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Abstract. The present paper presents a comparison of two one-equation models in recirculating
flows. Special attention is given to their ability to predict the reverse transport of turbulent en-
ergy (’backscatter’). This work is part of the project “Large Eddy Simulation for Computing the
Flow Around Vehicles” (htt p : P�P www Q t f d Q chalmers Q se P ˜lada P pro jects P sinisa P proright Q html) in
collaboration between the Department of Thermo and Fluid Dynamics at Chalmers and the CFD
group at Volvo Car Corporation.

Introduction

The dynamic model proposed by Germano [4] has numerical stability problems.
These problems are caused by negative values and a large fluctuation in the dy-
namic coefficient, C. To ensure numerical stability, the dynamic coefficient must
be averaged in some homogeneous direction or be clipped in an ad hoc manner.
The averaging is not applicable to three-dimensional flows, where there are no
homogeneous directions. Furthermore, ad hoc modification should be avoided if
we wish to develop ’universal’ turbulence models. In his attempt to improve the
dynamic model, Ghosal et al [5] attempted to optimize the equation for C globally,
but still with the constraint that C R 0. This optimization gave Fredholm’s integral
equation of the second kind, which is very expensive to solve.

S
This work was carried out during the author’s stay at Chalmers.
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Subgrid models and their properties

Two one-equation subgrid models are used in the present study. The first model
was developed by Davidson [1] (OEM). This model has also successfully been ap-
plied to fully developed channel flow [9] and vortex shedding flow around square
cylinders [16]. The modeled transport equation for the subgrid kinetic energy, ksgs,
reads

∂ksgs

∂t
���

ūjksgs ��� j � ���
	 C � xyz∆k
1
2
sgs
� ν � � ksgs � � j � � j � 2νsgsS̄i j S̄i j 
 C O

k
3
2
sgs

∆ � (1)

Here,
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2Mi jMi j
; Mi j �����∆ K
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where Li j denotes the dynamic Leonard stresses and K � 1
2 Tii is the subgrid kinetic

energy on the test level. The coefficient, C O , has the form
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with

Pksgs ��
 τa
i j ūi � j; τa

i j � T f
�
ui � u j ����
 2C∆k

1
2
sgsS̄i j � (4)

To ensure numerical stability, a constant value of C in space, (

	
C � xyz), is used

in the momentum equations, which is computed with the requirement that the
production in the whole computational domain remains the same, i.e.	

2C∆k
1
2
sgsS̄i j S̄i j � xyz � 2

	
C � xyz

	
∆k

1
2
sgsS̄i j S̄i j � xyz � (5)

All local dynamic information is included through the source terms. This is phys-
ically more sound since large local variations in C appear only in the source
term and the effect of the large fluctuations in the dynamic coefficients will be
smoothed out. The coefficients in the one-equation model affect the stresses in
only an indirect way. In the standard dynamic model, the C coefficient is linearly
proportional to the stresses.
The second model studied in this paper is the localized dynamic ksgs 
 equation
model (LDKM) proposed by Menon and Kim [11]. In the LDKM, the following
transport equation is solved:

∂ksgs

∂t
���
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where

C � 1
2

La
i jσi j

σi jσi j
; σi j � 
 ���∆ k

1
2
test � �̄Si j (7)

and

C O � ���∆
k

3
2
test

� ν � νsgs ���� � �∂ ūi
∂x j

∂ ūj
∂xi

 ∂ ���̄ui

∂x j

∂ ���̄uj
∂xi
�� � (8)

If we follow Vreman [17], SGS models should share some basic properties with
the exact SGS stress tensor, τi j .
i � Since τi j is a symmetric tensor, the modeled τi j should also be symmetric.
ii � The Navier - Stokes equations and their filtered form are Galilean invariant.
They should retain this property even after τi j is replaced by the model.
iii � Since τi j should remain positive definite for positive filters, the model for τi j

should remain positive definite as well if a positive filter is applied.
Both models fulfill symmetry of τi j and Galilean invariants. They also fulfill
realizability conditions if following constraints are put on coefficient C: [8]

k1
�
2

sgs

3∆S̄33

�
C

� k1
�
2

sgs

3∆S̄11
� S̄11 � S̄22 � S̄33 � S̄33

�
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and
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sgs

