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ABSTRACT

Standard dynamic subgrid models have numerical stability
problems. The remedy is to average in some homogeneous
flow direction(s) or to introduce some artificial clipping.
Thus this type of models do not seem to be applicable to
real three-dimensional flow without introducing ad hoc user
modifications. In the present study a new one-equation
subgrid model is presented which reduces the need of this
type of user-modifications. The present model is a modi-
fication of the model presented in Ref. [5]. The model is
applied to recirculating flow in an enclosure.

INTRODUCTION
Germano et al. [10, 11] propose a dynamic subgrid model
in which the constant in the Smagorinsky model is not ar-
bitrarily chosen (or optimized), but where it is computed.
The dynamic models which have been developed have prob-
lems with negative values of the C-coefficient. When a
negative C' occurs it is believed to represent backscatter,
i.e. spectral flow of energy from subgrid scales to resolved
scales. This means that the production term in the trans-
port equation for subgrid kinetic energy Py, , = —7i,;
becomes negative, and feeds energy back to the resolved
scales. The problem is that negative diffusion (negative C)
causes numerical problems. These can be handled as long
as the total (i.e. viscous plus turbulent) diffusion is posi-
tive. However, large negative, turbulent diffusion remains
a problem. It is not only negative values on C that causes
numerical problems. It exhibits very strong gradients and
“fAuctuates wildly” [23]. In a ventilated enclosure, for ex-
ample, the author has found that C varies typically in the
range +4 which should be compared with a standard value
of the Smagorinsky constant C% = 0.01. In the literature
[23, 19, 24, 20, 2, 22, 6, 17, 18] it has been found that in
order to achieve numerical stability present dynamic sub-
grid models require either that there exist a homogeneous
flow direction or that the dynamic coefficient is clipped at
some arbitrary limit in an ad hoc manner. Thus the model
does not seem to be applicable to real three-dimensional
flows where no homogeneous flow direction exists.

An attempt to improve this restriction was presented
by Ghosal et al. [13, 12] where they try to optimize the

equation for C globally, but still with the constraint that
C > 0. This optimization leads to an integral equation
(Fredholm’s integral equation of the second kind) which is
very expensive to solve numerically. They report that it
increases the CPU time by 50% [1].

In the present work a new one-equation dynamic subgrid
model is applied to recirculating flow in an enclosure. It is
an modification of the model presented in Ref. [5].

THE ONE-EQUATION MODEL

If we follow Germano [9] and introduce generalized central
moments the transport equation for the subgrid kinetic
energy kg, reads [4]
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The dynamic coefficient C' in the production term
Progs —Tijli,j
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is computed in a similar way as in the standard dynamic
model [10, 11, 13, 12], i.e.
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where L;; denotes the dynamic Leonard stresses, and
where K = 1Tj; is the subgrid kinetic energy on the test
level [13, 12, 4]. The diffusion constant can also be com-
puted dynamically as in Refs. [13, 12]. In the present study



the standard gradient hypothesis is used with the turbu-
lent Prandtl number set to one. The dissipation term ¢, ,
is estimated as

3
ksz 8
Ekogs = VTf (Ui, uij) = Cx Ag . (4)

In order to estimate C. attention is turned to the trans-
port equation for K. The equations for ksgs and K read
in symbolic form

leo

ks
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where C' and D on the left-hand sides denote convection
and diffusion, respectively. Apply the test filter to Eq. 5. In
Ref. [5] an ASM-like expression was used, which was found
to have an undesired positive feedback feature, which made
it necessary to restrict the variations in the C.-coefficient.
Here we use a modified relation. The transport of ksys is
set proportional to that of K so that
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and we obtain
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The dissipation cannot be negative which requires that we
limit C« to positive values, i.e. C. > 0. In Eq. 8 C, is
kept inside the filtering process. Following Piomelli [20]
the dynamic coefficient under the filter is taken at the old
time-step.

