Turbulence, Heat and Mass Transfer 4, pp. 401-408
K. Hanjalié, Y. Nagano and M. Tummers (Editors)
(©2003 Begell House, Inc.

DNS in a Plane vertical Channel With and Without Buoy-
ancy

Lars Davidson', Dalibor Cuturi¢' and Shia-Hui Peng?

! Dept. of Thermo and Fluid Dynamics, Chalmers University of Technology, SE-412 96 Géteborsg,
Sweden, http://www.tfd.chalmers.se/"lada

2 FOI (Swedish Defence Research Agency), Aeronautics Division, SE-172 90 Stockholm

Abstract — DNS of fluid flow and heat transfer is presented for fully developed flow in a vertical
channel at Re, = 150. Both forced convection and mixed convection (Gr = 7.68 - 10%) are studied.
Mean flow and second-moment quantities such as stresses and heat fluxes are presented. In forced
convection, away from the viscous dominated layers, the shear stress term in the momentum equation
balances the pressure gradient. However, in mixed convection the buoyancy term plays a major role
which strongly modifies the shear stress, which is increased near the cold wall and reduced near the
hot wall. As a result all stresses are affected in the same way. Surprisingly, the effect of buoyancy on
temperature fluctuations 12 is vice versa. The reason for this behaviour is given in the paper.

It is shown that the effect of buoyancy on the turbulence takes place in the momentum equation. The
buoyancy terms in the stress equations are negligible. It is concluded that Reynolds stress models should
be used for buoyancy-affected flows, not because an accurate modeling of the effect of buoyancy in the
Reynolds stress equations is needed, but because no direct stress-strain coupling is assumed.

1. Equations

The equations have the form
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The Reynolds number Re, = u,h/v = 150 is based on the friction velocity, u, (related to
the driving pressure gradient d;;), and the half channel width, h (h = p = u, = 1 so that
v = 1/Re,). All quantities in Egs. 1-3 are made non-dimensional with u,, h and AT and
Trer = 0.5(Thot + Teoia) = 0.5. The temperature at the left boundary (y = 0) is 7' = 1 (hot
wall) and at the right wall 7" = 0, see Fig. la.

The streamwise, wall-normal and spanwise directions are denoted by x (1), y (x2) and 2 (z3)
respectively. Periodic boundary conditions were applied in the = and z direction (homogeneous
directions).

2. Numerical Method

An incompressible, finite volume code is used [1]. For space discretization, second-order cen-
tral differencing is used for all terms. The second-order Crank-Nicolson scheme is used for
time discretization. The numerical procedure is based on an implicit, fractional step technique
with a multigrid pressure Poisson solver and a non-staggered grid arrangement [2].
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Figure 1: Configuration and near-wall behaviour of mean profiles (left, hot wall).

Tw,y=0 | Tw,y=2h | Tmaz Ub Us Ay:ode,min (aT/ay)w
Gr=20 1 1 A7 156 | 1 0.4 2.69
Gr=0(DNS [3]) | 1 1 5 152 |1 - 2.54
Gr =7.68-10° 0.708 | 0.419 | 8=« 9.8 | 0.75|0.2 2.31
Table 1: Mesh details and global physical quantities. z,,,, = 7 for both cases. wu, =

(0.5 ((u2)ert + (u2yriont)] ',

3. Results

For the forced convection a grid with 64 x 64 x 64 cells is used and for the mixed convection a
mesh with 128 x 96 x 96 (z, y, 2) cells. For more details, see Table 1.

For the mixed convection case it was found that a very large box size in the vertical direction
(8m) was needed. If a smaller box was used no quasi-steady conditions were obtained, but the
bulk velocity varied with a very low frequency [4]. Figure 2 presents the mean velocity and
temperature profiles as well as the normal stresses for the two cases. For the forced convection
case the DNS results from Ref. [3] are also included. The agreement between the present results
and the DNS results is fairly good.

For the forced convection case, all quantities in Fig. 2 are symmetric whereas for the mixed
convection case they are non-symmetric. In order to study the effect of buoyancy on the flow,
we start by taking a closer look at the momentum equation. Equation 2 is turned into Reynolds
equations using Reynolds decomposition U = U +u. Integrating the one-dimensional Reynolds
equation for U from y = 0 to 3y we get
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where the terms represent the prescribed driving pressure gradient, the turbulent shear stress at
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Figure 2: Mean flow and RMS velocities. Thin lines: Gr = 0; thick lines: Gr = 7.68 - 10°.
Markers denote DNS from Ref. [3].
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Figure 3: The terms in the integrated U momentum equation (Eq. 4). All terms are scaled by
UZ. Thick solid line: driving pressure gradient plus 7,,; thin solid line: viscous shear stress;
dash-dotted line: turbulent shear stress; thick dashed line: buoyancy term B.

