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Abstract—A novel method for reconstructing the interface to evaluate the surface tension. The direction of the sarfac
between two fluids is described and evaluated. The method use tension force is evaluated as the gradient of the color fongt
a different basis for approximating the color function than what 5,4 the strength is proportional to the second derivatigagl

is common practice in SPH simulations. The key feature of the the interf Theref it is i tant to h ffidient
new method is the ability to omit small length scale structues in e Interlace. Thereiore 1t 1S important 1o have a sufliéen

order to obtain a smoother representation. A smoother inteface SMooth color function that does not vary too rapidly in space
is more suitable to derive a surface tension force from, as ¢n compared to the size of the SPH particles.
magnitude of the force is proportional to the curvature which is The standard SPH framework offers a couple of different
related to the second derivative along the interface. options for discretization of the curvature and surfacenais

. INTRODUCTION based on the color function [1], [4]. They all have in common

At an interface between two different fluids, or a fluid and tahat the length scale of the correlation of the color funttio

sl wal e s general  surfac enson assocat 1 18 ST 10 ¢ e 570 of e peoes The fason
it. Several attempts have been made to model this eﬁecmn%lone usina SPH interpolation. However. the len thpscale o
the framework ofSmoothed Particle Hydrodynamics (SPH). ' 9 P ' ' 9

: : .6he second derivative will be much shorter, and as a resailt th
Morris [1] describes a method where the surface tension:. .
estimate of the curvature will be strongly dependent on the

is modeled on a macroscopic level using the curvature or e
the interface. Tartakovsky and Meakin [2] model the surfa(?é”‘rt'de distribution.
tension as inter-particle forces, which cancel out in thi& bé
the fluid. Both methods are so-call€dntinuum Surface Force

(CSF) methods _[3], where the s_urface tension is modeled F) [5], which shares some common features with SPH.
a volume force in a narrow region close to the interface.

. i X ; ne significant advantage of the RBF approach is the possi-
this way more particles than those immediately close to t%‘ﬁit to introduce a relaxation parameter that can be whrie
interface experience the surface tension. y b

The method described here is similar to that of Morris iﬁontinuously, resulting in pure interpolation in one limand
a very smooth, but crude approximation in the other limit.

that it attempts to estimate the curvature of the interface [, . . . .
b JI'.h|s parameter is then used to obtain a reconstruction of the

a macroscopic sense. The general motivation for doing so. i : :
that the surface tension force acting on a fluid element can 'ﬁ erface haw_ng appropriate smoothness on the lengte stal
written the SPH particle ra@us. . _ .

The smoothness is particularly important if the two phases
solved for have a large density difference. If, for example,
whereg is surface tension coefficient,is the mean curvature water droplets in air are studied, the density ratio is about
of the interfacen is the interface normal and s is the inter- 1000 to 1, and depending on the situation the air flow may have
face tangential differential operator. The latter termpwn as negligible influence on the water droplets. If that is theegas
the Marangoni effect, is in the following assumed to be zeibis enough to solve for the denser phase, in effect treating
and is not considered. the other as massless. This will in the following be the case;

The surface acting as an interface between the differemily the denser phase is treated, turning the interfacednto
phases is tracked by means otealor function, C(x). Each free surface.
of the phases is assigned a different color which is propalgat The outline of the paper is as follows: In Section I
with the fluid. In a Lagrangian method, such as SPH, thike governing equations and their discretization is dbedri
is particularly easy as each particle is assigned a color Sction Il gives an overview of the RBF results relevantie t
the start of the simulation and it is then kept at that sanpeesent work. In Section IV the reconstruction of the irdeéf
color throughout the simulation. The color field is then used described and the expression for the surface tensiom forc

The remedy to this problem suggested here is to use a
different basis for interpolating and/or approximating trolor
fé%:tion. The framework chosen Radial Basis Functions

Fy = okn — Vso, Q)
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is stated. Section V gives some numerical results for twb taghere At is the time step, is solved which gives a pressure
cases, and Section VI concludes the paper with a discussthat projects out the divergence of the intermediate viloci
and some suggestions for areas where more work is need@the update formula is then

