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in a Channel
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Abstract

This Master Thesis is the first part of the project ” Large Eddy Simula-
tions for Computing the Flow Around Vehicles” in collaboration between
the Department of Thermo and Fluid Dynamics at CTH and the CFD
group at Volvo PV. With LES we expect to be able to predict a number
of physical phenomena, such as large-scale structures, unsteadiness etc.
This project will give a deeper understanding of this flow and will help
Volvo to optimize the flow around cars and thus to design cars in an aero-
dynamically better way. In the first part of the project, the flow around
a surface-mounted cube is computed by using LES, in which the simple
Smagorinsky model is used. Computation is performed using a finite vol-
ume code CALC-LES which is second-order accurate in space (central
differencing) and time (Crank-Nicolson). A series of time-averaged re-
solved velocities and turbulent stresses are computed and compared with
the experiments. Some global quantities such as the mean and RMS values
of lift and drag coefficients, are computed. Sensitivity to grid refinement
is studied.

1 Introduction

There are various approaches to numerical solution of turbulent flows. One
method involves the application of Reynolds’ averaging to the equations of
motion to obtain the Reynolds-averaged Navier-Stokes equations (RANS). A
Reynolds stress term T;u; that appears in RANS must be modeled to close the
system of equations. That is the limitation of RANS, because the model con-
stants are usually set by using a few simple flows which can not be applied to
flows that are different from the ones used for calibration. The most straight-
forward approach to the numerical solution of turbulent flows is the direct nu-
merical simulation (DNS) of turbulence, in which the governing equations are
discretized and solved numerically. The problems with DNS are that one has
to use higher order schemes to limit dispersion and dissipation. These schemes
have little flexibility in handling complex geometries and general boundary con-
ditions. The total cost of direct simulation is proportional to Re3. For these
reasons, there are serious limitations for use of DNS. There is also one interme-
diate technique between the direct simulation of turbulent flows and the solution



of the Reynolds-averaged equations, called Large-eddy simulation (LES). In LES
the contribution of the large, energy-carrying structures to momentum and en-
ergy transfer is computed exactly, and only the effect of the smallest scales of
turbulence is modeled.

2 Formulation of LES

Direct simulation of all scales of turbulence is feasible only at low Reynolds
number, i.e. in the transitional regime, and is in principle impossible beyond
some Reynolds number. This suggests a simulation technique based on some
decomposition of the flow field into large-scale and small-scale structures, the
first being directly simulated in three-dimensional time-dependent fashion, and
the second being somehow modeled. This approach is generally called "Large
- Eddy Simulation” (LES), and is introduced for the first time by Leonard [1].
The rationale for Large-Eddy Simulation is that in turbulent flow the large-scale
structures, produced directly by the instability of the mean flow (shear or buoy-
ancy effects), should be simulated directly, because 1) they are hard to model in
a "universal” way, as they are highly problem-dependent and anisotropic; and 2)
they are responsible for most of the transport of momentum, mass and scalars.
On the other hand, the small-scale structures, produced by the energy-cascade
process from larger eddies, are generally isotropic, depend little on the specific
problem, and thus are much more amenable to be described by some ”univer-
sal” model. Moreover, small eddies contribute little to heat and momentum
transport, so that a large-eddy simulation is expected to be little sensitive to
the parameterization scheme used for them [3].

The equations governing the flow and thermal fields for the incompressible flow
are
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in which p is coefficient of viscosity, I" is the molecular thermal diffusivity,
St = Su/c, and Sy is a source term (power per unit volume), associated with
internal heat generation.

In LES each quantity f is decomposed as

f=F+f (4)

Decomposition Eq. 4 is the analogue of the Reynolds-decomposition of generic
field into an average and a fluctuating component, which is the basis for all
classical closure models of turbulence. The resolvable-scale component of f,
which is still time-dependent is denoted f while f’ denotes the small-scale , or
subgrid (unresolved) component. The large-scale component f is the result of



applying a filtering procedure to the local and instantaneous quantities and is
given by a convolution of f with a filter function G(Z)

7

7@ = / 1(#)G(@E - 7 )z (5)

where Q is the entire flow domain.