To ensure numerical stability a constant value of C in
space ({(C)zy-) is used in the momentum equations, which
is determined by requiring that the production in the whole
computational domain should remain the same, i.e.
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(2CAksys Sij Sij)ayz = 2C)ayz(Bksgs SijSijlayz  (9)

The idea is to include all local dynamic information
through the source terms of the transport equation for ksgs.
This is probably physically more sound since large local
variations of C' appear only in the source term, and the
effect of the large fluctuations in the dynamic coefficients
will be smoothed out in a natural way. This means that the
need to restrict or limit the dynamic coefficient is reduced
or may not be necessary altogether. However, if we have
to restrict the dynamic coefficients in the k.4, equation
this does not affect the results as much as if the coefficient
in the original dynamic model is restricted. The reason is
that in the one-equation model the coefficients affect the
stresses only in an indirect way (the source terms are part
of a transport equation) whereas in the original dynamic
model the dynamic C-coefficient is linearly proportional
to the stresses. It is extremely important to use subgrid
models which are numerically stable and where the need
to introduce ad hoc modification is limited as far as possi-
ble, if we want to develop turbulence models applicable to
general flow situations.

The spatial variation of C' is included via the production
term in the modelled ksys equation. In this way backscat-
ter is taken into account in an indirect way. Although it
is not fed directly back to the resolved flow, it influences

the resolved flow via the kinetic subgrid energy. A nega-
tive production reduces ksgs and this effect influences the
neighborhood through convection and diffusion of kggs.

The new model can be summarized as follows:

1. The equation for the kinetic subgrid energy is solved
(Eq. 1);

2. The production term (see Eq. 2) is computed using
the local dynamic coefficient (Eq. 3) without any averaging
or restrictions;

3. The turbulent Prandtl number in the diffusion term
is set to one;

4. The local dynamic coefficient in front of the dissipa-
tion term is computed from Eq. 8;

5. The subgrid stresses in the momentum equation are
computed using a homogeneous values (C)gy. of the dy-
namic coefficient determined from Eq. 9; (C)sy. is also
used in the diffusion term in the kygs equation.

6. The boundary condition for k.4, is zero at all bound-
aries.

The boundary conditions for k.gs does not seem to affect
the results much, and the reason is that the equation is
dominated by its source terms, production and dissipation
(see Fig. 8b).

Some limits on Cy are used. It is not allowed to go
negative (this occurs in approximately 25% of the nodes).
A limit is also used to prevent C. from growing too large.
Presently an arbitrary value of 10 is used; this limit is
reached in approximately 0.3% of the nodes. It is presently
not clear if this limit is needed at all. Note that the present
formulation for C. in Eq. 8 is considerably better than that
used in Ref. [5].

THE NUMERICAL METHOD
An implicit, two-step time-advancement methods is used.
When the filtered Navier-Stokes equation for u;
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is discretized it can be written
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where H (u,’-‘,u includes convection and the viscous
and subgrid stresses, and a = 0.5 (Crank-Nicolson). Equa-
tion 11 is solved which gives @' which does not sat-
isfy continuity. An intermediate velocity field is computed
by subtracting the implicit part of the pressure gradi-
ent, and the resulting Poisson equation is solved employ-
ing an efficient multigrid method. For more details, see
Refs. [5, 16, 8, 7].

n+1)

RESULTS

A steady computation is first carried out using the CALC-
BFC code and the k — £ model [3]. These results are used
as initial start fields in the LES calculations. The predic-
tions are compared with Laser-Doppler measurements of
Restivo [21] (also available in Ref. [15]). The geometry is
given by (see Fig. 1):

L/H = 3,W/H=1,h/H=0.056,t/H = 0.16

Uinh
v

Re = = 5000.

where W is the extent of the domain in the z direction.
We have used H = 3 m, Ui = 0.455 m/s, and air of 20°C.
Inlet boundary conditions are set as

Uin +rnd - Urms,exp (12)
rnd - Urms,expr Win = rod - Urms,exp

Uin =

Uin =
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Figure 1: Ventilated enclosure.

Homogeneous inlet profiles are used for all variables. Note
that the random function rnd is called at different times
for 4pn, Uin and Win, which means that the fluctuations are
not correlated so that (40)in = (WW)in = (VW)in = 0.

At the outlet the exit velocity is computed from global
continuity and it is taken as constant over the outlet. Zero
gradient is set for the remaining variables.

