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Abstract — A zonal hybrid method for computation of wall bounded flows was developed. Data from
a direct numerical simulation of channel flow at Reynolds number 500 were filtered and the resulting
subgrid stresses expanded in a series using proper orthogonal decomposition. The series was truncated.
A feed forward neural network was found to be superior to linear stochastic estimation for estimating the
coefficient of the series. The neural network and the orthonormal base from the expansion were shown
by a priori tests to be suitable as a subgrid model for the innermost part of a boundary layer. The system
was applied together with a Smagorinsky subgrid model to channel flow at Reynolds number 500 with
good results. Generalization to higher Reynolds numbers is briefly discussed.

1. Introduction
The high computational cost of large eddy simulations (LES) for unsteady wall bounded flows
makes alternative approaches attractive. A common technique is to use one computational
method close to the wall and another in the outer region. These so called hybrid methods, or
zonal methods, have been explored by for example Davidson and Peng [1], Hamba [2] and
Tucker and Davidson [3] all of whom used some RANS model close to the wall up to some
matching line and LES outside that line. The argument for these methods to work is that the
LES and the RANS formulations of the Navier-Stokes equations are the same when the stress
terms are expressed in terms of the turbulent viscosity, νt. Hence any model can be used for
νt. LES is used away from walls since it provides good accuracy at a reasonable computational
cost everywhere except for regions close to walls. Close to walls, RANS is the only feasible
method for calculations at high Reynolds number and is thus applied there.
There are however conceptual problems with this approach. For plane channel flow, hybrid
methods give a sudden increase in the mean streamwise velocity somewhere outside the match-
ing line [1]. The reason is that RANS gives much higher values of νt and will therefore affect
a much larger part of the turbulent spectrum while LES has levels of νt that damp only the
smallest resolved scales. This will manifest itself as a jump in resolved turbulent scales at the
matching line, as demonstrated in [4].
Some remedies have been suggested. Tucker and Davidson [3] used a one-equation k − l
model in both the RANS and LES regions and the regions differed in how the filter length scale
was chosen. The results for plane channel flow improved if the transition from RANS to LES
was made in a smooth manner instead of abruptly changing the filter length scale definition
at the matching line. Several authors have used forcing at the matching line to reintroduce
resolved LES scales from modeled RANS scales. See for example [5], [4], [6] and [7]. Hybrid
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methods with forcing produce good mean velocity profiles for plane channel flows, but the
forcing conditions are rather arbitrary. This is do some extent due to the problem pointed out by
Temmerman et al. [8]: resolved turbulence is transported from the LES region into the RANS
region, which responds by increasing the turbulent viscosity thus diminishing the effect of the
forcing. This is however not always the case. In the work of Davidson and Billson [6], forcing
resulted in a lower value of νt.
An alternative approach to the problem at the matching line is given by Hamba [2]. The value
of νt on the RANS side of the matching line is much higher than on the LES side. To obtain the
same level of νt on the LES side, the filter width has to be increased by approximately a factor
5, depending on the exact location of the matching line. However, the filter operator and the
spatial derivatives in the Navier-Stokes equations do not commute in the mathematical sense but
only to a second-order approximation in terms of the spatial derivative of the filter [9]. Hence,
this rapid change in filter width will give rise to serious errors unless accounted for in some way.
Hamba adopted a scheme with additional filtering of the data on the LES side of the matching
line and obtained an improvement for computations of plane channel flow.
Since none of the suggested remedies works without a substantial amount of ad hoc adjustment,
either the RANS method or the LES method has to be replaced. Since the main objective is to
be able to make LES without completely resolving the boundary layer, it would be directly
counterproductive to remove the LES part. It is therefore the RANS model that is discarded and
replaced. In this work, data from direct numerical simulation (DNS) are filtered to give resolved
velocities and subgrid stresses. The subgrid stresses close to walls are expanded using proper
orthogonal decomposition (POD), which gives an orthonormal base for the subgrid stresses.
Two different methods for recombining the base elements given some LES data are investigated,
viz. linear stochastic estimation (LSE) and neural networks (NN).
For completeness, it should be mentioned that there exist related methods. For example, a
RANS model can be used in the whole domain, but the level of νt is given an explicit depen-
dence on the grid size. As the grid becomes coarse relative to the flow structures, for example
in boundary layers, the method becomes equivalent to RANS, and when the grid becomes very
fine compared to the flow structures, the method goes towards DNS, at least in theory. See for
example [10] and [7]. Another alternative approach is to use a large eddy formulation in the
whole domain, but instead of resolving the inner parts of the boundary layer, the first cell is
made several hundred viscous units high. The wall is then accounted for by shear stress bound-
ary conditions, often called approximate boundary conditions, which are computed in some way
from the resolved velocity field. See for example [11] and [12].