Il. GOVERNING EQUATIONS ANDDISCRETIZATION

The equations to solve are the incompressible, isothermal,
Navier-Stokes (N-S) equations in a moving Lagrangian frame

1
vITA = v* — At =V,
p

oo 1 , wherev*t4t is the velocity field at the next time step.
o (uV?v + F, —Vp| +g (2a)  The viscosity term of Eq. 2a is discretized as
9 _ —pV-v =0 (2b) N ) (s N VW (R
ot ’ ﬂVQ’Ui:Z&Lm(vl_’UJ)Q (ki — ;) - ( U),
wherew is the fluid velocity,t is time, p is the fluid density, pi =1 (pi + pj) (|wi —x;* + C2h2)
u is the dynamic viscosityF' is the surface tension force,
is the pressure, angl is the gravitational acceleration. assuming constant viscosify. The argument to the kernel

The discretization method is SPH, in which particles carfyinction R;;, is the distance between particlesand ; and
physical properties such as density, velocity and coloe Tlhe term involving the small quantity? of the order10~=2 in
color is used to track different phases, each assigned lit cahe denominator is added to avoid singularities for pagticl
according to the formula, placed close together.

C. = a, The pressure gradient term is evaluated as

wherea enumerates the phases. Central to the concept of SPH 1 N pi D
is interpolation among the particles, or interpolationni®ias ;Vpi = Zm o2 + o2 VW (R;;).
they are also known as. The standard way of obtaining the ’ J=l1 ! J
value of a physical quantity at a positian in space is to

evaluate the interpolation The treatment of the surface tension force is described in

section IV-B, but first some more theory has to be described.

N
Alz) = A;V; W(R;),
; Y ! I1l. OVERVIEW OF RADIAL BASIS FUNCTIONS

where V; = m;/p; is the volume occupied by particlg, The Radial Basis Function (RBF) framework is in some

W(.) is the kernel functionh; is the particle radiusR; = sense very similar to that of SPH. Both methods rely on
|z — | /h; the scaled distance to the particle, afiglis the  jnterpolation points spread out in space, and they do nat hav
value of A at particle;. _ _ to be regularly distributed on a grid. Here, only the theory
In the present work all particles are assigned the same magSeded for the application at hand is described and the reade
m; = m, and radiush; = h. A quintic spline kernel [6], s referred to [5], [8], [9] for a more thorough description.
(3—R°—-6(2—-R)°+15(1—R)”,
0<R<1, A. Interpolation
W(R)=a{ B3-R)’-6(2-R)°, 1<R<2, . . . . . o
3-R), 9<R<3 At each interpolation point a radial basis function is cen-

tered, and a weight is associated to it. As in SPH, the functio
value at a pointc is obtained by evaluating a sum over the
with normalizationa = 7/(4787h?) in two spatial dimen- interpolation points,

sions, is used in the simulations. The radius of support for

this kernel is3, which means that particles within range3sf N

contributes when evaluating the SPH interpolation for each flz) ~ 5(x) = Z)‘i¢(ri) +p(z),

particle. In two spatial dimensions this amounts to akifiut =1

other neighboring particles within the domain of support. where f(z) is the true functionS(z) its interpolation,\; are

The N-S equations are solved as describ_ed _by_Cummim% weights associated with the interpolation points;), is
and Rudman [7], where the momentum equation is first solved, (4 4ial basis function:

. . . . : i = | — x;| is the distance to the
without the pressure gradient term. An intermediate V&JOCi oniar of particlei located atz;, andp (z) is a low degree

field, v*, is obtained which in general is not divergence fre%olynomial. The polynomial term may or may not be needed
A pressure Ppisson equation focusing on a divergence frc?@pending on the choice af. If, for example, a Gaussian
velocity field in Eq. 2b, is chosen, the polynomial part is not needed, but for a cubic
v. <1V > V. spline,# (r) = r3, as is used in the present work, a polynomial
p P)="At of degree 1 is added.