At all six walls traditional wall functions [3] are used if
yT > 11. Along the ceiling these are never used as the
boundary layer is well resolved (y* < 3 for the first node).

A 96 x 64 x 64 grid has been used. A hyperbolic tan-
gent function is used in = and z direction, whereas geo-
metric stretching is used in the y direction. At the po-
sition z/H = 2 (see Fig. 6) 17 nodes are located inside
the velocity maximum, y,/, corresponds to y/H = 0.89,
and for the near-wall node y™ ~ 2. For more details, see
Ref. [5]. The number of time steps used in each calcu-
lation is typically 40000 using a maximum CFL number
of approximately two. This corresponds to approximately
2200 seconds. The streamwise average of the peak velocity
in the wall jet along the ceiling is close to U,y = 0.5Usn
(= 0.228 m/s). Thus the time it takes for a fluid particle to
move from the inlet to the opposite wall can be estimated
as L/Uay =~ 40 seconds, which means that 2200/40 = 55
characteristic time units (L/U,y) are covered in a simula-
tion. Averaging has been performed during the last 19 000
time steps. Tests presented in [3] show that this is more
than enough. Unless otherwise stated all results presented
have been obtained with the new dynamic one-equation
model.

In Fig. 2 the time averaged u velocities are compared
with experiments, and as can seen the agreement is good.
The predicted peak velocity in the wall jet is in good agree-
ment with experiments, much better than for the one-
equation model presented in Ref. [5]. The original dynamic
model [10, 11, 3] is compared with the new dynamic one-
equation model. As can be seen the one-equation model
performs better.

In Fig. 3 instantaneous velocity vector plots are shown.
Looking at the wall jet in side view (Fig. 3a) we see the
characteristic wavy pattern. This accounts for the entrain-
ment process between the wall jet and its surrounding. If
we are used to Reynolds Averaged Navier-Stokes (RANS)
we can easily misinterpret the effect of turbulent (or, as
in LES, subgrid) viscosity. In RANS a high turbulent vis-
cosity gives a smeared out, diffusive velocity profile due to
high diffusion of momentum in the normal direction (y).
In LES it is vice versa. A high subgrid viscosity damps the
resolved fluctuations which are responsible for diffusion of
time-averaged momentum in the y direction and the result
is a more pointed velocity profile due to reduced diffusion
of momentum.

The time history of @ is shown in Fig. 4. It can be seen
that there is a large difference between the turbulence in
the wall jet (Fig. 4a) and that in the middle of the room
(Fig. 4b). The magnitude of the fluctuations in the wall jet
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Figure 2: Time averaged velocity profiles. Symmetry
plane z/H = 0.5. Lines: predictions; +: experimental
mean velocity [21] (see also [15].
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Figure 3: Vector plots. a) z/H = 0.5. b) z/H = 1.5.
Reference arrow above the figure shows U/Usn = 1.
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Figure 4: Time history of % at two chosen cells. z/H =
0.5. a) ¢/H = 1.0,y/H = 0.92. b) z/H = 1.0,y/H = 0.5

is larger and there are much higher frequencies. In Fig. 4b
the flow is not fully turbulent.

From the time history of the homogeneous dynamic co-
efficient (C)sy. in Fig. ba we find that the time averaged
value is close to 0.04 which corresponds to a value of the
Smagorinsky constant Cs = 0.2. The (C),y. coefficient
sometimes (at approximately 3% of the time steps) wants
to go negative, but it is clipped at zero. The C. coefficient
connected with the dissipation term in the ksys equation
is presented in Fig. 5b. Its behavior is more stochastic
than (C)ay., because it is local. It often tends to zero,
but it rarely hits the upper bound which has been set to
10. In fact, at ©/H = 2 the C, coefficient never becomes
larger than approximately 3. Possibly the upper limit is
not needed at all. Here it is clearly seen that the present
model works much better than that presented in Ref. [5].

Wall jet

The flow along the ceiling is a wall jet. Thus it could be
interesting to compare the predictions with wall jet data.
The experiments of Karlsson et al. [14] have been chosen.
The Reynolds number in the wall jet experiment is higher
(Re = 10000) than in the present study.

