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Abstract. The work presented in this paper is part of the ongoing Brite- Euram project
LESFOIL. In the project, Large Eddy Simulation (LES) is used to calculate the flow
around the Aerospatiale A-profile at an angle of attack of 13.3° and a chord Reynolds
number of 2.1 - 10°.

The method used is an incompressible implicit second-order finite volume method with
a collocated grid arrangement. To suppress unphysical oscillations (mainly generated from
the leading edge area), upwinding is used in front of the airfoil and upstream of the tran-
sitton point. In the transition region, the scheme is gradually mixzed with the central
difference scheme (CDS). The non-dissipative CDS gives rise to numerical oscillations
and the boundary layer is tripped numerically. Although the transition is unnatural, the
unphysical oscillations are dampened in the area downstream of the transition.

Four simulations have been carried out, one using an approximate wall boundary con-
dition and the other three using the no-slip condition. None of the present computations
predict separation. However, the importance of the spanwise resolution is demonstrated
in these attached boundary layer simulations. Before any conclusions are drawn about the
feasibility of LES' for this case, the number of nodes in the wall-normal direction must be
increased or some other approach has to be applied in order to treat the coarse resolution
in the laminar boundary layer.
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1 INTRODUCTION

The feasibility of Large Eddy Simulations (LES) of flows around simple, 2D airfoils is
investigated in the LESFOIL project (see [1], where the project is presented). The airfoil
case chosen is the flow around the Aerospatiale A-airfoil at an angle of attack, «, of 13.3°.
The chord Reynolds number is 2.1 - 10° and the flow is subsonic with a freestream Mach
number of 0.15. These are high-lift conditions at take-off and landing. The flow around
the Aerospatiale A-airfoil has been the subject of extensive study. Different CFD codes
(steady and unsteady RANS, compressible and incompressible methods) were validated in
the EUROVAL project [2] and in the ECARP project [3] on this particular single-element
airfoil. It was found that few RANS models are capable of handling this flow problem,
mainly because of the lack of curvature effects in the eddy-viscosity models. The second-
moment closures (which do take into account curvature effects) produced the best results,
see also Refs. [4-6]. Much because of the rate at which computer power is increasing, LES
is becoming an interesting approach applicable for more complex flows.

This is a challenging case for LES owing to the high Reynolds number and because of
the different flow regimes around the airfoil, which are sketched in Fig. 1. At the leading
edge there is a very thin laminar boundary layer. On the pressure side, this boundary
layer is tripped at 30% of the chord and there is a transition to a very thin turbulent
boundary layer. On the suction side, there is a peak in the pressure near the leading
edge. The favorable pressure gradient accelerates the flow around the leading edge. In
this case the flow separates, a separation bubble is formed and, when the flow reattaches
at about 12% of the chord, the boundary layer becomes turbulent. The boundary layer
grows under the influence of an adverse pressure gradient and, at about 82.5% of the
chord, the flow separates. In the wake, downstream of the trailing edge, the low-speed
flow from the separation region on the suction side forms a mixed shear layer with the
flow from the very thin boundary layer on the pressure side.

Even at the from an aeronautical point of view low Reynolds number, a wall-resolved
LES is too expensive. The use of approximate boundary conditions in the near-wall
region is necessary and a good method of prescribing and controlling the transition is

Figure 1: Schematic sketch of the flow regimes around the Aerospatiale A-profile: 1. laminar boundary
layer, 2. laminar separation bubble, 3. transition region, 4. turbulent boundary layer, 5. separation point,
6. separation region, 7. wake region.
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needed. Still, the requirements on the mesh are demanding and result in meshes with a
large number of nodes. For this reason, an efficient numerical method with an effective
parallelization is needed.

