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INTRODUCTION
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UNCERTAIN

“Uncertainty is the only certainty there is, and knowing how to live
with insecurity is the only security.”
— John Allen Paulos

o Uncertainties are present in most engineering and practical applications.

e Sources of Uncertainty:
physical properties
initial conditions
boundary conditions
geometry

model parameters

etc.
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UNCERTAINTY IN TURBOMACHINES

o Turbomachines can be intensely sensitive to the
uncertainties.

o Aleatory uncertainties:
v" Operating conditions
v' Geometry

o Operational: Volumetric flow rate, turbulence properties,
rotational speed.

o Geometrical:

v" Manufacturing tolerances.

v" Turbomachines are designed to run for years: in-service
erosion and corrosion.
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UNCERTAINTY QUANTIFICATION USING POLYNOMIAL CHAOS
EXPANSION
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UNCERTAINTY QUANTIFICATION

e How do input uncertainties affect objective functions are affected?
o Non-deterministic CFD is a growing field. (e.g. NUMECA)
o First step: identification of the sources of uncertainties and their PDF's.
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UNCERTAINTY QUANTIFICATION

e How do input uncertainties affect objective functions are affected?
o Non-deterministic CFD is a growing field. (e.g. NUMECA)
o First step: identification of the sources of uncertainties and their PDF's.

UNCERTAINTY QUANTIFICATION

Quantitative characterization and reduction of uncertainties in applications.

Determinstic system
Statistics:

—— = [T

—/ (= — Bly))>f, (=) d=

Computational Model
y=U(&, &, &)

%—/ U £, (2) dz

pa = /7 (= — Ely)* £, () d=

UQ METHODS

Introduce mathematical approaches
to solve above integrals.
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UNCERTAINTY QUANTIFICATION
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PorLyNOMIAL CHAOS EXPANSION

o Uncertainty Quantification approaches

v' Sampling methods (non-intrusive)

v" Quadrature methods (non-intrusive)

V' Spectral methods (intrusive): Polynomial Chaos Expansion
o The stochastic field U(x; &) is decomposed

PC EXPANSION

U@ &) = Y ua(@)pq(€)

0<|ed|<p

e The number of unknown coefficients (u;’s) is: P+ 1 = (p -;ns>

o Curse of dimensionality

o Functions 1);(£)’s are the orthogonal polynomials with respect to input PDFs.
@ Regression approach is employed to calculate the PCE coefficients.

@ Sobol’ sampling scheme

e Variance based sensitivity analysis using Sobol’ indices.
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EFFICIENT UQ METHOD
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SPARSE RECONSTRUCTION OF POLYNOMIAL CHAOS EXPANSION
USING COMPRESSED SENSING
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EFFICIENT UQ METHOD
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INTRODUCTION

o Industrial problems: large number of random

variables. U(x;€) = Z Ue ()1 o, (€)

o Curse of dimensionality: Computational cost OSledsp

of PCE grows exponentially with the number
variables.

0 — T T T T

o Remedy: efficient methods

EFFICIENT METHODS

PCE coefficients

v' Adaptive methods ool

P n
0

ol
107 10

v" Reduced basis methods o1 el

Index of PC basis
v Multifidelity methods
FicUre: PCE coefficient of drag coeflicient of
v/ Sparse methods the RAE2822 airfoil with stochastic
geometry and operating condition

@ Sparse reconstruction approaches:

v" Hyperbolic sparse

v Compressed sensing
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EFFICIENT UQ METHOD
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COMPRESSED SENSING

Recover a sparse signal from a set of incomplete observations

o Optimization problem ({yp-minimization):

4 = argmin,, ||lullo subject to Tu =Y

@ /p-minimization is NP-hard! Hence, ¢1-minimization

4 = argmin,, |u|l1 subject to Pu =Y Original

o Noisy signal:

@ = argmin,, ||lu|l1 subject to |[Tu— V|2 <e
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LiMITATION OF CLASsSic PCE

o PCE basis should be orthogonal with respect to the ‘ —FOF
PDF of the uncertain input parameters. L —

o The Wiener-Askey polynomial: exponential convergence
for a limited number of PDFs.

o What about arbitrary PDF's?

o Gram-Schmidt orthogonalization method. b b T T

PDF of Cg in k — ¢ model.
o Exponential convergence for arbitrary distributions. o w w w w w

o The GSPCE is revisited and for the first time used with

the regression method. 003 ]
Distribution = Polynomials Support ood- ]
Gaussian Hermite —00, 00)
Uniform Legendre [—1,1] o001 ]
Gamma Laguerre [0, o0)
Beta Jacobi [—1,1]