∆ � S̄ � (10)

Results

This work uses a 3-D finite-volume method for solving the incompressible Navier-
Stokes equations. Both convective and viscous plus subgrid fluxes are approxi-
mated by central differences of second-order accuracy. A Crank-Nicolson second-
order scheme was used for time integration. The momentum equations are solved
with the Gauss-Seidel method whereas a multigrid V-cycle is used for the accel-
eration of convergence when solving the pressure equation [2, 3, 7].

Flow around a surface-mounted cube

The first case selected for simulation in this work was the flow around a surface-
mounted cubical obstacle placed on a channel wall at Re � UbH � ν � 40000 based
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TABLE I. Mean and RMS values of lift and drag coefficients and
lengths for reattachment and separation (see Fig. 5a).

Model � CD � t CD � rms � CL � t CL � rms XF1 XT XR1

Exp. - - - - 1.04 - 1.61

OEM 1.14 0.062 0.92 0.038 0.97 0.92 1.44

LDKM 1.16 0.070 0.91 0.040 1.06 0.92 1.38

on the incoming mean bulk velocity, Ub, and the obstacle height, H. The cube is
located between x � 0 and x � 1 and the channel height is h � 2H . A computa-
tional domain with an upstream length of x1 � H � 3 and a downstream length of
x2 � H � 6 was used, while the span-wise width was set to b � H � 7. Even if the
geometry of the flow configuration is rather simple, the flow is physically quite
complex with multiple separation regions and vortices. A mesh of 82 � 50 � 66
nodes was used. Near the walls of the cube y �min � 3 � 7, while on the top of the cube
y �min � 5 � 2. The time step was set to 0.02, which gave a maximum CFL number of
approximately 2.

BOUNDARY CONDITIONS

The experimental profile (constant in time) was used at the inlet. The lateral
boundaries were treated as slip surfaces. At the downstream boundary, a convec-
tive boundary condition ∂ui

∂t
�

c ∂ui
∂x � 0 was used. Here, c is the mean bulk velocity

Ub. No-slip conditions were used at the upper and lower surfaces.

GLOBAL QUANTITIES

Both OEM [1] and LDKM [11] are used in the present study. The mean and RMS
lift and drag coefficients are presented in Table I. The time history of CD and CL

is given in Fig. 1a. There are no experimental values for drag and lift coefficients
known to the authors. The values of mean and RMS values for OEM and LDKM
are very similar.

STATISTICS OF THE MEAN FLOW

A series of time-averaged resolved velocities and turbulent stresses are computed
and compared with the experiments. These results are presented in Fig. 2. As can
be seen, the predictions without a model give poor agreement, whereas the two
subgrid models give good agreement with experiments. The separation region at
the top of the cube without a model is much too thin. This is probably because,
without a model, the resolved fluctuations are not damped by any subgrid vis-
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Figure 1. a) Time history of CD and CL using OEM (above) and LDKM (below). b) Power density
spectrum at one chosen cell.

cosity, and the resolved fluctuations consequently become too large. This gives
too large a turbulent diffusion, making the separation region smaller and thinner.
It can be seen in Fig. 2 that the resolved shear stress