Results from four computations on two meshes are presented, with focus on the last
three, where upwinding is used in part of the domain to prescribe the transition and
suppress unphysical oscillations. The outline of this paper is: the following two sections
summarize the numerical method and boundary conditions. The upwinding/central dif-
ference scheme is presented in section 4 and then the two meshes and an approximate
boundary condition are described in section 5 and 6, respectively. The convergence crite-
ria are discussed and speed-up results are presented in section 7. In section 8 the results
are presented and in the last section conclusions are drawn.

2 NUMERICAL METHOD

The code used is an incompressible finite volume Navier-Stokes solver called CALC-
BFC [7]. The solver is based on structured grids and the use of curvi-linear boundary fitted
coordinates. The grid arrangement is collocated and the Rhie and Chow interpolation
method [8] is used. The code is parallelised for 3D flows [9] using block decomposition and
the message passing systems PVM and MPI. For the advancement in time, the Crank-
Nicolson scheme is used and the momentum equations are discretized in space using 2nd
order difference schemes (the central difference scheme (CDS) and the van Leer scheme).
The PISO algorithm [10] is used for the pressure-velocity coupling. As a subgrid scale
model, the Smagorinsky model is used with the Smagorinsky constant equal to 0.1.

3 BOUNDARY CONDITIONS

In the computations on the UMIST mesh (see Fig. 4), no-slip condition is applied at the
airfoil wall. In the computations on the Chalmers mesh (see Fig. 6), the no-slip condition
is compared to an approximate wall boundary condition, based on the instantaneous log-
law. The inlet is specified all over the curved areas of the C-meshes. The velocities are
set to @ = cos aly, and U = sin al/y,, where Uy, is the freestream velocity. At the outlet,
a convective boundary condition is applied: % + Uoo% = 0. A Neumann boundary
condition is used for the pressure at all boundaries (2 = 0) and periodic boundary
conditions are used in the spanwise direction.

4 DISCRETIZATION SCHEMES OF THE CONVECTIVE TERMS

When the momentum equations are discretized in space using the central difference
scheme (CDS), considerable unphysical oscillations are present all over the computational
domain (see Fig. 2). The CDS is often used in LES because of its non-dissipative and
energy-conserving properties. However, the scheme is also known to produce these odd-
even oscillations (grid-to-grid oscillations or wiggles) when the resolution is poor.

To remove the unphysical oscillations in front of the airfoil and upstream of the transi-
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tion region, a bounded second-order upwind discretization scheme (the van Leer scheme)
is used in this region. The schemes are blended in the transition region, so that the
convective flux can be expressed as:

s, MM . m—1 m—1 m—1
Mmugpg +m [CWCDS — augps + (1 — a)uUDScorr:I ; (1)

where C' DS stands for the central difference scheme, U DS for the 1st-order upwind scheme
and UDScorr for the 2nd-order correction to the lower order upwind scheme (m — 1 is
the previous iteration). Here « is a blending function (0 < o < 1) and, at the extremes,
we have:

«a = 0: the van Leer scheme
o = 1: the central difference scheme with deferred correction

The blending function used in the computation on the UMIST mesh blends the two
schemes from 1 to 8 % of the chord on the suction side and from 4 to 19 % on the
pressure side.

Upwinding removes unphysical oscillations, not only in the part of the domain where
upwinding is used but also downstream of the area where the mixing between the two
schemes is applied. This can be seen in Fig. 3, where the resolved stresses in the wall-
normal direction are shown. Note that not all unphysical oscillations are abscent in the
CDS-region (mainly because of the coarse resolution in the streamwise direction). These
result in high values of the resolved stresses, in the outer parts of the boundary layer (see
Fig. 3).
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Figure 4: The UMIST mesh: 321 x 65 x 33 nodes Figure 5: The size of the cell and the distance to
(every 4th node in the i-direction and every 2nd the nearest node in dimensionless wall units along
node in the j-direction are plotted). the suction side of the airfoil wall on the UMIST

mesh (L, = 0.03c).