2. Filtering of DNS data
Data are taken from a DNS of turbulent channel flow. The Reynolds number based on the
friction velocity, uτ , and channel half height, H , is 500 and the grid is Cartesian. The finite
volume code is described in [1] and [13]. The resolution of the DNS is ∆x+ = 49.1, ∆z+ =
12.3 and min(∆y+) = 0.3. The wall normal stretching is 17%.
A box filter of streamwise and spanwise size ∆x+ = 196 and ∆z+ = 49 is used to obtain
filtered data ūi and p̄ and subgrid stresses τ tot

ij = uiuj − ūiūj. No filtering is done in the wall
normal direction. The filter is thus 4× 4 DNS cells and is 2× 2 times larger than recommended
for a well resolved LES [14]. A larger filter of 8×8 DNS cells was also tested but was discarded
since the LES then became underresolved in terms of ∆x/H .
In incompressible flow, the spherical part of the subgrid stress tensor 1/3τ tot

kk δij is often included
in the pressure. The current method is fully capable of modeling the total subgrid stress tensor
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Figure 1: Correlation coefficient for τ12 and τ̂12. ——–: N = 20, −−−−: N = 30, −·− ·−:
N = 40

but, to avoid problems at the matching line, only the deviatoric part of the subgrid stress tensor,
τij = τ tot

ij − 1/3τ tot
kk δij , will be modeled.

3. Proper orthogonal decomposition
POD is a method for expanding an arbitrary vector field, vi, defined on a domain Ω in terms of
a deterministic field φi =

∑
∞

n=1 φn
i . We want the orthonormal base {φn

i }
∞

n=1 to be optimal in
the sense that the truncated projection

v̂i =
N∑

n=1

anφn
i (1)

is better than any other representation of vi using the same number of basis functions. Opti-
mality is measured by the projection 〈|(vi, φi)|〉/||φi||

2 where (·, ·) is the L2 inner product and
< · > is the assemble average. From calculus of variations, φi can be shown to be given as the
solution to the eigenvalue problem

∫
Ω

〈vi(x)vj(x
′)〉φj(x

′)dx′ = λφi(x) (2)

and coefficients an are given by the projection

an =
∫
Ω

vi(x)φn
i (x)dx (3)

The basis functions, φn
i , are often referred to as POD modes and an as POD coefficients. More

on POD can be found in [15] and [16].
The theory is here applied using τij as the random field. The homogeneous directions x and z
and the time are used for averaging and Ω is chosen to be {y+ : y+ ∈ [0, y+

max]}. In this work
y+

max is chosen to be equal to 62. For all y+ ≤ y+
max this gives the exact representation

τij(x, y, z, t) =
∞∑

n=1

an(x, z, t)φn
ij(y) (4)
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To make the representation effective, the series must be truncated. The accuracy of the truncated
POD representation of τij , denoted τ̂ij , is measured using the correlation coefficient

Cij =
〈(τ̂ij − 〈τ̂ij〉)(τij − 〈τij〉)〉

τ̂ij,rmsτij,rms
(5)

Figure 1 shows C12 for three different choices of N . As can be seen, truncation after 30 POD
modes gives an accurate enough representation with very little improvement when more modes
are added. The same trend can be seen for all elements of τij . 30 modes is a relatively small
number and can be compared to the number used in the work of P. Johansson [17]. He created
a low-dimensional POD system to compute plane channel flow and used between 90 and 180
modes.

