Implementation of Anisotropic Mesh Refinement in OpenFOAM

Jonas Karlsson

Hydrodynamics Group
Department of Shipping and Marine Technology
Chalmers University of Technology
Göteborg, Sweden

November 13, 2012
About this work

- MSc. thesis in Computer Science
- Employee at Shipping and Marine Technology
Adaptive Mesh Refinement (AMR)

- Refine (split) cells with greatest error
- Anisotropic refinement. Refine in one direction
OpenFOAM

- Supports isotropic (not anisotropic) AMR
- Provides:
 - Face remover (for unrefinement)
 - Synchronization (sending/receiving parts of mesh)
 - Topology tools (polyTopoChange for adding/removing points, cells and faces)
Application components

Refinement-engine
Selects cells to refine

Mesh-cutter
Executes topological changes for anisotropic split

Refinement-tree
Stores the refinement changes

Note: Only for hexahedra.
Refinement-tree

- Enables unrefinement
- Criteria – store the refinement-changes and be redistributable.
Refinement-tree example
Refinement-tree example
Mesh Cutter

- Used for cutting/splitting cells anisotropically
- For every cell store its corner points
- Split between predetermined pairs of points
Mesh Cutter

- Used for cutting/splitting cells anisotropically
- For every cell store its corner points
- Split between predetermined pairs of points
Mesh Cutter

- Used for cutting/splitting cells anisotropically
- For every cell store its corner points
- Split between predetermined pairs of points
Mesh Cutter (Consistency)

Hanging node:

![Diagram of a mesh with a hanging node]
Mesh Cutter (Consistency)

Hanging node:

"Two-to-one" rule.

- 2D: every side of a cell has at most two edges,
- 3D: every side of a cell has at most two faces.
Mesh Cutter (Consistency)

Hanging node:

"Two-to-one" rule.
- 2D: every side of a cell has at most two edges,
- 3D: every side of a cell has at most two faces.

Refered to as a *Consistent mesh*.
Mesh Cutter (Splits)

Allowed:
Mesh Cutter (Splits)

Allowed:

Disallowed:
Mesh Cutter (Splits)

Constraint:
For a face to be splittable it needs to contain four corner points from its neighbour
Mesh Cutter (Spreading)

- Original domain
- Shaded cell marked for refinement
- Spreading algorithm marks big cell
- Refining all cells not restricted
- Repeat
Mesh Cutter (Spreading)

- Original domain
- **Shaded cell marked for refinement**
- Spreading algorithm marks big cell
- Refining all cells not restricted
- Repeat
Mesh Cutter (Spreading)

- Original domain
- Shaded cell marked for refinement
- Spreading algorithm marks big cell
- Refining all cells not restricted
- Repeat
Mesh Cutter (Spreading)

- Original domain
- Shaded cell marked for refinement
- Spreading algorithm marks big cell
- Refining all cells not restricted
- Repeat
Mesh Cutter (Spreading)

- Original domain
- Shaded cell marked for refinement
- Spreading algorithm marks big cell
- Refining all cells not restricted

Repeat
Refinement-engine flow graph

Refine?

Y

(1) Select cells for refinement
(2) Cut cells with mesh-cutter
(3) Update refinement-tree

N

Solving

Distribute?

Y

(1) Partition mesh
(2) Distribute corner points
(3) Distribute refinement-tree

N
Refinement-engine collaboration diagram

- refinementTree
- refTree
- dynamicFvMesh
- hexRef2
- meshCutter
- dynamicRefineFvMeshHexRef2
Spreading example
Spreading example
Spreading example
Spreading example
Spreading example
Spreading example
Parallel example
Questions and comments