5 MESHES

Although the unphysical oscillations are suppressed and dampened upstream respec-
tively downstream of the transition region, the present grid, the UMIST mesh (see Fig. 4),
is far too coarse to be able to do a useful LES. The mesh consists of 321 x 65 x 33 grid-
nodes; the resolution on the suction side of the airfoil is shown in Fig. 5. In order to be
able to do a useful LES when wall functions are used, the size of the cells in the streamwise
direction near the wall should be less than 600 wall units [11]. Judging from this limit, the
resolution is very poor. Az™ exceeds 1200 and the maximum is in the transition region.
Besides, the no-slip condition is used.

A new mesh was constructed (see Fig. 6) that consists of 720 x 65 x 33 nodes, more than
twice as many nodes in the i-direction (the wrap-around-direction in the C-mesh). Fig. 7
shows the wall resolution on the suction side of the airfoil on the new mesh. Here, Az™
does not exceed 600. Az is increased linearly from the leading edge to the trailing edge on
the suction side and the stretching is very low (which is crucial for the energy conservation,
see e.g. [12]) Overall, the stretching in this direction is less than 5.9% (the maximum is in
the wake near the trailing edge). Besides the resolution in the i-direction, this is one of
the main differences as compared with the former mesh, in which the maximum stretching
is 29.2% (just downstream of the trailing edge). Other differences are that the new mesh
is refined along the wake and that the resolution in the wall-normal direction near the
trailing edge and in the wake is much coarser on the new mesh, which can be a problem
in the wake where the mixed shear layer should be sufficiently resolved.
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Figure 6: The Chalmers mesh: 720 x65x 33 nodes Figure 7: The size of the cell and the distance to
(every 4th node in the i-direction and every 2nd the nearest node in dimensionless wall units along
node in the j-direction are plotted). the suction side of the airfoil wall on the Chalmers

mesh (L, = 0.08¢).

5.1 The resolution and extension in the spanwise direction

The extent in the spanwise direction for the airfoil case was initially chosen as L, =
0.03c. Near the trailing edge, however, the boundary layer thickness, dg9, from the exper-
iments, is about 9 % of the chord, three times larger than L,. When periodic boundary
conditions are used, these conditions imply that the extent in the spanwise direction
should be wider than the largest structures in that direction. The largest scales in a
boundary layer are in the order dg9 and these scales are probably also apparent in the
spanwise direction; thus the ratio dg9/L, should at least be less than one. L, was set to
0.08¢ on the Chalmers mesh. Thirty-two cells are used in the spanwise direction for both
meshes, resulting in almost three times coarser resolution compared to the UMIST mesh
and Az} is approximately 350 on the Chalmers mesh (in Figs. 5 and 7 the wall units

(“r) are computed from the skin friction coefficient from the experimental data, the y*
and Az from the predicted friction velocity are shown in Figs. 16 and 18).

6 APPROXIMATE WALL BOUNDARY CONDITIONS

In a wall-resolved LES, the distance from the wall to the first node should be at
least less than two wall units (“z). Although the velocity profile in the viscous sublayer
(y* < 5 — 8) is linear in the mean, instantaneously this need not be the case and y*
must be less than two in order to resolve the velocity gradient close to the wall. In
addition however, in a wall-resolved LES, the structures close to the wall, especially
the important energy-producing structures, need to be sufficiently resolved. There are
streamwise counter-rotating vortices in the viscous sublayer, the streaks. These structures
have an approximate spanwise periodicy of 100 wall units and a length of 1000 wall units.
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It is important to capture these near-wall streaks as they interact with the buffer region
and are responsible for a major part of the energy production in this region through the
bursting process [13]. Other mechanisms in the buffer region are sweeps (when high-speed
fluid from the logarithmic region enters the buffer region) and ejections (when low-speed
fluid from the buffer region enters the logarithmic region). All these coherent structures
can be captured in a wall-resolved LES if the sizes of the cells closest to the wall are
within the range of 50 < Az < 150, Ay™ < 4 and 15 < AzT < 40 [11].