In Eq. 5, f is still a continuous function defined at each point in the domain
and independent of the computation grid or discretization scheme used for the
numerical computation of it.

The most commonly used filter functions are the sharp Fourier cutoff filter,
defined in wave space as:

S~y 1, ifk<w/A
G(k) = { 0, otherwise

the Gaussian filter,

G(7,7) = /(:57) exp(- LEE)) |

and the top-hat filter in real space:

oy [ 1A, if|F-F|<AJ2
¢@z) = { 0, otherwise

A being the characteristic filter width. The sharp Fourier cutoff filter and the
Gaussian filter are used in spectral methods and Fourier transforms. In the
present work, the top-hat filter in real space is used. Applying the filtering
operation given by Eq. 5 to the momentum and the continuity equations, one
has the equations of motion!
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In Eq. 7 there is the problem of filtering the product u;u;. If we decompose u;
into its resolvable-scale and subgrid-scale components, u; = u; + u;, then

Wty = Uty + ﬂ,ug +ula; + ugu;- (8)
This may be written

UU; = UsUj + Li]’ + Cij + Ri]’, (9)
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INote that by integration by parts we find that



where L;; = W;u; — 4;4; are the Leonard stresses, C;; = W + @ are the
cross terms, and R;; = W are the subgrid-scale (SGS) Reynolds stresses. The
terms R;;, or rather —pR;; are the analogies of the turbulent stresses arising
from the RANS. The Leonard stresses represent interactions between resolved
scales that result in subgrid-scales contributions. The cross terms represent in-
teractions between resolved and unresolved scales, whereas the SGS Reynolds
stresses represent interactions between small, unresolved, scales. L
Due to the existence of "Leonard” and ”cross” terms one has w;u; — @;u; # uju;
in general. The physical reason for this inequality is that in the turbulence
spectrum there is no gap between the large and the small scales, but rather a
continuous ”energy cascade” involving eddies of all intermediate scales [1, 2].
An alternative approach was developed by Schumann. It is suitable for finite-
volume/finite-difference based computation methods and allows to drop the
Leonard and cross terms. Schumann’s approach consists of replacing explicit
filtering by volume-averaging on each grid cell

_ 1 T14+23 rza 822 Lz 828 o
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where 21,25 and zj are dummy variables representing z1,z2 and z3, respec-
tively, and Az;,Azs and Az; are the corresponding grid increments of the
finite-difference/finite-volume equations [4].

After applying the over-bar operator to the velocity components u;, one has the
following important properties

(11)

As a result of this volume-averaging on each grid cell one has the equations
governing the resolved flow and thermal fields:
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Problem with this approach is that in this procedure any large-scale quantity
like f is given discontinuously (at mesh points) and because of that any quantity
like Of/Oz; exists only in the sense of its finite difference representation using
discrete values of f at mesh points, but not in an ordinary sense of derivatives,
and one has 5—5,- # g—chi in general.

In both cases, the residual, or subgrid, stress —p@ and the residual fluxes

pcpT'u) plus eventually Leonard and cross terms, contain unresolved terms and
thus have to be modeled.



A filtering approach is used in the present work.
Eq. 7 can be rewritten as
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Assuming constant density, continuity gives /‘a%,-(%) = 0 and by introducing

the subgrid stress tensor 7;; = u;u; — @;4;, one has the governing equations

du; o6 . 1 0p 0%u; oTij
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3 SGS Models

In an LES the equations are averaged over only small scales and retain all
space-time dimensions. The averaging process is chosen to resolve numerically
the physical features of interest, and the desired statistics are measured directly
from the computed scales. The most important contribution of these models is
to provide, or at least allow, energy transfer between the resolved and subgrid
scales at roughly the correct magnitude. This transfer is usually from resolved
to subgrid scales but may be reversed and the SGS model must account for
reversed transfer of energy. Thus, the most important feature of a subgrid-
scale model is to provide adequate dissipation in the resolved scales, where
dissipation actually means transport of energy from the resolved grid scales
to the unresolved subgrid scales, and the rate of dissipation in this context is
actually the flux of energy through the inertial subrange.