0, R >3,
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space norm ag — 1_. In the lower limit, the minimum
|e|122 = 0 is recovered for pure interpolation. In the upper
limit the bumpiness is minimized without consideration toé t
error and the smoothest approximation available is obtaine
If a cubic spline if chosen for(r) this is a polynomial of
degree at most one.

A more detailed discussion on these approximation features
of RBF can be found in [10].

C. Derivatives

In order to obtain derivatives of the reconstructed functio
the approximation is differentiated, as in SPH, and oneinbta
an exact derivative of an approximate function. The expres-
sions for the gradient and Hessian are, respectively,

vS(@) = 3 AE R0 | g )

T dr

Fig. 1. Interpolation (full blue line) and approximationaghed red line) of
data points (blackx) corresponding to a random walk in one dimension. By
approximating the data a smoother function is obtainedchvitill recovers H(S(-’L’)) =

the overall trend and some of the major features.
’ S [Ee) O @) (Po()  1doGr)
— ’ r? dr? ri dr
B. Approximation I do(r;) .
Connected to each choice ef is a native space), r; dr +H(p(z)),
equipped with a semi-norm. The RBF interpolant is the . .
function that interpolates the data and has the minimaileati\’\’her_e (@) denotes _the outer Pfo‘?‘“Ct arfdthe identity
matrix. If p(x) is a linear polynomial the ternH (p(x))

space norm, .
vanishes.

S(xr)=Fr If a cubic spline is chosen fa#, all terms in the expressions

The native space norm can be said to be a measure of buni@i.the gradient and Hessian are bounded and otherwise well
ness of the interpolation, which makes the above criterion ehaved, and there is reason to believe that the true deesat

select the least bumpy interpolant of all possible choiées. of the interpolated function are well recovered for reasbyna

comparison we mention that cubic spline interpolation IltesuSmOOth interpolation data.
in an interpolation that minimizes the?-norm of the second IV. INTERFACE RECONSTRUCTION
derivative, as explained in [5, p. 9].

However, there is of course a lower limit to how smootn1
the interpolant can be, given the data to interpolate. Tainbt
an even smoother reconstruction of the data we must therefor T = {m cQ:C (x) = Cz} ,
relax the interpolation criterion and turn to approximatidf
we include an error vector in the definition of the interpiiat whereC () is the approximate color function an@; is the
criterion, mean value of the color of the two fluids on either side of the

S(xr) = fr + ek, (3) interface.C is defined as an RBF approximation of the color

we get an approximation to the data, and the error at eaf&qctlon as defined by the SPH particles,

point can, in some sense, be used to smdigth). An example A. Approximation of the color function

is shown in Fig. 1 where scattered data in one dimension is;, orger to build the approximation, the color function is
both interpolated and approximated in order to demonstinate ¢, 5 ated by an SPH interpolation formula on a fine grid
effect. The difference between the approximation (red édsh.,yering the whole computational domain. The expression

line in Fig. 1) and the data at each point is the eergr used to evaluate the color function is
Mathematically the approximation condition in Eq. 3 can

. N
be stated in the RBF framework as C(x) = Z C v W(|:1: :1:1|) 7
=1

S =arg min |S‘N¢'

The interface between different phases is reconstructed by
eans of an implicit surface, defined as

. & h

S =arg min U‘S‘i@ +(1—77)|e|l22.