A wall-resolved LES of the near-wall streaks in the turbulent boundary layer on the
airfoil is not feasible owing to the required computer power. At this high Reynolds number
(Re. = 2.1 - 10°), the near-wall problem of LES is evident. The use of approximate wall
boundary conditions are necessary. Grids with a lot coarser resolution in the spanwise
and streamwise directions are then used and the first node from the wall is placed in
(the buffer region or) the logarithmic region. With such a grid, many of the coherent
structures will not be sufficiently resolved and the sublayer streaks are not resolved at all.

Numerically, when the near-wall resolution is insufficient, the correct value of the wall
shear stress (Tyau = v (0u/0y),,;) needs to be determined. The wall shear stress is
usually assumed to be correlated to the velocity in the log region through the use of a
near-wall law, e.g. the power law or the log law. In the present work the instantaneous
log law is used in the log region (y™ > 30):

+B, (2)

where kK = 0.4, B = 5.2.

The wall-normal cell size (Ay) at the leading and trailing edge must be very small in
order to sufficiently resolve the very thin laminar boundary layer and the mixed shear
layer. When generating meshes, this will result in the cells having small Ay in the wall-
bounded turbulent boundary layers as well. For that reason, the y* may often be located
in the buffer region (5 < y™ < 30) in which the following wall law is used:

Iny™
C

+:

U

+D. (3)

Eq. 3 is a matching between the log law (Eq. 2) and the linear law in the viscous sublayer
(y" <5):

ut = y+ . (4)

The constants in Eq. 3 becomes C' =In6/(=1n30+ B —5) and D =5 — C'ln5.

These wall functions (Egs. 2-4) are compared to the no-slip condition in the compu-
tations on the Chalmers mesh. The relation between the cells compared to the ’ideal’
size is visualised in Fig. 8 at three different streamwise locations, just after the transition,
before the separation and in the separation region. The ’ideal’ size refers to a resolution

7
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Figure 8: The size of the cells in dimensionless wall units on the Chalmers mesh compared with the ’ideal’
size when wall functions are used (the smaller box = [100, 60, 100] < [Az™, Ayt, Az*] < [600, 300, 300] =
the larger box): 1. just after the transition, 2. before the separation, 3. in the separation region (L, = 0.08,
32 cells in the spanwise direction).

of [100,60,100] < [Az™, Ay™, Az*] < [600,300,300] [11]. In addition, the ratio between
Az and Ay™ should preferably be in the order of one [14]. This is not the case just after
the transition as can be seen in Fig. 8, where (§Zi)max ~ 10.

The approximate wall boundary condition is implemented in the code by adding a
viscosity, vp.c., to the laminar viscosity on the wall. The friction velocity, u, (and Tyqy),

is determined from Eqs.2-4. From the relation

T, ou u
wall ut=v— =(v+ VB,C.)—P , (5)
p O | yai yp
the viscosity on the wall could be expressed as
Uryp
v+Vpo = — - (6)
Up

Note that the numerical boundary condition for @, ¥ and w at the wall is no-slip according
to Eq. 5. The product of the artificial viscosity at the wall, v+vpg ¢, and the linear velocity
assumption between the near-wall node and the wall (see Eq. 5) give the wall shear stress
Twan according to the wall functions.

7 EFFICIENCY OF THE PARALLELIZATION

For the present flow, the required number of nodes in order to do a LES is in the
order of millions. This is true, even though the transition is prescribed and the effects
of the very near-wall structures are modeled by approximate boundary conditions. It is
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also estimated that about 10 — 20 time units (1 time unit = ¢/Uy, where ¢ is the airfoil
chord and U, is the freestream velocity) of simulation are required to be able to gather
reliable statistics; with a time step of 3 - 10 %¢/U,, (the present time step), the number
of time steps would be at least 33000. The need for an efficient numerical method and
effective parallelization is obvious. The present code is parallelized for 3D flows [9] using
block decomposition and PVM and MPI as message passing systems. The code has been
ported to a SUN Enterprise 10000 at Chalmers and the IBM SP at the Center for Parallel
Computing at KTH.

