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Abstract—A novel method for reconstructing the interface
between two fluids is described and evaluated. The method uses
a different basis for approximating the color function than what
is common practice in SPH simulations. The key feature of the
new method is the ability to omit small length scale structures in
order to obtain a smoother representation. A smoother interface
is more suitable to derive a surface tension force from, as the
magnitude of the force is proportional to the curvature which is
related to the second derivative along the interface.

I. I NTRODUCTION

At an interface between two different fluids, or a fluid and a
solid wall, there is in general a surface tension associatedwith
it. Several attempts have been made to model this effect within
the framework ofSmoothed Particle Hydrodynamics (SPH).
Morris [1] describes a method where the surface tension
is modeled on a macroscopic level using the curvature of
the interface. Tartakovsky and Meakin [2] model the surface
tension as inter-particle forces, which cancel out in the bulk of
the fluid. Both methods are so-calledContinuum Surface Force
(CSF) methods [3], where the surface tension is modeled as
a volume force in a narrow region close to the interface. In
this way more particles than those immediately close to the
interface experience the surface tension.

The method described here is similar to that of Morris in
that it attempts to estimate the curvature of the interface in
a macroscopic sense. The general motivation for doing so is
that the surface tension force acting on a fluid element can be
written

Fs = σκn̂ −∇Sσ, (1)

whereσ is surface tension coefficient,κ is the mean curvature
of the interface,̂n is the interface normal and∇S is the inter-
face tangential differential operator. The latter term, known as
the Marangoni effect, is in the following assumed to be zero
and is not considered.

The surface acting as an interface between the different
phases is tracked by means of acolor function, C(x). Each
of the phases is assigned a different color which is propagated
with the fluid. In a Lagrangian method, such as SPH, this
is particularly easy as each particle is assigned a color at
the start of the simulation and it is then kept at that same
color throughout the simulation. The color field is then used

to evaluate the surface tension. The direction of the surface
tension force is evaluated as the gradient of the color function,
and the strength is proportional to the second derivative along
the interface. Therefore it is important to have a sufficiently
smooth color function that does not vary too rapidly in space
compared to the size of the SPH particles.

The standard SPH framework offers a couple of different
options for discretization of the curvature and surface normals
based on the color function [1], [4]. They all have in common
that the length scale of the correlation of the color function
is of the same order as the size of the particles. The reason
for this is that the color field is determined from the particles
alone, using SPH interpolation. However, the length scale of
the second derivative will be much shorter, and as a result the
estimate of the curvature will be strongly dependent on the
particle distribution.

The remedy to this problem suggested here is to use a
different basis for interpolating and/or approximating the color
function. The framework chosen isRadial Basis Functions
(RBF) [5], which shares some common features with SPH.
One significant advantage of the RBF approach is the possi-
bility to introduce a relaxation parameter that can be varied
continuously, resulting in pure interpolation in one limit, and
a very smooth, but crude approximation in the other limit.
This parameter is then used to obtain a reconstruction of the
interface having appropriate smoothness on the length scale of
the SPH particle radius.

The smoothness is particularly important if the two phases
solved for have a large density difference. If, for example,
water droplets in air are studied, the density ratio is about
1000 to 1, and depending on the situation the air flow may have
negligible influence on the water droplets. If that is the case,
it is enough to solve for the denser phase, in effect treating
the other as massless. This will in the following be the case;
only the denser phase is treated, turning the interface intoa
free surface.

The outline of the paper is as follows: In Section II
the governing equations and their discretization is described.
Section III gives an overview of the RBF results relevant to the
present work. In Section IV the reconstruction of the interface
is described and the expression for the surface tension force
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is stated. Section V gives some numerical results for two test
cases, and Section VI concludes the paper with a discussion
and some suggestions for areas where more work is needed.