4. SGS reconstruction
To turn the (truncated) POD representation into a subgrid model, we ask the question ’what
values do the POD coefficients assume for a given set of events [h1, . . . , hM ]’. The events
are such that they can be calculated from filtered data, for example resolved velocity gradients.
Two methods for calculating the most probable values of an given [h1, . . . , hM ] are investigated,
linear stochastic estimation (LSE) and neural networks (NN).
LSE assumes a linear relationship between the fluctuations of the coefficients an and the values
of [h1, . . . , hM ]. The mapping matrix that minimizes the average square error, 〈(ϑn − an)2〉 ∀n,
can be calculated exactly. ϑn is the approximation of an. The method is simple to implement
and has a low computational cost. A more detailed description of LSE can be found in [18].
The theory of neural networks is far more complicated and the interested reader is referred to
textbooks on the subject, such as [19]. The most important feature of NN is that they assume no
functional form of the sought-after relation. The NN used in this work, a feed forward network
with biases and two hidden layers, is in theory capable of reproducing any continuous function.
The hidden layers use activation functions of the form tanh(v), where v is the weighted neuron
input. The output layer uses pure linear activation functions. The mean is removed from both
the input and output data of the network, but only the input data are normalized. The network is
trained by the conjugate gradient algorithm with Polak-Ribiére updates [20]. Half the available
data set from the filtered DNS is used as the training set and the rest is split into a validation set
and a cross-validation set.
Several different set of events were tested. Bagwell [21], who used LSE to construct approx-
imate boundary conditions for LES, used an entire plane of the channel at constant y. Such a
choice makes the method unsuitable for generalization to more complex geometries. Nicoud et
al. [11], who used LSE for the same purpose, showed that more local events sufficed and that
expanding the event field far in space did not give more accurate results. Therefore, the events
for a column of cells with cell center points (x, y, z), y ∈ Ω are kept as close to the column
as possible. By trial and error, the following combination of events was found to give the best
results without being too case specific:

u+
i (x, y, z) for y+ = y+

max/2, y+
max

u+
i (x ± ∆x, y, z) for y+ = y+

max/2, y+
max

u+
i (x, y, z ± ∆z) for y+ = y+

max/2, y+
max

∂P+/∂z+(x, y, z ± ∆z/2) for y+ = y+
max/2, y+

max

∂P+/∂y+(x, y, z) for y+ = 0, y+
max/2, y+

max
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Figure 2: Correlation coefficient for τ12 and τ̂NN
12 (——–) and for τ12 and τ̂LSE

12 (−−−−)

∂P+/∂y+(x ± ∆x, y, z) for y+ = 0, y+
max/2, y+

max

∂P+/∂y+(x, y, z ± ∆z) for y+ = 0, y+
max/2, y+

max

∂u+/∂y+(x, y = 0, z) for y+ = 0

∂u+/∂y+(x ± ∆x, y = 0, z) for y+ = 0

∂u+/∂y+(x, y = 0, z ± ∆z) for y+ = 0

∂w+/∂y+(x, y = 0, z) for y+ = 0

∂w+/∂y+(x ± ∆x, y = 0, z) for y+ = 0

∂w+/∂y+(x, y = 0, z ± ∆z) for y+ = 0

where ∆x and ∆z are the constant cell length and width. The pressure terms deserve some extra
attention. Since 1/3τ tot

kk δij has been subtracted from the subgrid stress tensor, the term 1/3ρτ tot
kk

has to be added to the pressure when the LSE matrix and NN are created, i. e. P = p̄+1/3ρτ tot
kk .