7.1 Convergence criteria

For the velocities, the convergence criteria is that the L!'-norm of the residuals of the
discretized momentum equations scaled with pU. A;jpie:Uso should be less than the desired
convergence level, n, where A;,;; is the projected area of the inlet. Here, the criteria is
checked immediately after the solver (but of course without under-relaxation), i.e. the
residuals are calculated with the 'old’ coefficients and before the correction in the PISO
algorithm. For the continuity equation, the criterion is that the L'-norm of discretized
finite-volume continuity error scaled with the inlet mass flow should be less than 7.

In the computations on the UMIST mesh, the convergence level is set to 1 - 103
and with a time step of 3 - 107*¢/U,, there are three global iterations per time step for
Comp. # 1 which decreases to two iterations for Comp. # 2 (the one with upwinding
scheme, see Table 2). In these two computations, the convergence criteria for the conti-
nuity equation is well fulfilled (it is fulfilled immediately at each time step). The scaled
L'-norm is approximately 1-10~%. It is noteable that the convergence within each time
step is very slow. The PISO algorithm [10] is used for the pressure-velocity coupling,
with two additional corrector steps beside the first SIMPLE step. The algorithm was
found to be more efficient than the optimised SIMPLEC algorithm in a previous study
on a backward-facing step flow [15]. In the present airfoil case, it is the convergence of
the pressure-correction equation that sets the limit on the convergence rate, at least for
the computations on the finer mesh (the Chalmers mesh). Here, the scaled L'-norm is
approximately 1- 1073 and sometimes exceeds the convergence level, n. Because of the
very slow convergence within each time step, the approach of simply limiting the number
of global iterations per time step is applied. For the computations on the Chalmers mesh,
the number of iterations is set to two, corresponding to an 7 of approximately 1103,

7.2 Speed-up results

The elapsed time per time step is shown in Table 1 with the convergence criteria fulfilled
after two global iterations (n & 1-1073). The computational domain is decomposed into
eight, 16 and 32 subdomains. No significant decrease in the convergence rate is observed
when 16 and 32 subdomains are used. Two different versions of the message passing PVM
are available on the SUN computer: a shared memory based PVM and a socket based
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Mesh Computer & message Number of processors
passing system 8 16 32
SUN, PVM, socket based 48s 38s 36s
SUN, PVM, shared memory based 24s  (12s)  (6s)
UMIST SUN, MPI 24s - -
IBM SP, PVM 12s - -
IBM SP, MPI - 5.4s 2.8s
Chalmers IBM SP, MPI - - 6.0s

Table 1: Elapsed time per timestep on the UMIST and Chalmers meshes (722568 and 1617924 compu-
tational nodes, respectively).

PVM. When eight processors are used for the present case, the shared memory based
PVM is twice as fast as the socket based PVM. The simulation of one time unit requires
about 180 CPU hours and the solution is advanced in time by about one time unit per
day.

The IBM SP computer is faster. The simulation of one time unit requires about 83
CPU hours and with MPI and 32 processors the solution is advanced 9 time units per
day. On this computer, an approximately linear speed-up is obtained between the eight
and 32 processor cases. On the finer mesh, the elapsed time per time step is 6s and the
simulation of one time unit requires about 180 CPU hours. The solution is advanced more
than four time units per day, which is quite acceptable for industrial use.

8 RESULTS

Four computations are presented in this paper. The set-up differences are summarised
in Table 2. The averaging times are at least six time units, which is checked to be
reasonably sufficient, even for second-order statistics, when the boundary layer remains
attached. The initial conditions are 2D k — ¢ solutions for Comp. # 1 and # 3 and the
previous LES for Comp. # 2 and # 4. The time step is 3- 10 *c/U,, for all computations,
giving a maximum C'F'L number of 1.3 for Comp. # 1. When upwinding is used on the
UMIST mesh it decreases a great deal (C'FL,,,, ~ 0.6). For the computations on the
finer mesh, the maximum C'F'L number is approximately 1.