	
u � v � � t without a model

is not larger than those obtained with a model; however, care should be taken
when comparing these, since the time-averaged velocity fields are very different.
Instead, we could argue as follows: the resolved shear stress without a model is
of the same magnitude as with a model, although the velocity gradient of the
time-averaged velocity field without a model is much smaller; thus, taking into
account the difference in the time averaged velocity fields, the resolved shear
stress without a model is indeed larger. Both one-equation models gave similar
results, but OEM gave perhaps slightly better results downstream in the wake
region. The effect of the models is noticeable in a comparison with the calculation
without a model. These differences are especially noticeable close to the roof of
the cube and far downstream. The case studied in this paper was a test case at
the 6th ERCOFTAC/IAHR/COST Workshop on Refined Flow Modelling in Delft
(1997) using RANS Models. The velocity profiles, especially further downstream
of the cube, are much better predicted by LES in the present work. The turbulence
stresses are in significantly better agreement with the experimental values. Oscil-
lations are present in the mean velocity profile

	
ū �t for x � 
 1 � 0, as can be seen

in Fig. 2. This is probably due to a combination of coarse mesh in that part of the
domain and use of the central differencing scheme. In the case of shear stresses
u � v � , both the resolved quantity

	
u � v � � t and the SGS quantity

	
τ12 � t were computed

as suggested by Reynolds [13]. We also computed

	
u � 2 � t � 	 τ11 � t , 	 v � 2 � t � 	 τ22 � t

and

	
w � 2 � t � 	 τ33 � t and compared them with the experiments. Generally, the re-

sults for the velocities are in much better agreement with the experiment than the
stresses. The difference between resolved mean turbulent shear stress and total
(i.e. resolved plus SGS) turbulent shear stress is almost negligible.
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In Fig. 3, the oil-film visualization by Martinuzzi and Tropea [10] is compared
with streamlines projected onto the floor. The predicted streamline pictures show
most of the details observed in the experiments. In the experiments, Martinuzzi
and Tropea observed three main curves in front the cube. Curve A corresponds
to the primary, upstream separation curve and curve B corresponds to the ap-
proximate time-averaged location of the horseshoe vortex. Curve C indicates a
secondary recirculation at the front base of the cube [10]. Curves A and C are
very clearly visible in the picture of the predicted streamlines, while curve B is
somewhat weaker. The uncertainty of the experiment in this region is very large,
and the flow between curves A and B is unstable. From this we conclude that
it is not clear whether experiments or LES give better results in this part of the
domain. The contour of the recirculation downstream of the cube is also clearly
visible. Because of the inability to average over statistically equivalent points,
the symmetry was used as a measure of whether the simulation was run for a
sufficiently long time. The averaging time in the simulation was 150H � Ub (3750
time steps). As can be seen in Fig. 3, the surface streamlines downstream the cube
are not fully symmetric, which indicates that the number of averaging samples is
too small. Figure 4, plots the streamlines in the symmetry plane. The arch vortices
and the head of the horseshoe are clearly visible in this picture. The re-attachment
length, XR1, and separation lengths, XF1, and XT (Fig. 5a), are determined from
the distribution of the skin friction coefficient C f � 2τw � ρUb shown in Fig. 5b).
Comparisons of different time-averaged recirculation lengths with experiments
are shown in Table I.

THE REVERSE FLOW OF ENERGY

Special care was given to the phenomenon of ’backscatter’. It is well known that,
in addition to the transport of the turbulent energy from large to small scales,
the reverse transport is also possible (’backscatter’). Both one-equation models
are able to predict negative production (’backscatter’). Depending on how large a
fraction of the total energy transport is contained in the reverse transport, backscat-
ter can be of importance. Constant C in the model νsgs � C∆k1

�
2

sgs is allowed to be
negative in the production term in both OEM and LDKM. When C becomes nega-
tive, it is believed that it represents ’backscatter’. Production term Pksgs ��
 τa

i j ūi � j
was studied both instantaneously and in a time-averaged way in Figs. 6b), 7 and
8. The LDKM gives a smaller magnitude of negative Pksgs � 
 τa

i j ūi � j than OEM.
The strongest backscatter occurs near the front vertical corners, see Figs. 6b, 7
and 8. The lower values of negative Pksgs follow the horseshoe in the case of OEM,
Fig. 7b). One iso-surface of the mean production term for LDKM is shown in
Fig. 8a. It can be seen that the strongest backscatter is more uniformly distributed
near the front vertical corners than in OEM. In Fig. 8b) it can be seen that LDKM
predicts backscatter far upstream of the cube, in regions where the grid is refined.
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Figure 2. Surface-mounted cube. Comparison between OEM (dashed line), LDKM (solid line)
and calculation without model (dash-dotted line).