II. GOVERNING EQUATIONS ANDDISCRETIZATION

The equations to solve are the incompressible, isothermal,
Navier-Stokes (N-S) equations in a moving Lagrangian frame,

∂v

∂t
=

1

ρ

[

µ∇2v + Fs −∇p
]

+ g (2a)

∂ρ

∂t
= −ρ∇·v = 0, (2b)

wherev is the fluid velocity,t is time, ρ is the fluid density,
µ is the dynamic viscosity,Fs is the surface tension force,p
is the pressure, andg is the gravitational acceleration.

The discretization method is SPH, in which particles carry
physical properties such as density, velocity and color. The
color is used to track different phases, each assigned its color
according to the formula,

Cα = α,

whereα enumerates the phases. Central to the concept of SPH
is interpolation among the particles, or interpolation points as
they are also known as. The standard way of obtaining the
value of a physical quantity at a positionx in space is to
evaluate the interpolation,

A(x) =

N
∑

j=1

AjVj W (Rj) ,

where Vj = mj/ρj is the volume occupied by particlej,
W (·) is the kernel function,hj is the particle radius,Rj =
|x − xj | /hj the scaled distance to the particle, andAj is the
value ofA at particlej.

In the present work all particles are assigned the same mass,
mj = m, and radius,hj = h. A quintic spline kernel [6],

W (R) = α
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with normalizationα = 7/(478πh2) in two spatial dimen-
sions, is used in the simulations. The radius of support for
this kernel is3, which means that particles within range of3h
contributes when evaluating the SPH interpolation for each
particle. In two spatial dimensions this amounts to about25
other neighboring particles within the domain of support.

The N-S equations are solved as described by Cummins
and Rudman [7], where the momentum equation is first solved
without the pressure gradient term. An intermediate velocity
field, v∗, is obtained which in general is not divergence free.
A pressure Poisson equation focusing on a divergence free
velocity field in Eq. 2b,

∇ ·
(

1

ρ
∇p

)

=
∇ · v∗

∆t
,

where∆t is the time step, is solved which gives a pressure
that projects out the divergence of the intermediate velocity.
The update formula is then

vt+∆t = v∗ − ∆t
1

ρ
∇p,

wherevt+∆t is the velocity field at the next time step.
The viscosity term of Eq. 2a is discretized as

µ

ρi

∇2vi =

N
∑

j=1

8µm
(vi − vj)

(ρi + ρj)
2

(xi − xj) · ∇W (Rij)
(

|xi − xj |2 + ζ2h2
) ,

assuming constant viscosityµ. The argument to the kernel
function Rij , is the distance between particlesi and j and
the term involving the small quantityζ2 of the order10−2 in
the denominator is added to avoid singularities for particles
placed close together.

The pressure gradient term is evaluated as

1

ρi

∇pi =

N
∑

j=1

m

(

pi

ρ2
i

+
pj

ρ2
j

)

∇W (Rij) .

The treatment of the surface tension force is described in
section IV-B, but first some more theory has to be described.

III. OVERVIEW OF RADIAL BASIS FUNCTIONS

The Radial Basis Function (RBF) framework is in some
sense very similar to that of SPH. Both methods rely on
interpolation points spread out in space, and they do not have
to be regularly distributed on a grid. Here, only the theory
needed for the application at hand is described and the reader
is referred to [5], [8], [9] for a more thorough description.

A. Interpolation

At each interpolation point a radial basis function is cen-
tered, and a weight is associated to it. As in SPH, the function
value at a pointx is obtained by evaluating a sum over the
interpolation points,

f(x) ≈ S(x) =

N
∑

i=1

λiφ (ri) + p (x) ,

wheref(x) is the true function,S(x) its interpolation,λi are
the weights associated with the interpolation points,φ (·), is
the radial basis function,ri = |x − xi| is the distance to the
center of particlei located atxi, and p (x) is a low degree
polynomial. The polynomial term may or may not be needed
depending on the choice ofφ. If, for example, a Gaussian
is chosen, the polynomial part is not needed, but for a cubic
spline,φ (r) = r3, as is used in the present work, a polynomial
of degree 1 is added.
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Fig. 1. Interpolation (full blue line) and approximation (dashed red line) of
data points (black×) corresponding to a random walk in one dimension. By
approximating the data a smoother function is obtained, which still recovers
the overall trend and some of the major features.