Figure 9: Instantaneous u-velocity on the Chalmers mesh when wall functions are used (Comp. # 4).

10
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Figure 10: Instantaneous Smagorinsky eddy viscosity on the Chalmers mesh when wall functions are used
(Comp. # 4). The contour levels are logarithmic.

Computation #1 ‘ # 2 # 3 ‘ # 4
Mesh UMIST 321 x 65 x 33 Chalmers 720 x 65 x 33
Spanwise ext. L, =0.03c L, =0.08¢c
van Leer
Convective (z/c < 0.01) van Leer (z/c < 0.02)
scheme CDS + +
CDS CDS (z/c > 0.12)
(x/c > 0.09)
no model (z/c < 0.12)
SGS model Smagorinsky +
Smagorinsky (z/c > 0.23)
Wall b. c. +— no-slip — ‘ Eqgs. 2-4

Table 2: Computational parameters that differ for the four computations. The Smagorinsky constant is
set to 0.1.

In the computations on the Chalmers mesh, the extent of the mixing region between
the two schemes were moved slightly downstream in order to more accurately prescribe
the transition at the location given in the experiments (at 12% of the airfoil chord). The
CDS is fully active just downstream of that point and is gradually mixed with the van
Leer scheme, which is fully active upstream of location x = 0.02¢. In the Smagorinsky
model, the eddy viscosity is not zero in the laminar region (the strain is not zero). To
prescribe the transition in a more accurate way, the Smagorinsky eddy viscosity is set
to zero upstream of the transition point and is gradually mixed with the eddy viscosity
downstream of that point. At 23% of the airfoil chord, the Smagorinsky model is fully
active. A similar approach is applied around the transition point on the pressure side of
the airfoil.

The transition and growth of the turbulent boundary layer is clearly visiualized in
the computations on the finer mesh, when looking at instantaneous contourplots of the
resolved velocity and the Smagorinsky eddy viscosity (see Figs. 9 and 10). The very thin
turbulent boundary layer on the pressure side is also visible in the figures, as well as
some unphysical oscillations outside of the thin layer, owing to a coarser resolution in the

11
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Figure 11: Instantaneous resolved pressure on the Chalmers mesh when wall functions are used
(Comp. # 4).

streamwise direction on this side. A contour plot of the instantaneous resolved pressure
is shown in Fig. 11.

Although the resolution is increased in the streamwise direction and approximate wall
boundary conditions are applied, the pressure peak at the leading edge is underpredicted
and we fail to predict the plateau, the decrease in the adverse pressure gradient, that
should be present in the separation region (see C, in Fig. 12). Consequently none of the
present computations predict the separation near the trailing edge (a small separation

bubble is occasionally instantaneously formed) and the skin friction coefficient remains
positive (see Fig. 12).
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Figure 12: The pressure coefficient (left figure) and the skin friction coefficient (right figure). Red solid:

approximate wall boundary condition, Egs. 2-4 (Comp. # 4); dotted: no-slip wall boundary condition
(Comp. # 3); dash-dotted: Comp. # 2; circles: exp. (F2).

8.1 Effect of the approximate wall boundary condition

Comparing Comp. # 4 and # 3, the use of the approximate wall boundary condition
(Egs. 2-4) has a significant effect on the results (see e.g. Fig. 20). Looking at the artificial
viscosity at the wall (Fig. 13), this is not great compared with the values at the near-wall
node (Fig.14), but it works to decrease the eddy viscosity at the near-wall node, which

12
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approximate wall boundary condition, Eqs. 2-4
(Comp. # 4); black: no-slip wall boundary con-
dition (Comp. # 3).
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Figure 14: Instantaneous Smagorinsky eddy vis-
cosity at the near-wall node. Red solid: ap-
proximate wall boundary condition, Eqs. 2-4
(Comp. # 4); dotted: no-slip wall boundary con-
dition (Comp. # 3).
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Figure 16: Spanwise and time averaged wall dis-
tance (in dimensionless wall units y* = yu,/v) at
the near-wall node based on the predicted friction
velocity. Red solid: approximate wall boundary
condition, Eqs. 2-4 (Comp. # 4); dotted: no-slip
wall boundary condition (Comp. # 3).