70 S. KRAJNOVIĆ, D. MÜLLER AND L. DAVIDSON

a) b)

c) d)
Figure 3. a) Oil-film visualization by Martinuzzi and Tropea compared with streamlines of the
mean flow projected onto the channel floor for LES with b) OEM, c) LDKM and d) without a
model.

Thus LDKM seems to be more sensitive to grid refinement than OEM; this is
because LDKM is more local than OEM. One can also find low-value backscatter
located in the recirculation zone in front and on the roof of the cube, Fig. 8b).

SENSITIVITY TO GRID REFINEMENT

Sensitivity to grid refinement in both time and space was studied. A similar study
using the Smagorinsky model is reported in [7]. It is very difficult to study sen-
sitivity to grid refinement because refining the grid also changes the model. This

is because ∆ in νsgs � C∆k
1
2
sgs � S̄ � is defined as ∆ � � ∆1∆2∆3 � 1 �

3. It is possible to
define ∆̄ so that it is mesh independent, but this would drastically increase the cost
of the calculation. We found that this mesh with only 270600 nodes gave results
comparable with results from the LES workshops [6, 14], where some participants
used more than 106 nodes. In the present study, a refinement of the mesh did not
produced obviously better results. The power density spectrum for the resolved
streamwise fluctuation u � 2 is shown in Fig. 1b. We can see that there is a tendency
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to ’inertial region’ (Φ ∝ n � � 5
�
3 � ).

NUMERICAL STABILITY

The time history of the dynamic coefficient, C, and the dissipation coefficient, C O ,
are shown for the two subgrid models in Fig. 6. It can be seen that the time history
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of C is much smoother for LDKM than for OEM. In OEM, similarity assumptions

are made between the grid level (length scale
���

∆, velocity scale k
1
2
sgs) and the test

level (length scale
��� ���∆ , velocity scale K

1
2 ). However, in LDKM, the similarity

assumption is made between the grid level and the intermediate level (length scale

∆
����� ���∆ , velocity scale

�
0 � 5Lkk � 1

2 ).
The denominator in Eq. 7, σi jσi j, does not tend to zero as much as the denomina-
tor, Mi jMi j , in OEM (Eq. 2), which explains why C does not oscillate as much in
LDKM. In LDKM, the local coefficient is used in the momentum equation (with
the restriction ν � νsgs � 0), which makes the model less stable. The time history
of coefficient C O in front of the dissipation term (see Eqs. 3 and 8) is also smoother
in LDKM than in OEM, although the difference is much smaller than for C. The
dissipation coefficient often tends to zero (it is restricted so that C O � 0) but never
becomes larger than 5.

Conclusions

A comparison of two one-equation subgrid models is made. Both models gave
results in very good agreement with experiments. Results for statistics of the
mean flow in computation with the two models were compared with computation
without a model. The prediction with the two models gave better results then
computation without a model. Poor agreement in the wake region is due to the
coarse mesh in that part of the domain.
One-equation SGS models offer a number of advantages over the Germano model.

1. One-equation models can predict backscattering.

2. In the Germano model the dynamic coefficient must be clipped and/or av-
eraged in the homogeneous direction(s). In one-equation models the local
values of the dynamic coefficients can be used.

3. Although an additional transport equation need to be solved, one-equation
models are often computationally cheaper than the Germano model, thanks
to greater numerical stability [15].

4. The normal SGS stresses can be computed. This is important when predicting
acoustics with LES [12].
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