S@w)=futex where C; is the color of particlei, and V" is its nominal
Here the parametef € (0, 1) changes from putting all the volume. As the incompressible Navier-Stokes equations are

weight on the error ag — 04, to only measure the native solved the nominal volume of each particle should be the same
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Fig. 2. Zoom in on points used to reconstruct the interfacg@nt® shown
as blue© are SPH particles and positions shown as blackre data points
for the RBF approximation.
Fig. 3. Dependence of the reconstructed interface on theewafin. In the
limit of » — 04 (red dashed line), corresponding to pure interpolation, an

. . . . interface that includes all the local features of the SPHiges (blue O)
as its actual, time dependent, volume, but in practice tite tW obtained. The largest valug, = 1 — 5-10~3 (black dash-dotted line),

differs for particles close to the interface. To avoid a smusg gives an interface that incorrectly takes a short cut in trecave region. The

; : ; ; intermediate valuey = 1 — 5-10~3 (blue full line) represents a good trade
increase of the color function close to the interface theinam off solution. Note that the value of that corresponds to a given level of

volume, V™ = m/po, is used instead of the more frequenimoothing depends on the separation of the particles, neses.25-10~.
choiceV; = m/p;.

As only the region close to the interface is of interest, only
grid points having a numerical value of the color functiomsel of the color function. The curvature of the surface is some-
to C; are retained to build the approximation upon, see Figthat more complicated to evaluate, however. What we have
2. As the interface is defined implicitly it is important tovea available is the Hessian of the color function and the serfac
a reliable gradient of the approximated color function & thmormal. These can be combined to form the expression for the
interface. This is why on average three data points acr@ss thean curvature [11],
interface are retained; one on the outside having a valiee les T 9
thanC/, one close to or at the interface, and one on the inside . — VO™ H(C) VC — [VC|” Trace (H(C))
having a larger value. In practice, 10 times higher resotutif d-1)|veP
the evaluation grid compared to the SPH particles seems tovW?ered is the number of spatial dimensions.

ahswtablg chc;lcde. In thg tapgentlal dlrectlpr|1 of ':jhe irzteef . The surface tension force is spread out over a narrow band
the number of data points is not as crucial, and a potent@bse to the interface according to the CSF approach where a

improvement is to reduce the resolution in that direction. = ¢, t5ce delta function is used [3]. The requirement thattbas
The approximation feature of the RBF framework is unhzeﬁe fulfilled is that

at this point, and a value of the parameteis chosen to give
a good trade off between local features of the interface and / Foo(z)dA = / F(z)dV, (5)
smoothness of the approximation. A parameter study is shown A 1%

in Fig. 3, where the reconstructed interface of a non-convgx the width of the band approaches zero. Hdre, is
droplet is shown for three different values of It is clear the surface tension force when acting only on the interface,
that it is crucial to neither underestimate nor overestntt anq F,, is the corresponding volume force when acting in
value as it affects both the location and the local shape®f the narrow band. The usual expression for the surface delta
interface. function when going fromF'y, to F,, is |VC|/[C], where
[C] is the jump in the color function across the interface.

At this point we have to be careful and bear in mind that

Given the reconstructed interface the surface tensioreforwe have two different representations of the color function
can be evaluated. The direction of the force is normal to ti#érst of all we have the SPH interpolation, denotgéd™, but
interface, and the strength is proportional to its cunatais also the corresponding RBF approximati@:®*. From the
stated in Eq. 1. Here; is taken to be the mean curvature irabove reasoning the RBF version should have better preperti
higher dimensions. for differentiation. It is not appropriate, however, to USE"F

The normal vector of the interface is given by the gradieim the surface delta function, as we do not requifé®" to

;o (4)

B. Surface tension force
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approach the value of the SPH color function at some distar 5 P
away from the interface. Indeed, the only thing required « .
C"B¥ is to give an as good as possible prediction of th 4 Y, \ ]
direction and the curvature of the interface. In Fig. 4 bol / |
representations of the color function are shown on a lir 3 / \ ]
through the center of the droplet and it is clearly visiblevho / \

the RBF approximation mis predicts the color function awa 2 ! Y g
from the interface. For this reasof*®" is used to determine O ) \

the direction and strength of the surface tension, @it is 1k ge oo 1
used in the surface delta function. / \
An additional complication is that as only the phase withi o  / N

