

Wall functions for buoyant flows

Roman Thiele

Outline

- Motivation
- Introduction
 - Water properties in OF
 - UMIST-A wall functions
- Results
 - Dittus-Boelter comparison (forced convection)
 - Experiments by Rouai (mixed convection)
- Summary and Future Work

NOV 12, 2014

Motivation

- Buoyancy driven flows exist everywhere
- Supercritical water flows, buoyancy close to the wall
- Wall functions in OF cannot handle buoyancy
- Reduction of computational time possible

Introduction

- Next generation nuclear power plants use non unity Pr fluids:
 - Supercritical water
 - Liquid metal
 - Gas (CO₂, N₂)
- Buoyancy driven in regular operation (Sodium, LBE/lead)
- Buoyancy driven in accident situations (Gas, LM, SCW)
- Buoyancy effects close to the wall (SCW)

GEN IV Reactors

Supercritical water reactor

Sodium cooled reactor

Introduction – Water properties

- OF 2.3 does not have water properties accessible
- Use freesteam 2.1 C library
- Use connector from OF real fluid (fork of extend 1.6.x)
- new library which can be loaded in heRhoThermo solvers
 - buoyantPimpleFoam
 - buoyantSimpleFoam
 - chtMultiRegionFoam
 - buoyantBaffleSimpleFoam
- libIAPWSRangeThermo.so available on GitHub https://github.com/romansCode/IAPWS-IF97-OF

UMISTA wall function

- Analytical integration of the boundary layer equations through viscous and logarithmic layer
- Simplified version, give same results as full temperature variation and is simpler
 - T varies linearly from wall to viscous sublayer edge and from viscous sublayer edge to opposite edge of cell
 - Parabolic description of the molecular viscosity in the viscous sublayer
- Buoyancy terms and near-wall thermal property changes included

Source: Aleksey Gersimov, PhD Thesis, 2003

UMISTA wall function

- Original development for 2D staggered mesh with Cartesian coordinates
- OF is 3D, co-located mesh with curvilinear grid and possibility of polyhedral cell
- Restrictions for mesh after implementation
 - Cells must have a cell face opposite the wall

UMISTA wall function ()

- 3 boundary conditions
 - mutkUMISTAWallFunction
 - → wall shear stress
 - alphaUMISTAWallFunction
 - → wall heat flux
 - epsilonUMISTAWallFunction
 - → production and dissipation of k
- 1 momentum source
 - UMISTAExplicitSourceCoeffs
 - \rightarrow handle buoyancy source

UMISTA wall function tuning

Effective Prandtl number

- Usage of effective Pr in first cell
- New equation found based on DNS and DB computations for forced convection

$$Pr_{eff} = \frac{Pr}{0.52 + 0.09Pr^{1.11}}$$

Damping of k-production

- Function based on shear stress ratio
- Can be used for effective Pr as well

$$\lambda_n = \frac{\mu_{wall} \sqrt{\left(\frac{\partial U_i}{\partial y_j}\right)_{wall} \left(\frac{\partial U_i}{\partial y_j}\right)_{wall}}}{\mu_n \sqrt{\left(\frac{\partial U_i}{\partial y_j}\right)_n \left(\frac{\partial U_i}{\partial y_j}\right)_n}}$$

Implementation in OpenFOAM

Usage of turbulence properties to insert source terms into the momentum and temperature equation

$$\left(\mu_{wall} + \mu_{t,wall}\right) \left(\frac{\partial U}{\partial y}\right)_{wall} = \tau_{wall}$$

$$\mu_{t,wall} = \tau_{wall} \left(\frac{\partial U}{\partial y}\right)_{wall}^{-1} - \mu_{wall} \approx \tau_{wall} \left(\frac{U_P}{y_P}\right)_{wall}^{-1} - \mu_{wall}$$

Results DB (forced convection)

Pr = 7, Re = 5000 to 11000

Results DB (forced convection)

Pr = 3, Re = 10500 to 17400

Results Rouai experiments (mixed convection)

- Mixed convection pipe flow, water, $Pr_{in} = 7$, Re = 16000, Gr = 4.91e-9
- HRN = 2010 cells, LRN = 35000 cells

Source: Rouai, 1987

Future Work

- Tuning effective Prandtl number:
 - Including for mixed convection
- Tuning of Fepsilon for thinning and thickening of viscous sublayer
- Test against more cases
- Extend to use with supercritical water
- Publish wall function

References

- Freesteam C library http://freesteam.sourceforge.net/
- Lucas, C. (2013). IAPWS-IF97.C. Braunschweig, Germany.
 Retrieved from https://github.com/morgoth541/of_realFluid
- Gerasimov, A. V. (2003, November). Development and validation of an analytical wall-function strategy for modeling forced, mixed and natural convection flows. University of Manchester Institute of Science and Technology, Manchester.
- Rouai, N. (1987). Influences of buoyancy and imposed flow transients on turbulent convective heat transfer in a tube. Manchester, UK.

Thank you for your attention... Questions?

Roman Thiele, KTH, romant@kth.se