Observant readers can also see that the events do not include any streamwise pressure gradients.
This is to facilitate generalization. In calculations of pressure driven channel flow, the pressure
gradient is often replaced by a force term, and the value of the streamwise pressure gradient
will thus depend on the implementation. It is tempting to simply exclude the events based on
pressure, but our investigation shows that both LSE and NN perform much better when events
based on pressure are included than when they are not.
The number of events, M , is 59. 60 neurons in the first hidden layer and 40 neurons in the
second hidden layer was the best configuration of those tested.
Both methods recover the mean values of the subgrid stresses almost perfectly. In figure 2
the untruncated subgrid stresses τ12 are compared with the reconstructed (and truncated) sub-
grid stresses calculated using coefficients estimated from LSE and from NN. The stresses esti-
mated using LSE do not feature much higher correlation than subgrid stresses calculated with a
Smagorinsky model. Stresses estimated from the neural network, however, feature much higher
correlation with the real stresses and NN is hence a superior choice for reconstruction of the
POD coefficients. This is confirmed by implementing LSE as described in section 6.. Such a
model diverges or gives horrible results. LSE will hence not be discussed further. Correlation
coefficients C11, C22 and C33 are all larger than C12 while the coefficients to the much less
important τ13 and τ23 are somewhat smaller.
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Figure 3: Transfer of turbulent kinetic energy to subgrid scales calculated using real stresses
(——–) and modelled stresses (−−−−)

5. Subgrid model – a priori tests
In this work, a zonal approach is chosen where the POD-NN system is used as a subgrid model
close to a wall while some LES subgrid model is used everywhere else. As a first step we
consider simulation of the same flow from which the system was constructed, i. e. turbulent
channel flow at Reynolds number 500 but with cells that are four times larger in the x and z
directions than in the DNS calculation. The POD-NN system is used to calculate the subgrid
stresses given a velocity field. This could be made in each iteration in any numerical scheme.
There are several necessary conditions that the system must fulfill in order to function as a
subgrid model. One is to reproduce the averages of the subgrid stresses, and it has already
been mentioned that it does. Another is to give a correct level of dissipation of turbulent kinetic
energy to the subgrid scales, −τijS̄ij , where S̄ij is the resolved strain-rate tensor. Figure 3 shows
〈τijS̄ij〉 calculated using both the real τij and using τ̂NN

ij . As can be seen, the dissipation is well
reproduced. This is a key requirement since the only reason that the Smagorinsky model works
is that it reproduces the roughly correct level of dissipation to subgrid scales [22].
A subgrid model must also affect the resolved Reynolds stresses in a correct way. The spatially
filtered velocity field, ūi, can be decomposed into a time averaged component 〈ūi〉 = Ui and
a deviation from the time average, ūi − Ui = u′

i. The transport equations for the resolved
Reynolds stresses 〈u′

iu
′

j〉 will contain the terms

−〈u′

j

∂τ ′

ik

∂xk
〉 − 〈u′

i

∂τ ′

jk

∂xk
〉 (6)

which represent all the effects of the subgrid stress tensor on the resolved Reynolds stresses [23].
Figures 4 and 5 show equation (6) for 〈u′

1u
′

2〉 and 〈u′

3u
′

3〉 calculated using the real stresses and
the modeled stresses. Figure 4 is representative for the quality of equation (6) for 〈u′

1u
′

1〉, 〈u′

2u
′

2〉
and 〈u′

1u
′

2〉, which are all strikingly good. Equation (6) is less well reproduced for 〈u′

3u
′

3〉, but
still good enough. This test shows that the POD-NN system reproduces the subgrid stress
tensors well enough to be able to calculate its first-order spatial derivatives.
A priori tests like these shown so far can however only give indications of the system’s ability
to function as a subgrid model.
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6. Subgrid model – implementation and results
An incompressible, finite volume code with a non-staggered grid arrangement is used [1]. For
space discretization, central differencing is used for all terms. The Crank-Nicholson scheme is
used for time discretization of all equations. The numerical procedure is based on an implicit,
fractional step technique with a multigrid pressure Poisson solver [24].
The Smagorinsky model is used in the center of the channel, i.e. further than 62 viscous units
from the walls. The model constant, cµ, is set to the standard value of 0.09 and the filter width
is calculated by ∆ = (∆x∆y∆z)1/3. Van Driest damping is applied. The POD-NN system
is applied to the regions y+ ≤ y+

max and 2H − y ≤ y+
max where H is the channel half height.