B. Approximation

Connected to each choice ofφ is a native space,Nφ,
equipped with a semi-norm. The RBF interpolant is the
function that interpolates the data and has the minimal native
space norm,

S = arg min
S̃(xk)=fk

∣

∣S̃
∣

∣

Nφ
.

The native space norm can be said to be a measure of bumpi-
ness of the interpolation, which makes the above criterion to
select the least bumpy interpolant of all possible choices.As
comparison we mention that cubic spline interpolation results
in an interpolation that minimizes theL2-norm of the second
derivative, as explained in [5, p. 9].

However, there is of course a lower limit to how smooth
the interpolant can be, given the data to interpolate. To obtain
an even smoother reconstruction of the data we must therefore
relax the interpolation criterion and turn to approximation. If
we include an error vector in the definition of the interpolation
criterion,

S(xk) = fk + ek, (3)

we get an approximation to the data, and the error at each
point can, in some sense, be used to smoothS(x). An example
is shown in Fig. 1 where scattered data in one dimension is
both interpolated and approximated in order to demonstratethe
effect. The difference between the approximation (red dashed
line in Fig. 1) and the data at each point is the errorek.

Mathematically the approximation condition in Eq. 3 can
be stated in the RBF framework as

S = arg min
S̃(xk)=fk+ek

η
∣

∣S̃
∣

∣

2

Nφ
+ (1 − η) |e|2l2 .

Here the parameterη ∈ (0, 1) changes from putting all the
weight on the error asη → 0+, to only measure the native

space norm asη → 1−. In the lower limit, the minimum
|e|2l2 = 0 is recovered for pure interpolation. In the upper
limit the bumpiness is minimized without consideration of the
error and the smoothest approximation available is obtained.
If a cubic spline if chosen forφ(r) this is a polynomial of
degree at most one.

A more detailed discussion on these approximation features
of RBF can be found in [10].

C. Derivatives

In order to obtain derivatives of the reconstructed function
the approximation is differentiated, as in SPH, and one obtains
an exact derivative of an approximate function. The expres-
sions for the gradient and Hessian are, respectively,

∇S(x) =

N
∑

i=1

λi

(x − xi)

ri

dφ (ri)

dr
+ ∇p (x) ,

H(S(x)) =
N
∑

i=1

λi

[

(x − xi) ⊗ (x − xi)

r2
i

(

d2φ (ri)

dr2
− 1

ri

dφ (ri)

dr

)

+
I

ri

dφ (ri)

dr

]

+ H(p(x)) ,

where (· ⊗ ·) denotes the outer product andI the identity
matrix. If p(x) is a linear polynomial the termH(p(x))
vanishes.

If a cubic spline is chosen forφ, all terms in the expressions
for the gradient and Hessian are bounded and otherwise well
behaved, and there is reason to believe that the true derivatives
of the interpolated function are well recovered for reasonably
smooth interpolation data.

IV. I NTERFACE RECONSTRUCTION

The interface between different phases is reconstructed by
means of an implicit surface, defined as

Γ =
{

x ∈ Ω : C̃ (x) = CI

}

,

whereC̃ (x) is the approximate color function andCI is the
mean value of the color of the two fluids on either side of the
interface.C̃ is defined as an RBF approximation of the color
function as defined by the SPH particles.