30 40

0 0 20
Wind speed (m/s)

Uzi€) = D ua(@)P,(é)

NI
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EFFICIENT UQ METHOD
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GRAM-SCHMIDT ORTHOGONALIZATION METHOD

@ One-dimensional monic orthogonal polynomials: Legendre (Uniform)

¥ (€) =¢€;(§) — chk% i=1,2,--,p,

. gy gy
with : ’

_ (e (8 ¥(©)
Yo=1 ok = 1O e

where the polynomials e;(§) are polynomials of
exact degree j.

o The polynomials are normalized as:

¥;(6) o
(¥;(£),15(8)) e o

¥;(§) =
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EFFICIENT UQ METHOD
[ee]e]e] ]

GRAM-SCHMIDT ORTHOGONALIZATION METHOD

@ One-dimensional monic orthogonal polynomials:

wj(é - 63(5) chkw] .j = 1727"' » Dy é,

with
_ (e (8 ¥(©)
Yo=1 ok = 1O e F

where the polynomials e;(§) are polynomials of
exact degree j.

o The polynomials are normalized as:

O = 00, s 0
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Hermite (Gaussian)
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NUMERICAL EXAMPLE
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NUMERICAL EXAMPLE: QUANTIFICATION OF EPISTEMIC
UNCERTAINTIES IN THE k — &€ MODEL COEFFICIENTS IN
OPENFOAM CHANNEL FLOW
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EPI1STEMIC UNCERTAINTIES IN THE k — ¢

NUMERICAL EXAMPLE
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MoDEL COEFFICIENTS

@ Sources of uncertainties in RANS models:

e Model formulation

o Coefficients

o The Launder-Shrama k — ¢ model:

v' Boussinesq (eddy-viscosity) hypothesis:

UiUj = —

v' Turbulent viscosity:

aU;
aﬁi

<3U7', X
1%
¢ 8£Cj

2
+ gktsij

k2

vy = C;qu?

v To obtain v, transport equations are solved:

1¢] o vt
— (U.k) = —
Ozj( ’ ) 6acj |:<V+ >

0 -
afzj(UjE)

2 () 2
- 8%_7' am

2
oVk
:|+Pk767211< f)
Bwj

&2
+ C. 1—Pk—(/52f2—+E
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NUMERICAL EXAMPLE
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LAUNDER-SHARMA k — & MODEL COEFFICIENTS

o The empirical coefficients of low-Re Launder-Sharma k — ¢ model

CH Ok (3 Cel ng
0.09 1.0 1.3 1.44 1.92

o The coefficients are related to some basic physical quantities (Durbin and Reif, 2011):
v" The decay exponent in decaying homogeneous, isotropic turbulence, n
v" The production to dissipation in homogeneous shear flow, P/e
v" The Von-Karman constant, s

v" The dimensionless turbulent kinetic energy in the logarithmic layer, klog/ui

kiog \ ~2 -1
CM = ( log) > Ce1 = 70;3/ +1,
g

_1-n K2
n VCu(Ce2 — Ce1) .
o The reported data for these quantities in the literature are collected and presented
PDFs (Margheri et al., 2014)
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TEST CASE: CHANNEL FLOwW

@ Fully-developed turbulent channel flow @ Turbulence model: LaunderSharmaKE

@ Friction Reynolds number o Discretization:

Re, = urH = 950 v gradSchemes: linear
v v/ divSchemes: linear

@ OpenFOAM Solver: boundaryFoam v divSchemes: linear

@ Steady-state solver for incompressible, 1D
turbulent flow

@ Linear solvers:

v’ U: PCG, DIC

o grad p = divT

& p v' k: smoothSolver, symGaussSeidel
© Number of stochastic parameters n, = 4 v epsilon: smoothSolver, symGaussSeidel
o UQ analyses preformed with p =7

@ Reference solution: 8th order full PC

Wall

I Flow,

[ s St Lo Sharun £

Wall
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CONVERGENCE OF FRICTION VELOCITY (u;) STAT

Variance PDF
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] °
I o ® i .
g o e oo e OMP with N = 100 sample method
= ° 0 oo 0
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COMPARING WITH DNS DaAT

25 : : 1 : : 1
@ 2D Normalized PDF P 6L e 2D Normalized PDF ]
o DNS (Kim, Moin & Moser, 1987) o DNS (Kim, Moin & Moser, 1987)
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