the droplet is solved for, no particles on the outside of tf / \
interface take part in the surface tension force. This can / \
seen in Fig. 4 wheres"™™ approaches zero some distanc / .
away from the last SPH particle on each side. This has t ‘ ‘ ‘ ‘ ‘ ‘ ‘
consequence that Eq. 5 is not fulfilled, since the suggest -20 -15 -10 -5 0 5 10 15 20
surface delta function is not properly normalized. As a solu =/h
tion, a correction faCtorX’ 1S mtroquced which account_s forFig. 4. Color function on a line through the center of a droBHSparticle
the lack of the second phase. This approach can be viewed@& (blue ©), SPH interpolation (full red line) and RBF approximation
taking the limit of the suggestion of Hu et. al. [4], Whereyhe(dashed black Ilne) The RBF approximation is only usefulptedict the
discuss the contribution to the surface tension force o ea@'" 1evel at the interface.

side of an interface separating two phases having different

density. , jump over the interface of a droplet is verified. The second
To summarize: test case considers the time period of a droplet oscillatingy
1) C®®F is used for evaluating the interface normal and thg surface tension.
curvature,
2) C®™" is used in the surface delta function, A. Pressure jump over an interface

3) x is introduced to account for the lack of contribution 10 e pressure jump across the interface of a static droplet
the surface tension from the (non-existing) phase outsidgy|es with the droplet radiug, according to Laplace’s law,

the droplet.
By combining this into an expression for the surface tension Ap x 1 (6)
force, we arrive at R
VOREE [V OS] The simulation to verify the result is set up such that the SPH

Fs — O'I{RBF

|VCrer| [CsPH] partic!es are initially in non-equilibrium, and surfacmsﬁnn
and viscous forces act on the droplet to form a circular shape

where £**" indicates that Eq. 4 should be evaluated with The SPH particles are placed at rest in a sguare on a
CRBF, Cartesian grid, see Fig. 5 where the initial configuration is

When evaluating the surface tension force at each SRHown together with the interface of the droplet as defined by
particle two different approaches to where the curvature &**F. In Fig. 6 the surface tension forces can be seen as well
evaluated could be taken. The curvature could be evaluateds the local isolines af™®"* running straight through the SPH
the interfaceC"**" = C, and projected to the location of theparticles. As expected, the surface tension acts mosthhen t
particle. Alternatively, it could be evaluated at the piositof corners of the square. In this configuration, the effect ef th
the particle, in general at some small distance away from thmoothing parametey in the RBF approximation is to limit
interface. The difference between the two approaches is mio¢ curvature at the corner somewhat, and allow more SPH
expected to be too large because of the surface delta fancigarticles to take part in the surface tension force. Here see u
that limits the surface tension to act only close to the fat&. 7 =1 — 1073,
For this reason the second alternative is taken here sirise it After some time a circular droplet is formed and the pressure
more straightforward to implement as it lacks the projecttionside the droplet is higher than on the outside. Depending
step. on the ratio of viscosity to surface tension strength, mare o
less oscillations occur before reaching the final circutepe.
Figure 7 shows the evolution of the interfad@}""(x) =

Two test cases will be considered, both of which aims t@5, over time in an overdamped setting. That is, the velocity
show that the suggested surface tension evaluation belmeaesvector of the corner particles never flips over to point away
physically correct way, and that the simulations are statds from the center. The corresponding evolution of the interna
though only one phase is solved for. First, the static pressikinetic energy can be seen in Fig. 8. The values of the méateria

V. NUMERICAL RESULTS
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y [m]

0 2 4 0 2 4
 [m] x 10~  [m] x 10~

Fig. 5. Initial configuration of SPH particles (blu@), and the interface of Fig. 7. Location of droplet interface at= 0 s (red dotted line)t = 7-10%
the droplet (full black line). s (blue dashed line), = 14 - 10~* s (magenta dash dotted line), ahd=
21-10—* s (black full line) in a simulation with large viscosity.

y [m]
Ey [J]

2.5r

0 05 1 15 2 25
t [s] x 107

Fig. 6. Initial configuration of SPH particles (blu), local isolines of the 19 8- Evolution of the intemal kinetic energy of the dreipbver time.

color function (full black lines), and surface tension fesq(red arrows).

