

LES and DES of vortex breakdown in highly swirling flow

Ardalan Javadi

Supervised by: Prof. Nilsson,

Applied Mechanics/Fluid Dynamics, Chalmers University of Technology, Gothenburg, Sweden

2014-11-12

- 1 Advanced Numerical Study of DAE
 - The DAE test case and operating conditions
 - Numerical setup and computational domain
 - Results

- 1 Advanced Numerical Study of DAE
 - The DAE test case and operating conditions
 - Numerical setup and computational domain
 - Results

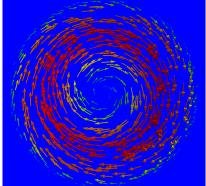
- 1 Advanced Numerical Study of DAE
 - The DAE test case and operating conditions
 - Numerical setup and computational domain
 - Results

- 1 Advanced Numerical Study of DAE
 - The DAE test case and operating conditions
 - Numerical setup and computational domain
 - Results

Test case and operating conditions

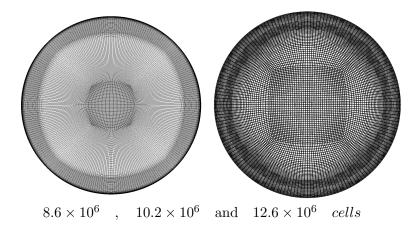
	Inlet diameter	$D_{in} = 50.78mm$
	Outlet diameter	$D_{out} = 98.5mm$
	Expansion ratio	$D_{out} / D_{in} = 1.94$
	Inlet length	2 * D _{in}
	Outlet length	10 * D _{in}

Test case and operating conditions


$$Re = \frac{U_{b,in}D_{in}}{\nu} = 3.0 \times 10^{4}, \quad 6.0 \times 10^{4}, \quad 10^{5}$$

$$Sr = \frac{\int_{0}^{R_{in}} V_{\theta}V_{z}r^{2}dr}{R_{in}\int_{0}^{R_{in}} V_{z}^{2}rdr} |_{z/D_{in}=-2.00} = 0.6, \quad 0.74, \quad 0.98, \quad 1.16, \quad 1.23$$

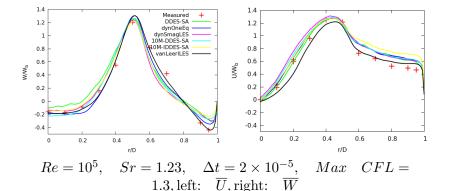
Dellenback, P.A., Metzger, D.E., Neitzel, G.P., 1988. Measurements in turbulent swirling flow through an abrupt axisymmetric expansion. AIAA J. 26 (6), 669_681.


Boundary condition

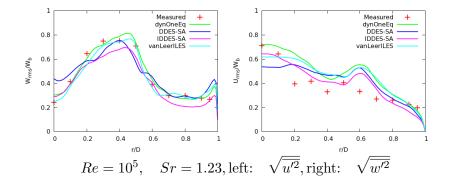
Inlet steady boundary condition for velocity

 ν_{sqs} is considered as constant.

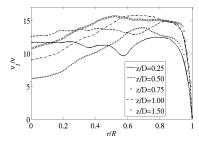
O-grid configuration

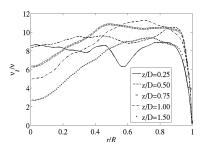


Two O-grids and three numerical schemes (first and linear order upwind) and linear limited (TVD) are examined.


General flow configuration

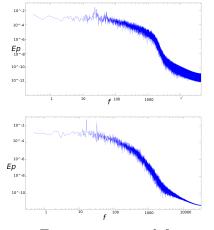
Iso-surface of pressure $Re = 10^5$, Sr = 1.2316 equidistant frames with $\Delta t = 0.002$ sec


Comparison of mean velocity



Comparison of velocity rms

Comparison of energy spectrum



SAS viscosity ratio, ν_t/ν

left: $Re = 10^5$, Sr = 1.23 right: $Re : 6.0 \times 10^4$, Sr = 1.16

Comparison of energy spectrum

Energy spectrum left:

 $Re = 10^5$, Sr = 1.23 right: $Re: 6.0 \times 10^4$, Sr = 1.16

Conclusion

• Comprehensive understanding of vortex breakdown is achieved.

Conclusion

- Comprehensive understanding of vortex breakdown is achieved.
- Hybrid RANS-LES is robust for swirling flows.

Conclusion

- Comprehensive understanding of vortex breakdown is achieved.
- Hybrid RANS-LES is robust for swirling flows.
- SAS captures more detailed coherent structures than LES with a coarse resolution.

Reference

- Ardalan Javadi, Håkan Nilsson, 2014, LES and DES of Strongly Swirling Turbulent Flow through a Suddenly Expanding Circular Pipe, Computers & Fluids, doi:http://dx.doi.org/10.1016/j.compfluid. 2014.11.014
- Ardalan Javadi, Håkan Nilsson, 2014, A comparative study of scale-adaptive and large-eddy simulations of highly swirling turbulent flow through an abrupt expansion, 27th IAHR Symposium on Hydraulic Machinery and Systems, Montreal, Canada

Acknowledgments

CHALMERS