is located in the lower parts of the logarithmic region (see Fig. 16). The eddy viscosity
is increased further away from the wall as compared with when the no-slip condition is

used (see Fig. 15).
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Figure 17: Spanwise and time averaged resolved velocity fluctuations at the near-wall node in the tran-
sition region. Red solid: approximate wall boundary condition, Eqgs. 2-4 (Comp. # 4); dotted: no-slip
wall boundary condition (Comp. # 3).

8.2 Transition

When « is larger than approximately 0.6 in the mixed scheme (see Eq. 1 and Table 2),
the non-dissipative effects of the CDS give rise to numerical oscillations and the boundary
layer is tripped numerically. The resolved stresses at the near-wall node (shown in Fig. 17)
are very high, especially in the z-direction. Unfortunately, no experimental data are
available in the transition region, but for Comp. # 3, the w/v/-peak is almost five times
larger than the maximum stresses from the experiments near the trailing edge. The
Smagorinsky eddy viscosity at the same near-wall nodes (Fig 14), in the beginning of the
mixed region (e.g. at x = 0.15¢), is very low. The CDS is fully active already at 12% of
the chord, suggesting that the maximum peaks in the stresses (at about 13% of the chord)
are unphysical and due to the central difference scheme alone. The unresolved stresses
should most likely account for a significant part of the stresses (using these coarse grids in
the transition region) and the transition could be prescribed more accurately by letting
the Smagorinsky model damp the resolved stresses in the transition region.

The approximate wall boundary condition has an dampening effect on the resolved
stresses, in the transition region and a bit downstream (from 12 to approximately 30
percent of the chord, see Fig. 17). Further downstream (see Fig. 20), the wall functions
increase the magnitude of the stresses and they are closer to the experimental results.

8.3 Resolution in the streamwise and spanwise direction

The effect of the increased streamwise resolution is for instance seen in the outer parts
of the boundary layer (see Fig. 20). Not only the resolved stresses, but also the eddy
viscosity, goes down to zero in the outer parts. This is seen in the sharp boundary
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Figure 18: Spanwise and time averaged resolu- Figure 19: Vector plot of the laminar boundary
tion in the spanwise direction based on the pre- layer at the leading edge showing incipient separa-

dicted friction velocity (in dimensionless wall units  tion (every 7th vector in the streamwise direction
Azt = Azu,/v). Red solid: Comp. # 4; dotted:  is shown).
Comp. # 3; dash-dotted: Comp. # 2

layer edges in the velocity profiles. The major difference between Comp. # 2 and the
computations on the Chalmers mesh is seen in the skin friction coefficient, where Comp.
# 2 completely fails to capture the laminar separation bubble, contrary to Comp. # 3
and # 4, where there is a clear indication of the laminar separation bubble at about 7% of
the chord (see Fig. 12). Also note the little plateau in the pressure coefficient, indicating
separation.

Although incorrectly predicted, the effect of the small spanwise extent need not be that
significant, in these attached boundary layer computations. The maximum boundary layer
thickness near the trailing edge is about 4—5% of the chord and L, = 0.03¢ may be enough
to resolve the largest structures in that direction (see Sec. 5.1).