The divergence of the reconstructed subgrid stresses τ̂NN
ij are added as source terms to the

discretized Navier-Stokes equations.
There are a few things that must be done to get a stable system. First, τ̂ NN

ij needs to be under-
relaxed to smooth its time history. If τ̂NN∗

ij is the value from last iteration, the value used as a
source term for the next iteration, τ̂NN∗∗

ij , is given by

τ̂NN∗∗

ij = crτ̂
NN
ij (u∗

i , P
∗) + (1 − cr)τ̂

NN∗

ij (7)

where τ̂NN
ij (u∗, P ∗) is the value given by the POD-NN using the last known values of the ve-

locity and pressure, u∗

i and P ∗. Several values between 0.5 and 0.95 were tested for cr and the
results seem to be independent of the exact value. The only noticeable difference is that the
numerical scheme becomes more unstable with higher values of cr. The results shown later are
calculated using cr = 0.8. For consistency, the same amount of underrelaxation was applied to
the Smagorinsky viscosity.
It is important that at least two iterations are made in each time step. If only one iteration is
used, the lag between the velocity and the source terms created by the POD-NN system will
create pressure fluctuations that grow an unlimited fashion. Neither extremely short time steps
nor underralaxation of τ̂NN

ij can make the scheme stable if only one iteration per time step is
used.
If τ̂NN

ij is used to account for 100 % of the subgrid stresses in the regions close to the walls,
the calculations eventually diverge. The measures described above lengthen the time before
divergence and can even make the solution quasi-steady at solutions not far from the correct
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Figure 7: Velocity profiles for DNS (◦ ◦ ◦),
pure LES (· · ·), hybrid LES-RANS (− · −)
and POD-NN using distributions 1 ( ) and
2 (−−−).

one. Stability can however be achieved by calculating the subgrid stresses by

τ̂ij = cbτ̂
NN
ij + (1 − cb)τ

Smag
ij (8)

The blending coefficient, cb, will be zero in the center region of the channel and non-zero in
regions y+ ≤ y+

max and 2H − y ≤ y+
max. It is possible to have cb equal to a constant close to the

walls but, since large values of cb make the solution tend toward a pure Smagorinsky solution,
the desire is to have cb as close to one as possible. On the other hand, if cb is constant close to
one, there will be a sharp change in the approximation of τij at the matching line, which creates
a local velocity minimum there that can eventually destabilize the calculation. Therefore, cb

must be reduced in some way a few nodes before the matching line. Two different alternatives
for cb are shown in figure 6. Each marker represents a cell center and the distributions will be
referred to as distributions 1 and 2 as described in the caption to the figure.
Figure 7 shows some velocity profiles, all with uτ = 1.00 and Reynolds number equal to 500.
For reference, a solution using the Smagorinsky model in the whole domain, a DNS solution
and a zonal RANS-LES solution with a one-equation k − ` model and the same matching line,
are shown. The RANS-LES hybrid solution suffers from the deficiencies mentioned in the
introduction, which results in too low resolved 〈u′v′〉 stresses. The pure Smagorinsky solution
correctly predicts 〈u′v′〉 but its velocity profile overshoots since νt is too low for such a coarse
grid. Two profiles calculated using the POD-NN system are shown, one for each distribution of
cb shown in figure 6. Both of these calculations give better results than the pure LES and the
RANS-LES hybrid method. Distribution 2 gives a slightly smoother solution than distribution
1, but both profiles display a local retardation of the velocity at the matching line. Neither
distribution 1 nor distribution 2 can be claimed to be optimal, but the results indicate that the
method can be tuned to obtain an almost exact velocity profile.
Figures 8 and 9 compare resolved normal Reynolds stresses for the pure LES solution and the
POD-NN solution using distribution 2. The stresses in figure 8 are typical for a poorly resolved
LES with too high levels of streamwise stresses and too low levels of 〈v ′v′〉 and 〈w′w′〉 stresses.
Note that the DNS markers are the unfiltered Reynolds stresses and the LES stresses should
hence fall below these curves, but not to the degree displayed in figure 8. The levels displayed
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Figure 9: ◦ ◦ ◦, ∗ ∗ ∗ and + + + are
〈u′u′〉, 〈w′w′〉 and 〈v′v′〉 Reynolds stresses
from DNS and , − · − and − − − are
resolved 〈u′u′〉, 〈w′w′〉 and 〈v′v′〉 Reynolds
stresses from the POD-NN calculation using
distribution 2.

