This is an appendix in the lecture notes of the course MTF270 Turbulence modeling which can be downloaded here
http://www.tfd.chalmers.se/~lada/turbulent_flow/lecture_notes.html

J MTF270: Computation of wavenumber vector and angles

For each mode n, create random angles φ^{n}, α^{n} and θ^{n} (see Figs. J. 1 and 22.1) and random phase ψ^{n}. The probability distributions are given in Table J.1. They are chosen so as to give a uniform distribution over a spherical shell of the direction of the wavenumber vector, see Fig. J.1.

J. 1 The wavenumber vector, κ_{j}^{n}

Figure J.1: The probability of a randomly selected direction of a wave in wave-space is the same for all $d A_{i}$ on the shell of a sphere.

Compute the wavenumber vector, κ_{j}^{n}, using the angles in Section J according to Fig. J.1, i.e.

$$
\begin{align*}
& \kappa_{1}^{n}=\sin \left(\theta^{n}\right) \cos \left(\varphi^{n}\right) \\
& \kappa_{2}^{n}=\sin \left(\theta^{n}\right) \sin \left(\varphi^{n}\right) \tag{J.1}\\
& \kappa_{3}^{n}=\cos \left(\theta^{n}\right)
\end{align*}
$$

$p\left(\varphi^{n}\right)=1 /(2 \pi)$	$0 \leq \varphi^{n} \leq 2 \pi$
$p\left(\psi^{n}\right)=1 /(2 \pi)$	$0 \leq \psi^{n} \leq 2 \pi$
$p\left(\theta^{n}\right)=1 / 2 \sin (\theta)$	$0 \leq \theta^{n} \leq \pi$
$p\left(\alpha^{n}\right)=1 /(2 \pi)$	$0 \leq \alpha^{n} \leq 2 \pi$

Table J.1: Probability distributions of the random variables.

$\boldsymbol{\kappa}_{i}^{\boldsymbol{n}}$	$\boldsymbol{\sigma}_{\boldsymbol{i}}^{\boldsymbol{n}}$	$\boldsymbol{\alpha}^{\boldsymbol{n}}$
$(1,0,0)$	$(0,0,-1)$	0
$(1,0,0)$	$(0,1,0)$	90
$(0,1,0)$	$(0,0,-1)$	0
$(0,1,0)$	$(-1,0,0)$	90
$(0,0,1)$	$(0,1,0)$	0
$(0,0,1)$	$(-1,0,0)$	90

Table J.2: Examples of value of $\kappa_{i}^{n}, \sigma_{i}^{n}$ and α^{n} from Eqs. J. 1 and J.3.

J. 2 Unit vector σ_{i}^{n}

Continuity requires that the unit vector, σ_{i}^{n}, and κ_{j}^{n} are orthogonal. This can be seen by taking the divergence of Eq. 22.1 which gives

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathbf{v}^{\prime}=2 \sum_{n=1}^{N} \hat{u}^{n} \cos \left(\boldsymbol{\kappa}^{n} \cdot \mathbf{x}+\psi^{n}\right) \boldsymbol{\sigma}^{n} \cdot \boldsymbol{\kappa}^{n} \tag{J.2}
\end{equation*}
$$

i.e. $\sigma_{i}^{n} \kappa_{i}^{n}=0$ (superscript n denotes Fourier mode n). Hence, σ_{i}^{n} will lie in a plane normal to the vector κ_{i}^{n}, see Fig. 22.1. This gives

$$
\begin{align*}
& \sigma_{1}^{n}=\cos \left(\varphi^{n}\right) \cos \left(\theta^{n}\right) \cos \left(\alpha^{n}\right)-\sin \left(\varphi^{n}\right) \sin \left(\alpha^{n}\right) \\
& \sigma_{2}^{n}=\sin \left(\varphi^{n}\right) \cos \left(\theta^{n}\right) \cos \left(\alpha^{n}\right)+\cos \left(\varphi^{n}\right) \sin \left(\alpha^{n}\right) \tag{J.3}\\
& \sigma_{3}^{n}=-\sin \left(\theta^{n}\right) \cos \left(\alpha^{n}\right)
\end{align*}
$$

The direction of σ_{i}^{n} in this plane (the $\xi_{1}^{n}-\xi_{2}^{n}$ plane) is randomly chosen through α^{n}. Table J. 2 gives the direction of the two vectors in the case that κ_{i} is along one coordinate direction and $\alpha=0$ and $\alpha=90^{\circ}$.