It is noteable that we get worst results for Comp. # 3 and very similar results for
computation # 2 and # 4 around the rear part of the airfoil (x/¢ > 0.5). This is true
for the velocity profiles as well as the magnitude of the shear stresses (see Fig. 20). This
might be an effect of the spanwise resolution. As seen in Fig. 18, the computed spanwise
resolution (based on the predicted friction velocity) for Comp. # 2 is less than 45 wall
units at the rear 65% of the profile. It is likely that the near-wall streaks is starting to be
resolved, thanks to the spanwise resolution. This is also noted as an increase in the skin
friction coefficient (see Fig 12). This increase in C} is not seen for Comp. # 3 (where
the computed Az never gets fine enough to resolve the near wall streaks (see Fig. 18))
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dotted: upwinding scheme on the UMIST mesh (Comp. # 2); circles: exp. (F2). Subscripts s and n
denote the directions parallel and normal to the airfoil wall, respectively.

16



S. Dahlstrém, L. Davidson

and not for Comp. # 4 either, but the approximate wall boundary condition seems to
take these effects into account, right from where the transition starts. The spanwise
resolution seems to be very important, in that Comp. # 3 with a finer resolution in
the streamwise direction, produces worse results than Comp. # 2. It is encouraging
that the wall functions seem to have their intended effect and handle the coarse spanwise
resolution.

8.4 Lift and drag coefficients

Table 3 shows the lift and drag coefficients for the different computations. The lift
coefficients from the computations are overpredicted. They increase somewhat when
upwinding is used. The drag coefficients decrease significantly when upwinding is used
and even more for Comp. # 3 and # 4. Comparing Comp. # 3 and # 4, there is a
tendency toward the experimental results when the approximate boundary condition is
used.

Exp. F1 41 #£2  #3 H#4
C 1.56 168 172 175 172
Cp  0.0204 0.0374 0.0280 0.0167 0.0170

Table 3: Spanwise and time averaged lift and drag coefficients for the four computations and the experi-
ment in the F1 wind-tunnel.

Figs. 21-23 show the time history of the lift and drag coefficients. It is interesting to
note that the drag coefficient varies between approximately 0.013 and more than twice
that (0.0275). Fig. 24 shows the frequency spectrum of the lift coefficient. Although the
magnitude of the oscillations vary a lot, there is a distinct peak in the frequency spectrum
at a Strouhal number of 8.6.
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1.73¢ M 0.022r
Cr 1.72 Cp oozt ﬂ
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1.71 ‘ ’
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Figure 21: Time history of the lift coefficient Figure 22: Time history of the drag coefficient
for Comp. # 4. for Comp. # 4.
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9 CONCLUSIONS AND FUTURE WORK

Although none of the present computations predict separation, it is encouraging that
the wall functions seem to take into account the low resolution in the spanwise direction
(in these attached boundary layer simulations) and hope is that this is true in the other
directions as well.

The transition process and the behaviour of the SGS-model and CDS in that region
also need further examination to prescribe the transition in a more natural way.

However, one of the major problems seem to be in the laminar region and the resolution
of the laminar boundary layer. It is in this region, around the leading edge, where the
favorable pressure gradient accelerates the flow. This accelerated flow, certainly affects
the region downstream and has an impact on the separation near the trailing edge. It
is evident from the results (C';, the underpredicted pressure at the leading edge and the
overpredicted boundary layer edge velocity (at e.g. © = 0.3¢)) that the simulations have
failed at the leading edge. In the computations, at the location where the boundary layer
is as thickest, there are about 4-5 nodes in the wall-normal direction (see Fig. 19). And
at the very leading edge (z/c < 0.01) there is only one node in the boundary layer. The
resolution must probably be finer in this direction, making the prediction of the flow in
this region more accurate. Alternatively, some approach (e.g. wall functions) must be
applied in this region.

Furthermore, the separation region near the trailing edge is fairly thin and the use of
a y* requirement for wall functions does not make any sense here. The separation region
needs to be sufficiently resolved, not in a DNS-sense, but in the sense that a sufficient
number of cells are used close to the wall to resolve the maximum backflow velocity [16].
In the Chalmers mesh, this region is captured with just 1-2 cells (in the wall-normal
direction) downstream of the separation point, in the streamwise center of the separation
bubble. This is inadequate and a modified mesh has been generated which will be used
in the near future.
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