in figure 9 are much closer to what a filtered DNS solution looks like. The peak in the 〈u′u′〉
stress is located in the cell just outside the matching line. Despite the reduction of the blending
coefficient, cb, there will still be a huge gradient in the approximation of τij which can be seen
in equation (6) to give rise to an unphysically large production term in the 〈u′u′〉 equation and
hence the extra peak in the 〈u′u′〉 stresses. This extra peak could have been removed by using
a less aggressive reduction of cb, but that would have been at the cost of a less good velocity
profile. The only way to get around this problem is to move the matching line further from the
wall. This however cannot be done using the current DNS at Reynolds number 500 since it is
only the innermost 10 % of a boundary layer that is approximately universal [25]. Ten percent
of the boundary layer thickness is in this case equal to y+ = 50. This will be discussed further
in section 7..
Figure 10 shows the resolved 〈u′v′〉 Reynolds stresses and 〈τ̂NN

12 〉. The total shear stress in the
computations will be given by

〈u′v′〉 + cb〈τ̂
NN
12 〉 + (1 − cb)〈τ

Smag
12 〉 + 〈τ visc

12 〉 (9)

and for stress balance reasons will sum up to 1 − y. For comparison, shear stresses from the
DNS computation are also shown. Two features are especially prominent in figure 10. Firstly,
due to the large filter τ̂NN

12 is the dominant term in equation (9). Secondly, the fact that τ̂ NN
12 is

not small near the matching line motivates the reduction of cb in that region.
Figure 11 shows the resolved 〈u′u′〉 Reynolds stresses from DNS and POD-NN calculations
using distribution 2 together with 〈τ̂NN

11 〉. Note that that τ̂NN
11 approximates only the deviatoric

part of the full subgrid stress element τ tot
11 . We know from the construction of the POD mode

that 1/3τ+
kk ≈ 2 where 〈u′u′〉 has its peak; with that information it is possible to deduce that

the current method does not suffer as heavily as other hybrid methods from the so called double
counting phenomenon, except in regions where the POD-NN system is not dominant. Double
counting is effectively that resolved plus modeled turbulent kinetic energy is much higher than
a DNS at the same Reynolds number and is more the standard than the exception in hybrid
methods (see for example [6]).
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The Reynolds stresses obtained using distribution 1 is very similar to those obtained using
distribution 2 and are hence not shown.

7. Conclusions and future work
It has been shown that POD expansion of the deviatoric part of the subgrid stress tensor τ tot

ij

provides an orthonormal base that can be truncated at relatively low dimension. The POD
coefficients are much better reproduced by a neural network than by linear stochastic estimation.
A priori tests show that the POD-NN system should be functional as a subgrid model for cells
close to a solid wall. Implementation in a finite volume code gave a system with some numerical
difficulties, but very satisfactory results were obtained in the reproduction of the same channel
flow from which the POD-NN system was created.
It is probable that the numerical stability, here obtained by underrelaxation and blending of the
POD-NN system with the Smagorinsky model, could instead be obtained by regularization of
the neural network. This however requires a deeper knowledge of NN theory than possessed by
the authors.
For the model to be of any practical use, the POD modes must display some kind of Reynolds
number independence, at least in a homeomorphic sense, as must the events used as input to
the neural network. To investigate this matter a DNS of channel flow at Reynolds number
1000 was made. This DNS at higher Reynolds number will also enable us to increase y+

max to
approximately 100, which will hopefully reduce the “jump” effects at the matching line. As
mentioned in section 2.the limiting factor for the filter width is ∆x+/H+. With a DNS at a
doubled Reynolds number comes the possibility of testing larger values of ∆x+.
Finally it is worth noting that a POD-NN could in theory be created and trained for any kind of
flow close to walls. A suitable scaling other than the usual viscous scaling must then of course
be used.
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