y, the viscous shear stress at ¢ and at the wall, and the buoyancy force, respectively. The terms
in the U-equation are shown in Fig. 3. For the forced convection we have the usual balance
between viscous and turbulent shear stress and the pressure gradient. For the mixed convection
case, the buoyancy term is aiding the flow in the left half of the channel, and it is opposing in the
right half. In Fig. 3 it can be seen that the buoyancy term is positive in the left part and negative
in the right part. Since the temperature profile is not symmetric, the buoyancy term is not zero
at y = 1. The velocity profile is also asymmetric, and the wall shear stress at the left wall
(tlelt = p(u2)left) is different from that on the right wall (779" = p(u?2)"9"*), This is also seen
in Fig. 3 where the magnitude of the viscous shear stress at the walls are equal for the forced
convection case but not for the mixed convection case. Contrary to the forced convection case,
the wall shear stresses are not balanced by the pressure gradient, but they are balanced by the
sum of the pressure gradient and the buoyancy force. Hence 7,, = pu? = 0.5(7!¢/t 4 77i9ht) £ 1
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Figure 4: Temperature related quantities. Thin lines: Gr = 0 thick lines: Gr = 7.68 - 10°
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Figure 5: Balance for the u2 equation. All terms scaled by U2. Solid line:

line: I1,,,,; dash-dotted line: €,,,; + : D¥,; O : Puy; -t G-

(see Table 1). Also, it can be seen that whereas in the forced convection case, the turbulent
shear stress is linear in the region where viscous effects are negligible this is not the case for the
mixed convection case. The turbulent shear stress —uv is strongly modified when buoyancy is
introduced, and its magnitude compared with the forced convection case is increased near the
right, cold wall and decreased near the left, hot wall, see Fig. 3. As a results all normal stresses
are affected in the same way, see Fig. 2b.

Note that the velocity in all figures have been scaled with the bulk velocity. The reason is that
both u, and the bulk Reynolds number for the mixed convection case is much lower than for the
forced convection case, see Table 1. An alternative would be to use u, for normalizing, which
would give a 20% relative decrease in the velocities for the mixed convection case compared to
the chosen normalization. We should, however, keep in mind that as we approach pure natural
convection, we should include the wall heat flux as a scaling parameter [5].

Figure 1b presents the near-wall behaviour of the mean velocity and temperature. It can be
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Figure 6: Balance for the uv equation. All terms scaled by U}, Solid line: DI ; thick dashed
line: I1,,,; dash-dotted line: ,,,; + : DY ; O : Pyy; -t Gy
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Figure 7: Balance for the vf equation. All terms scaled by UZ. Solid line: DZ; dashed line:
IL,;; dash-dotted line: €,4; + : Dy,; O @ Py

seen that there is a distinct linear region, both for U and T, up to at least y* = 5. In the
experimental investigation of a natural convection boundary layer in [6], it was found that the
linear region for the velocity was very small (smaller than one viscous unit).

The overall balance of the T equation (Eq. 3) dictates that the total heat flux

q = qy = 1/(Re,Pr)oT /0y — vt (5)

must be independent of the wall-normal coordinate 3. It can be seen from Fig. 2 that the T
profile is not modified by buoyancy as much as the velocity profile. The reason is, of course,
that there is no buoyancy term in the temperature equation. Since the turbulence in the mixed
convection case is reduced near the left wall compared to the forced convection case, a larger
part of the heat flux ¢ in Eq. 5 must near the left wall be taken care of by viscous transport
(conduction) in the former case. This is illustrated in Fig. 2 where it is seen that the temperature
gradient near the left wall is larger for the mixed convection case than in the forced convection
case. Also Fig. 4b shows that the viscous transport near the left, hot wall is larger for Gr =
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Figure 8: Balance for the #2 equation. All terms scaled by U,. Solid line: DY; dash-dotted line:
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7.68 - 108 than for Gr = 0.

3.1. Analysis of balances of the second moments
The transport equations for u2 and wo read

AU 2 Op OuPv 1 % 2 du Ou Gr

0= -2u0— ——u— — — + 2 ut
dy p Oy 0Oy  Re, 0y> Re; Oxy Oxy, Re?
N’ e e e, e’ [ ~ '\ ~— v, —
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where the terms represent production (P,,, P,,), velocity-pressure gradient (IT,,,, I1,,), tur-
bulent diffusion by velocity correlations (D, DT ), viscous diffusion (D%,, D%,), dissipation

(Euu» Eup) and buoyancy (G ., Guy), respectively.
The transport equation for vt reads

—oT top Ov’t 1 0 ot 1 0 0Ov 1 1 ov Ot
0=—?— "+ e R +
dy pody Oy Re,Prdy Oy Re,0y Oy Re,  Re,Pr ) Oxj 0z
. ~ N _ .
Pyt Myt DT, Dy, Eut
(7)

It should again be noted that in order to facilitate comparison between the forced and mixed
convection flows all terms in the balance equations have been normalized by the bulk velocity.
As mentioned above the shear stress profile in Fig. 3 is strongly modified for the mixed con-
vection flow compared to the forced convection flow. In the former case |[uv| is reduced near
the left, hot wall and it is increased along the right, cold wall. This gives, via P,, (Eq. 6 and
Fig. 5), a large u?2 near the right, cold wall. As a result v2 and w? are also increased via the
pressure-strain term. As v2 increases near the right wall, this also increases the production of
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uv via P,, (see Eq. 6 and Fig. 6), which gives a large [uv|. Thus we have a positive feedback
mechanism between ww, u2, and v2.