3.1 Eddy Viscosity Models

Most subgrid scale models in use, are eddy-viscosity models, based on a gradient-
diffusion hypothesis, similar to the Boussinesq hypothesis of conventional turbu-
lence models. It consists of assuming the anisotropic part of the residual stress
tensor 7;; to be proportional to the resolved strain rate tensor S;;, i.e.

1 _ 1. -
Tij — géi]’Tkk =—2vr [Sij - §5ij5kk] (19)



in which S;; = %[gg: + g—zi] , V1 is a subgrid viscosity which has to be expressed
by an model, and 0;; is the Kronecker delta. If we denote the subgrid scale
turbulent energy %T’“T’“ by the symbol &’ then the left hand side of Eq. 19 can

be expressed as

1 2
Tij — §5z~j7'kk =Tij — géijpkl (20)

Substituting Eq. 20 into Eq. 19 and this into Eq. 17 one has
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Here is g% = 0 due to continuity.
Defining a modified pressure as
_ _ 2 .,
P=p+ gpk (22)

one has
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In order to solve Eqgs. 18 and 23 one needs a closure relation expressing vr as
a function of resolved quantities.

All proposed subgrid models belonging to the eddy-viscosity family can be sum-
marized under the form

vr = clgsgs (24)

in which ¢ is a dimensionless constant and [ and g¢,,; are a length and a ve-
locity scale, respectively. The parameter [ is generally related to the width
of the filter used. In the finite difference/volume simulations, when volume-
averaging approach is adopted, one express [ as an average cell size, e.g. [ =
A = (Az,AzyAz3)/? in which Az!s are the mesh sides. For explicit filtering
approach, the formulation

I=A=(A1A05)Y3 (25)

is used. Here Als are filter widths along the three directions.

3.2 Smagorinsky model

The Smagorinsky model is the most popular eddy-viscosity model. It is based
on the equilibrium hypothesis

—‘T,’jSz'j = €y (26)

in which ¢, is the viscous dissipation of SGS energy and 7;;S;; = €595 is mi-
nus production of SGS energy. The equilibrium assumption is based on the



consideration that the small scales of motion have shorter time scales than the
large, energy-carrying eddies. The equilibrium assumption implies inertial range
dynamics, i.e. energy is generated at the large-scale level, and transmitted to
smaller and smaller scales, where the viscous dissipation takes place.

3
If the viscous dissipation is modeled as ¢, ~ q‘lgs, and Eq. 19 is substituted
into Eq. 26, one has

_ - q
2v78;;Si; ~ =22 (27)
With Eq. 24 one obtains from Eq. 27 that
Gsgs ~ llgl (28)

where |3| = (25;;5:;)/?. Now, by using Eq. 25 the eddy viscosity can be
written

vr = (C,A)?|§] (29)

Since the Smagorinsky constant C; is real, the model is absolutely dissipative,
i.e.

€s9s = —(CsA)?[S]P <0 (30)

Eq. 30 can easily be derived in the following way:

3
qsgs al I I
esgs = _G’U ~ — l ~ TZJSZJ = —21/’1"5”5” =

—2(C,A)2|515:;5: = —(C,A)2|5P

(31)

In the present work the value of Cy = 0.1 is used.

The Smagorinsky model assumes that the main function of subgrid scales is to
remove energy from the large scales and dissipate it through the action of viscous
forces. On the average, energy is transferred from the large to the small scales
("forward scatter”) but reversed energy flow (”backscatter”) from the small
scales to the large ones, associated with random fluctuations of the subgrid-scale
stresses may also occur. As discussed by Piomelli [10] the net energy transfer
from large to small scales is given by the subgrid dissipation from Eq. 26. From
Eq. 30 follows that Smagorinsky model is absolutely dissipative, i.e. it cannot
predict backscatter.

In his attempt to overcome this problem Germano [5] developed the dynamic
SGS model.