A. Approximation of the color function

In order to build the approximation, the color function is
evaluated by an SPH interpolation formula on a fine grid
covering the whole computational domain. The expression
used to evaluate the color function is

C (x) =

N
∑

i=1

Ci V n W

( |x − xi|
h

)

,

where Ci is the color of particlei, and V n is its nominal
volume. As the incompressible Navier-Stokes equations are
solved the nominal volume of each particle should be the same
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Fig. 2. Zoom in on points used to reconstruct the interface. Points shown
as blue◦ are SPH particles and positions shown as black× are data points
for the RBF approximation.

as its actual, time dependent, volume, but in practice the two
differs for particles close to the interface. To avoid a spurious
increase of the color function close to the interface the nominal
volume, V n = m/ρ0, is used instead of the more frequent
choiceVi = m/ρi.

As only the region close to the interface is of interest, only
grid points having a numerical value of the color function close
to CI are retained to build the approximation upon, see Fig.
2. As the interface is defined implicitly it is important to have
a reliable gradient of the approximated color function at the
interface. This is why on average three data points across the
interface are retained; one on the outside having a value less
thanCI , one close to or at the interface, and one on the inside
having a larger value. In practice, 10 times higher resolution of
the evaluation grid compared to the SPH particles seems to be
a suitable choice. In the tangential direction of the interface
the number of data points is not as crucial, and a potential
improvement is to reduce the resolution in that direction.

The approximation feature of the RBF framework is utilized
at this point, and a value of the parameterη is chosen to give
a good trade off between local features of the interface and
smoothness of the approximation. A parameter study is shown
in Fig. 3, where the reconstructed interface of a non-convex
droplet is shown for three different values ofη. It is clear
that it is crucial to neither underestimate nor overestimate its
value as it affects both the location and the local shape of the
interface.

B. Surface tension force

Given the reconstructed interface the surface tension force
can be evaluated. The direction of the force is normal to the
interface, and the strength is proportional to its curvature, as
stated in Eq. 1. Here,κ is taken to be the mean curvature in
higher dimensions.

The normal vector of the interface is given by the gradient

Fig. 3. Dependence of the reconstructed interface on the value of η. In the
limit of η → 0+ (red dashed line), corresponding to pure interpolation, an
interface that includes all the local features of the SPH particles (blue◦)
is obtained. The largest value,η = 1 − 5 ·10

−5 (black dash-dotted line),
gives an interface that incorrectly takes a short cut in the concave region. The
intermediate value,η = 1 − 5·10−3 (blue full line) represents a good trade
off solution. Note that the value ofη that corresponds to a given level of
smoothing depends on the separation of the particles, hereh = 6.25·10−5.

of the color function. The curvature of the surface is some-
what more complicated to evaluate, however. What we have
available is the Hessian of the color function and the surface
normal. These can be combined to form the expression for the
mean curvature [11],

κ =
∇CT H(C) ∇C − |∇C|2 Trace (H(C))

(d − 1) |∇C|3
, (4)

whered is the number of spatial dimensions.
The surface tension force is spread out over a narrow band

close to the interface according to the CSF approach where a
surface delta function is used [3]. The requirement that hasto
be fulfilled is that

∫

A

F sa(x) dA =

∫

V

F sv(x) dV, (5)

as the width of the band approaches zero. Here,F sa is
the surface tension force when acting only on the interface,
and F sv is the corresponding volume force when acting in
the narrow band. The usual expression for the surface delta
function when going fromF sa to F sv is |∇C| / [C], where
[C] is the jump in the color function across the interface.

At this point we have to be careful and bear in mind that
we have two different representations of the color function.
First of all we have the SPH interpolation, denotedCSPH, but
also the corresponding RBF approximation,CRBF. From the
above reasoning the RBF version should have better properties
for differentiation. It is not appropriate, however, to useCRBF

in the surface delta function, as we do not requireCRBF to
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approach the value of the SPH color function at some distance
away from the interface. Indeed, the only thing required of
CRBF is to give an as good as possible prediction of the
direction and the curvature of the interface. In Fig. 4 both
representations of the color function are shown on a line
through the center of the droplet and it is clearly visible how
the RBF approximation mis predicts the color function away
from the interface. For this reason,CRBF is used to determine
the direction and strength of the surface tension, andCSPH is
used in the surface delta function.