Note that the buoyancy term in the balance equations for u2 and % is negligible. It is also
negligible in the v2 and w? equations (not shown). The effect of buoyancy enters the Reynolds
stress equations via the balance of the momentum equation which modifies the shear stress
and via the production and the pressure-strain affects the other stresses. Thus, modeling of the
buoyancy terms in the Reynolds stress equations is only of minor importance. However, looking
at the shear stresses and the velocity gradients in Figs. 2a and 3 it is immediately realized that
there is no coupling between these two quantities. Thus, the only type of model which can
predict buoyancy-affected flow is Reynolds stress models, and the reason is not an accurate
modeling of the effect of buoyancy in the Reynolds stress equations, but the fact that no direct
stress-strain coupling is assumed.

Above, the effect of buoyancy was discussed starting by looking at the momentum equation
and its balance (Eq. 4 and Fig. 3). In the same way, before discussing the balance of the heat flux
equations, let us start with the mean temperature equation and its balance (Eq. 5). The terms are
shown in Fig. 4b and it can be seen that for the mixed convection case the magnitude of the wall-
normal heat flux, [vt|, decreases near the left, hot wall compared to the forced convection case.
Near the right, cold wall there is no difference in |vt| for the two cases. Near the hot wall, the
viscous heat flux, i.e. the mean temperature gradient, must increase for the mixed convection
case in order to satisfy Eq. 5. This acts so as to increase |vt| via P, in Eq. 7, but since this
would violate Eq. 5, v2 must be suppressed, and the result is actually that P,; is decreased, see
Fig. 7. Here we have a negative feedback between 0T /0y, vt and v2.

The wall-normal heat flux is only affected indirectly by the buoyancy compared with the
stresses. The reason is of course that vt is the dominating term in Eq. 5, and this equation
must be satisfied. The streamwise heat flux |ut|, however, is affected similarly to the stresses
(Fig. 4a). For the mixed convection case it is large near the right, cold wall because its pro-
duction terms —v297 /0y and —vtdU /dy are both positive and large. However, contrary to
the stresses, it is not larger than for the forced convection case. It is seen that there is no link
between the heat flux vt and the temperature gradient 9T /0y and thus eddy-viscosity models
are unable to predict the forced convection case; also for the heat fluxes the direct effect of
buoyancy in the heat flux equations is negligible.

All stresses as well as the streamwise heat flux are for the mixed convection case larger near
the right wall than near the left wall, and the wall-normal heat flux is almost constant. When
we look at the temperature variance 2 (Fig. 4a) we find — to our surprise — that the effect of
buoyancy is vice versa: #2 is larger near the left, hot wall than near the other wall. To understand
this, we take a look at the transport equation for #2 which reads

_ 0T Ovt? v 0%*2 v Ot Ot

0= —2vfe — LIV VA
! dy Oy + Proydy — PrOxy 0z (8)
—_— — N
Py Dz; D:f/t Ett

The production term Py, includes the wall-normal heat flux and the temperature gradient 9T /dy.
It was mentioned in connection to Eq. 5 that for the mixed convection case the turbulence near
the hot, left wall is decreased, and in order to satisfy Eq. 5 the temperature gradient 9T /Jy (i.e.
the viscous heat flux) must increase. However, the increase in the temperature gradient must
be much larger than the decrease in [vZ|, since 1/(Re,Pr) < 1, and this explains why #2 is
increased via Py, near the left wall, see Fig. 8. Near the right wall the magnitude of ¢2 is similar
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to that for the forced convection, and the reason is that the magnitude of the production term P,
is similar for the two cases.

4. Conclusions and discussion

DNS of fully developed flow in a vertical channel has been presented. Results from both forced
convection and mixed convection are presented. It is found that the effect of the buoyancy
on the turbulence can be traced back to the momentum equation. The buoyancy terms in the
stress equations are negligible. In forced convection flow the shear stress term —uv and the
pressure gradient in the momentum equation are in balance in the region where viscous effects
are negligible (Fig. 3). This gives a linear (anti-symmetric) shear stress profile. When buoyancy
is introduced, the shear stress balances the pressure gradient and the buoyancy term and the
result is a strongly modified shear stress. The symmetry is broken and [uw]| is large near the
right, cold wall and small near the left, hot wall (Fig. 3).

As [uv| becomes large near the cold wall this generates a large u? through the production
P,, = —2uwdU /0y, and via the pressure-strain term large v2 and w? are generated. Also the
streamwise heat flux is larger near the cold than near the hot wall. Although the turbulent wall-
normal heat flux is lower near the hot wall than near the cold wall, it is fairly constant across the
channel. The reason is that it must be constant in the region where viscous effects are negligible
in order to satisfy the overall balance of the mean temperature equation. Interestingly enough,
the temperature variance ¢2 is not larger near the cold wall than near the hot wall (Fig. 4a). The
reason is that near the hot wall the mean temperature gradient is larger (to balance the low |vt|)
than near the cold wall. This gives a large production (—2vt0T /dy) of 12 near the hot wall.
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