Roughness Modelling In OpenFOAM

- 1. Modeling the roughness via the wall function
- 2. Including the roughness geometries in the computational domain
- 3. Adding a source term into Navier-Stokes equations
- 4. Changing the turbulence model production/destruction terms

5. ...

Roughness Modelling: Pros & Cons

Wall function

- Simplicity of application
- It is not very easy to test different roughness patterns
- The first cell size (y+) should be higher than the roughness height
 - Loosing some flow dynamics

Including the roughness geometries in the computational domain

- Provides more accurate predictions
- Increase the computational cost considerably

Results & Findings

The domain follows the cavitation tunnel sizes

Experimental Data is from Pennings 2016

Tip vortex radius ~ 1.1 mm for Re= 8.5×10^5

The domain follows the cavitation tunnel sizes

Experimental Data is from Pennings 2016

Tip vortex radius ~ 1.1 mm for Re= 8.5×10^5

Inlet: fixed velocity

Outlet: fixed pressure

The domain follows the cavitation tunnel sizes

Experimental Data is from Pennings 2016

Tip vortex radius ~ 1.1 mm for Re= 8.5×10^5

Total cell number: 48 M

The domain follows the cavitation tunnel sizes

Experimental Data is from Pennings 2016

Tip vortex radius ~ 1.1 mm for Re= 8.5×10^5

Mesh Resolution Recommendation

Cell size: Cell size: 0.06 mm 0.06 mm inplane Tip vortex trajectory refinemnet 0.12 mm streamwise Tip region refinement 0.07 C 0.35 C

At least 32 grid points across the vortex core diameter in the inplane section are required.

The streamwise grid point demand is found to be lower (equal to 16 grid points).

Elliptical Foil

(a) z/C = 0.5 (b) z/C = 0.75 (c) z/C = 1.14

Figure 4.4: Comparison of normalized axial velocity between experimental PIV data and numerical results of P2S2 ILES

SST + Curvature Correction Models

Name	Reference	Modification
CC1	Pettersson [53]	
CC2	Arolla [52]	Modify the turbulent viscosity coefficient
CC3a	StarCCM+ [54]	
CC3b	StarCCM+ [54]	Modify the production term in <i>k</i> equation
CC4	η_3 based [55]	Modify the production term of ω -equation
CC5	Br based [47]	Modify the destruction term of ω -equation
CC6	Menter [56]	Modify the production terms in k and ω -equations
CC7	Stabnikov [57]	Modify the production term in <i>k</i> equation
CC8	Kato and Launder [58]	Modify the turbulent viscosity coefficient

Table 2.1: Summary of curvature correction models

Elliptical Foil

Curvature correction

Elliptical Foil

Curvature correction

Including Roughness Elements

Adding to CAD file

Including roughness geometry during mesh generation

Editing the existing mesh...

Including roughness geometry as a post processing tool (removing cells)

RoughProp Project + ILES results

Can the current CFD tool provide further insights of these complex flow structures?

Computational domain

25

Mesh specifications

Mesh specifications

1301B Model Scale

Mesh size = 110 M cells

Tip refinement = 0.062 mm

Chalmers University of Technology

Propeller Hydrodynamics

Propeller Hydrodynamics

Full scale propeller & roughness

Computational domain

Application of Roughness, D=3.8 m, Ks = 4 mm

Question/Comment