An additional complication is that as only the phase within
the droplet is solved for, no particles on the outside of the
interface take part in the surface tension force. This can be
seen in Fig. 4 whereCSPH approaches zero some distance
away from the last SPH particle on each side. This has the
consequence that Eq. 5 is not fulfilled, since the suggested
surface delta function is not properly normalized. As a solu-
tion, a correction factor,χ, is introduced which accounts for
the lack of the second phase. This approach can be viewed as
taking the limit of the suggestion of Hu et. al. [4], where they
discuss the contribution to the surface tension force on each
side of an interface separating two phases having different
density.

To summarize:

1) CRBF is used for evaluating the interface normal and the
curvature,

2) CSPH is used in the surface delta function,
3) χ is introduced to account for the lack of contribution to

the surface tension from the (non-existing) phase outside
the droplet.

By combining this into an expression for the surface tension
force, we arrive at

F s = σκRBF
∇CRBF

|∇CRBF|
χ |∇CSPH|

[CSPH]
,

where κRBF indicates that Eq. 4 should be evaluated with
CRBF.

When evaluating the surface tension force at each SPH
particle two different approaches to where the curvature is
evaluated could be taken. The curvature could be evaluated at
the interface,CRBF = CI , and projected to the location of the
particle. Alternatively, it could be evaluated at the position of
the particle, in general at some small distance away from the
interface. The difference between the two approaches is not
expected to be too large because of the surface delta function
that limits the surface tension to act only close to the interface.
For this reason the second alternative is taken here since itis
more straightforward to implement as it lacks the projection
step.

V. NUMERICAL RESULTS

Two test cases will be considered, both of which aims to
show that the suggested surface tension evaluation behavesin a
physically correct way, and that the simulations are stableeven
though only one phase is solved for. First, the static pressure

−20 −15 −10 −5 0 5 10 15 20
−2

−1

0

1

2

3

4

5

x/h

C
Fig. 4. Color function on a line through the center of a drop. SPH particle
color (blue ◦), SPH interpolation (full red line) and RBF approximation
(dashed black line). The RBF approximation is only useful topredict the
color level at the interface.

jump over the interface of a droplet is verified. The second
test case considers the time period of a droplet oscillatingdue
to surface tension.

A. Pressure jump over an interface

The pressure jump across the interface of a static droplet
scales with the droplet radius,R, according to Laplace’s law,

∆p ∝ 1

R
(6)

The simulation to verify the result is set up such that the SPH
particles are initially in non-equilibrium, and surface tension
and viscous forces act on the droplet to form a circular shape.

The SPH particles are placed at rest in a square on a
Cartesian grid, see Fig. 5 where the initial configuration is
shown together with the interface of the droplet as defined by
CRBF. In Fig. 6 the surface tension forces can be seen as well
as the local isolines ofCRBF running straight through the SPH
particles. As expected, the surface tension acts mostly on the
corners of the square. In this configuration, the effect of the
smoothing parameterη in the RBF approximation is to limit
the curvature at the corner somewhat, and allow more SPH
particles to take part in the surface tension force. Here we use
η = 1 − 10−3.

After some time a circular droplet is formed and the pressure
inside the droplet is higher than on the outside. Depending
on the ratio of viscosity to surface tension strength, more or
less oscillations occur before reaching the final circular shape.
Figure 7 shows the evolution of the interface,CRBF(x) =
0.5, over time in an overdamped setting. That is, the velocity
vector of the corner particles never flips over to point away
from the center. The corresponding evolution of the internal
kinetic energy can be seen in Fig. 8. The values of the material
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Fig. 5. Initial configuration of SPH particles (blue◦), and the interface of
the droplet (full black line).
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Fig. 6. Initial configuration of SPH particles (blue◦), local isolines of the
color function (full black lines), and surface tension forces (red arrows).

parameters used areρ = 1000 kg/m3, σ = 0.05 N/m, and
µ = 0.3 kg/s/m.