3.3 Near-wall damping

When using the Smagorinsky model, the wall region deserves special treatment.
The SGS model has to account for the fact that the resolved strain rate does not
vanish on the walls, while the subgrid scale stress does. Therefore, the subgrid
viscosity v must vanish at the walls. This is due the fact that on solid walls
the large eddies dissipate their energy directly rather than by the usual "energy
cascade” involving smaller and smaller eddies. Wall effects can be partially



taken into account by appropriately ”damping” the length scale [ near to the
walls.
An approach is to use the van Driest damping function

() ()

in which I, is the value of / far from walls, y* is the distance from the nearest
wall, given as y* = L% and A" is a constant for which the value of 25 is
generally used.

The alternative form of the damping function from Eq. 32 is

2
(v
A+
The van Driest damping functions in Eqgs. 32 and 32 have the property that
I =0 on the wall. Some researchers use van Driest Damping function [6] of the

form
()T

with rather arbitrary constants a and b. Taking near-wall damping into account,
the Smagorinsky SGS model for vr from Eq. 29 can be rewritten as

f=1—exp (33)

vr = (CsfB)|8)] (35)

in which f is given by one of the expressions in Egs. 32, 33 or 34.

3.4 The Dynamic SGS model (DSM)

In DSM the model coefficient is computed dynamically as the calculation progress
rather than being determined a priori.

Germano introduced two filters: the grid filter denoted by G with filter width
A, which defines the resolved and subgrid scales, and the test filter denoted by
G with filter width A. Here is A > A (usually A = 2A) and

By applying G to the equation of motion (Eq. 17) one has

Bﬁi 0 ,— 1 85 82@' 8/T\ij
o) = = — 38
ot + 8:15,- ( ¢ J) pﬁwz U(@dﬁjal‘j) 6:):]- ( )
Here is
Tij = Uil — 3, (39)
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Substituting Eq. 39 into Eq. 38 and adding —%(sz) = —% {@u; — au;}
to both sides one has

= ()= -2 — L i — 40
ot " Oz; (ti) p Oz; v (3%‘6% Oz; {aiw; —uu;}  (40)
By introducing the SGS stress on the test level

Tij = Uit — Uity (41)
Eq. 40 becomes
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Li; = ;u; — ;4 is called the resolved turbulent stress. The resolved turbulent
stresses are Reynolds stresses by the scales whose length is intermediate between
the grid filter width and the test filter width, i.e. the small resolved scales. The
dynamic Leonard stresses

Lij = Tij — 7 (43)
relate the resolved turbulent stress L;;, which can be calculated explicitly, to the

SGS stresses at the test and grid levels, T;; and 7;;. The subgrid scale stresses
can be parameterized by eddy viscosity models of the form (Eq. 29)

Tij — %Tkk = —2052|5’|;§z’j (44)
T, — %Tkk = 207?55, (45)

By introducing B;; = A%|5|S;; and a;; = A%|S|5; and substituting Eq. 44
and 45 into 43 one has
i —

L?j = Lz’j — ?ka = —QCOtij =+ 20[3,']' (46)
in which Lf; is the anisotropic part of the SGS stress at the test level. To
obtain a single coeflicient from these five independent equation, Lilly proposed
to minimize the sum of the squares of the residual E;; given as

E,'j = L?j + ZCLz'j — 2031']' (47)
by multiplying both sides of Eq. 46 with a;; — @j to yield
1 Lo (o — A..
C(f, t) - _- z]( 2] IBZJ) (48)

2 (amn - ﬁmn)(amn - /an)

C is usually assumed to be only a function of time and of the spatial coordinates
in inhomogeneous directions. The dynamic model has problems with negative
values of the C-coeflicient, because negative C (negative diffusion) causes nu-
merical problems. In his attempt to improve the dynamic model Ghosal [7]
tried to optimize the equation for C globally, but still with the constraint that
C > 0. This optimization gave an Fredholm’s integral equation of the second
kind which is very expensive to solve. Davidson presented [8] a dynamic one-
equation subgrid model. An modification of this model given in [9] will be used
in the future work.
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4 The Test Case

The case that was selected for simulation in this work was the flow around
a surface-mounted cubical obstacle placed on a channel wall for which the
measurements were taken from the work of Martinuzzi (1992) and Martinuzzi
and Tropea (1993). A surface-mounted cube has been one of the test cases of
the ”Workshop on LES of Flows past Bluff Bodies”, Rotach-Egern, Tegernsee,
June 26-28 1995 and 6th ERCOFTAC/IAHR/COST Workshop on Refined Flow
Modeling, Delft University of Technology, June 1997.