field,
2
parameters used are = 1000 kg/m?, o = 0.05 N/m, and U, = Uy~ (1 _ y_) exp(_i) :
1= 0.3 kg/s/m. To ror o
Finally, several simulations were performed for different y 2 r
radius of the final circular droplet. The pressure in the eent Uy = *UOE ( - H) €xp (%) )

of the droplet was measured when it was deemed that a steady
state had been reached, and the result is shown in Fig. 9. With Up = 0.6 m/s, andro = 5/3 - 10~* m. The values of
o the material parameters are in this simulatios 1000 kg/m?
B. Oscillating droplet and = 0.1 kg/s/m.
A circular droplet of radius? = 4.8-10~3 m that is initially Figure 10 shows the evolution in time of the center of grav-
at rest and in equilibrium, is assigned the following vetpci ity of the upper right quadrant of the droplet. The magnitude
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10°}

Ap [Pa]

10 10
R [m]

Fig. 9. Pressure jump across the interface of a droplet ametidn of
droplet radius. Simulation results shown as a full blue livith x markers,
and analytical scaling, re@, as evaluated by Eq. 6.
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3 5
t[s] x10°
Fig. 10. Position of the center of mass of the upper right camtdof the

droplet as a function of time. Position in shown as blue full line and the
position iny as a red dashed line.

of the oscillation is decreasing with time due to viscouséar
dissipating energy.

3.5

w
T
L

Oscillation period [s]

1.5¢

1 . . . .

0.2 0.3 0.4 0.5
Surface tension [N/m]

Fig. 11. Oscillation period as a function of surface tensitrength.
Simulation (Full blue line) and analytic scaling accordilegEq. 8 (redO).

VI. CONCLUSIONS AND OPEN QUESTIONS

A novel framework for reconstructing the interface sepa-
rating different phases is proposed and evaluated. The main
feature of the reconstruction is to provide a smooth interfa
that is suitable to derive a surface tension from. It is compu
tationally more expensive than a traditional SPH formolati
but it is believed that the smoother and spatially more eorre
lated surface tension force resulting from the new approach
allows a larger time step. This would then compensate for the
additional work in setting up the RBF approximation that has
to be spent in each iteration of the solver. This is impontemt
the least in free surface flows, or in situations where twalflui
with large density difference are studied. We have showh tha
the new formulation is well suited to handle such appliasio

The appropriate value of the smoothing parameteis
something that needs more investigation. As shown above, it
should neither be too large nor too small. The upper limit
is critical in the sense that the interface may be arbitraril
distorted to the point where it bears no resemblance with the
interface provided by the SPH particles. The lower limitdg n
as important to keep track of, as in the worst case the otigina
SPH interface is recovered. This would then only degrade the
performance of the simulation, but the result should sl b
valid. For this reason a conservative approach to select the

The time period of the oscillations is inversely proportibn Value of  should be taken in the lack of an appropriate

to the strength of the surface tension,

T x ﬁ, (8)

scheme. The algorithm for placing data points for building

the approximation need some fine tuning as well, as it as
of today results in a very large number of grid points close to

the interface. This would become an even larger issue when
turning to three spatial dimensions.

or, in other words, the frequency increases with the surfacelt should also be noted that the proposed formulation result
tension. Fig. 11 shows the oscillation period of simulateid a force field that is not conservative. This may, or may
droplets as a function of the surface tension strength. Thet be an issue depending on the situation and for how long

increase in frequency is well recovered.

the simulation is run. If there exists some external foree, a
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for example drag from a surrounding fluid, the small extrg4] X. Y. Hu, S. Adami, and N. A. Adams, “Formulating surfacension

contribution to the momentum from the surface tension istmos ~ With reproducing divergence approximation for multi-phaSPH," in

likel liciibl Proc. 4t Int. SPHERIC Workshop, Nantes (France), 2009, pp. 38—44.

Ikely negligible. [5] H. Wendland, Scattered data approximation, ser. Cambridge Mono-
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