Finally, several simulations were performed for different
radius of the final circular droplet. The pressure in the center
of the droplet was measured when it was deemed that a steady
state had been reached, and the result is shown in Fig. 9.

B. Oscillating droplet

A circular droplet of radiusR = 4.8·10−3 m that is initially
at rest and in equilibrium, is assigned the following velocity
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Fig. 7. Location of droplet interface att = 0 s (red dotted line),t = 7·10
−4

s (blue dashed line),t = 14 · 10−4 s (magenta dash dotted line), andt =

21 · 10−4 s (black full line) in a simulation with large viscosity.
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Fig. 8. Evolution of the internal kinetic energy of the droplet over time.

field,

Ux = U0
x

r0

(

1 − y2

r0r

)

exp

(

− r

r0

)

,

Uy = −U0
y

r0

(

1 − x2

r0r

)

exp

(

− r

r0

)

,

with U0 = 0.6 m/s, andr0 = 5/3 · 10−4 m. The values of
the material parameters are in this simulationρ = 1000 kg/m3

andµ = 0.1 kg/s/m.
Figure 10 shows the evolution in time of the center of grav-

ity of the upper right quadrant of the droplet. The magnitude
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Fig. 9. Pressure jump across the interface of a droplet as a function of
droplet radius. Simulation results shown as a full blue linewith × markers,
and analytical scaling, red◦, as evaluated by Eq. 6.
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Fig. 10. Position of the center of mass of the upper right quadrant of the
droplet as a function of time. Position inx shown as blue full line and the
position iny as a red dashed line.

of the oscillation is decreasing with time due to viscous forces
dissipating energy.

The time period of the oscillations is inversely proportional
to the strength of the surface tension,

T ∝ 1√
σ

, (8)

or, in other words, the frequency increases with the surface
tension. Fig. 11 shows the oscillation period of simulated
droplets as a function of the surface tension strength. The
increase in frequency is well recovered.
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Fig. 11. Oscillation period as a function of surface tensionstrength.
Simulation (Full blue line) and analytic scaling accordingto Eq. 8 (red◦).

VI. CONCLUSIONS AND OPEN QUESTIONS

A novel framework for reconstructing the interface sepa-
rating different phases is proposed and evaluated. The main
feature of the reconstruction is to provide a smooth interface
that is suitable to derive a surface tension from. It is compu-
tationally more expensive than a traditional SPH formulation,
but it is believed that the smoother and spatially more corre-
lated surface tension force resulting from the new approach
allows a larger time step. This would then compensate for the
additional work in setting up the RBF approximation that has
to be spent in each iteration of the solver. This is importantnot
the least in free surface flows, or in situations where two fluids
with large density difference are studied. We have shown that
the new formulation is well suited to handle such applications.

The appropriate value of the smoothing parameterη is
something that needs more investigation. As shown above, it
should neither be too large nor too small. The upper limit
is critical in the sense that the interface may be arbitrarily
distorted to the point where it bears no resemblance with the
interface provided by the SPH particles. The lower limit is not
as important to keep track of, as in the worst case the original
SPH interface is recovered. This would then only degrade the
performance of the simulation, but the result should still be
valid. For this reason a conservative approach to select the
value of η should be taken in the lack of an appropriate
scheme. The algorithm for placing data points for building
the approximation need some fine tuning as well, as it as
of today results in a very large number of grid points close to
the interface. This would become an even larger issue when
turning to three spatial dimensions.

It should also be noted that the proposed formulation results
in a force field that is not conservative. This may, or may
not be an issue depending on the situation and for how long
the simulation is run. If there exists some external force, as
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for example drag from a surrounding fluid, the small extra
contribution to the momentum from the surface tension is most
likely negligible.
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