In Fig. 6 the streamwise mean velocities, computed with
the standard dynamic model and the one-equation dy-
namic model, are compared with experiments, and the
agreement is very good. If we, however, compare the width
and the maximum velocities this picture changes. The pre-
dicted wall jet spreads too much compared with experi-
ments (see Table 1), which agrees with the comparison in
Fig. 2. The peak velocity, however, agrees well with ex-
periments, in particular for the predictions with the one-
equation model. The reason for the rather poor agreement
in the spreading rate could be due to insufficient grid res-
olution. It could also be that the subgrid models (both
the dynamic and the dynamic one-equation model) give
too low a subgrid viscosity. As a results this would give
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Figure 5: Time history of the dynamic coefficients. a) The
dynamic coefficient (C)gy.. b) The dynamic coefficient C.
at one chosen cell z/H = 2.0,y/H = 0.92,z/H = 0.5.

| [ @/F | Unaa[Uin | d315/d | y15]h ]

l-eq. model | 17.9 0.786 - 2.01
l-eq. model | 35.7 0.592 0.111 4.01
dyn. model | 17.9 0.739 - 2.20
dyn. model | 35.7 0.581 0.126 4.46
Exp. 20 0.771 - 1.88
Exp. 40 0.566 0.08 3.48

Table 1: Comparison with wall jet data [14]

too large exchange of momentum in the y direction due to
too little damping (by the subgrid stresses) of the resolved
fluctuations.

The stresses in the wall jet are shown in Fig. 7. Gen-
erally, the stress levels are too low, both the normal ones
and the shear stress. The stress changes sign near the
wall and the location agrees well with the experimental
one; the positive peak, however, is under-predicted. The
dynamic Leonard stress Li2 (see Eq. 3) is also included,
and it is almost as large as the resolved stress. It can
be seen that the subgrid stress (also included in Fig. 7)
is much smaller than the resolved stress, except close to
the wall. Actually, at x/H = 2, the time averaged sub-
grid turbulent viscosity is of the same order as the viscous
one ({Vsgs)t < 4v), whereas the instantaneous value can be
much higher (Vegs,maz =~ 26v).

In Fig. 8a turbulent kinetic energies are presented. We
find that the subgrid energy k4, is rather large. It is much
larger than for the model presented in Ref. [5]. The reason
is that the dissipation in the present study is much smaller
due to a smaller C. coefficient. The dynamic Leonard ki-
netic energy is a large fraction of the resolved kinetic en-
ergy. In Fig. 8b the time averaged production and dissipa-
tion term in the ksgs equation are shown. As can be seen
they are fairly much in balance. The spatial variation of
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shear stress (u"v"):/UZ; dashed line: dynamic Leonard
stress (L12)¢/UZ,; dash-dotted line: subgrid shear stress
(112}t /U2 o experimental T /U2, [14].
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Figure 8: Symmetry plane z/H = 0.5. z/H = 2. a)
Kinetic turbulent energies. Solid line: resolved turbulent
kinetic energy 2 (uj'w{}:/U7,; dash-dotted line: kinetic en-
ergy of dynamic Leonard stresses 3 (Lii)¢/Us,; dashed line:
turbulent kinetic subgrid energy (ksgs):/UZ. b) Terms in
the subgrid kinetic energy equation. Solid line: production
(Px)s; dashed line: dissipation (Cikiys/A)s; dash-dotted
line: 0.01(C.);.

(Cy)¢ at z/H = 2 is also included. It has values close to
0.5 except close to the wall where it attains values around
1.3.

CONCLUSIONS
A contribution towards a development of a new dynamic
subgrid one-equation model has been presented. The gen-
eral idea is to include dynamic information in the source
terms of an equation for the turbulent kinetic subgrid en-
ergy ksgs rather than directly in the momentum equations.
In the momentum equation a homogeneous value (keeping
the time dependence) of the local dynamic coefficient is
used. In this way numerical stability is greatly enhanced
since the large oscillation in the local dynamic coefficients
enter as source terms in the k.4, equation, and they are
naturally smoothed out through convection and diffusion.
This model naturally accounts for back-scatter since the
production term in the ksys equation is permitted to go
negative.

The proposed new one-equation model gives closer agree-
ment with experimental data than the standard original
dynamic model.
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