The geometry of the computational domain is given in Fig. 1.

For the simulations a domain with an upstream length of 7+ = 3 and a down-
stream length of 32 = 6 was used, while the span-wise width was set to % =T.
The Reynolds number based on the incoming mean bulk velocity U, and the
obstacle height H is 40000, while based on the channel height A, it is 80000.
Even if the geometry of the flow configuration is rather simple, physically the
flow is quite complex with multiple separation regions and vortices.

4.1 Boundary Conditions

The following boundary conditions were used: One-seventh-power profile was
used at the inlet. The lateral boundaries were treated as slip surfaces. At the
downstream boundary, convective boundary condition a{;?- +c%’f = 0 was used.
Here c is the mean bulk velocity U,. At the upper and lower surfaces the no-slip

conditions were used.

4.2 Subgrid-Scale Model

The standard Smagorinsky model with van Driest damping from Eq. 34 with
a = b =1, near solid walls was implemented in the present work. In the future
work, one-equation model of Davidson will be studied.

4.3 Computational Grid and Numerical Details

The measurements for the flow were available and Cartesian coordinate systems
were used, so that grid was generated easily. Four different grids were used in
the calculation, and they are given in Table 1.. A grid stretching was employed
in the region around the cube and near to the walls, while a uniform grid
distribution with cell size A; (i = z,z) was used in the region far from the
body [13]. The geometric sequence was used for stretching the cell size between
0; (i = x,2) and A; (i = z,2) or in y-direction, between 6, and 0y mqs. Here,
0; (1 =z, 2) is the distance from the cube surface to the nearest node in z and
z-direction, while J, is the distance from the cube surface to the nearest node,
or from the wall to the nearest node in y-direction. The values of A; (i = z, 2)
and §; (i = z,y,2) are given in Table 1. For time advancing, a constant time
step At was used and is given in Table 1. The residual source criterion of the
form R =Y inodes 10 s ans (@) + b — ap(@;)p"| was used at each time
step with the convergence criterion set to 0.001 in all calculations. The inlet
conditions were specified to contain 4 percent turbulence. Initial conditions were
fluid at rest or U = 1, V = 0 and W = 0 in the hole computational domain.

12



in flow lateral boundary out flow

B : 2
o upper sur face
i h
U lower surface x
Figure 1: Geometry of the test.
| Mesh | Nodes | Az | Az | 61 | 5y | 5z | At | Taverag'ing |

80 x 48 x 72 | 0.20 | 0.20 | 0.0481 | 0.0207 | 0.0240 | 0.04 150
160 x 48 x 80 | 0.20 | 0.20 | 0.0118 | 0.0207 | 0.0158 | 0.03 112.5
160 x 48 x 72 | 0.20 | 0.20 | 0.0118 | 0.0207 | 0.0204 | 0.01 150
160 x 48 x 144 | 0.20 | 0.20 | 0.0118 | 0.0207 | 0.0013 | 0.01 35

DQwmx

Table 1: Geometrical and numerical details of the meshes.
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5 Description of Numerical Methodology

5.1 General description

Calculation performed with the CALC-LES code are presented. The code
CALC-LES is based on a 3-D finite-volume method for solving the incom-
pressible Navier-Stokes equations employing a non-staggered, cell-size grid ar-
rangement. Both convective and viscous fluxes are approximated by central
differences of second order accuracy. A Crank-Nicolson second-order scheme
has been used for time integration. The momentum equations are solved with
Gauss-Seidel method whereas a multigrid V-cycle is used for the acceleration of
convergence when solving the pressure equations.

5.2 The Method

CALC-LES employs an implicit, two-step time-advancement method. Integra-
tion of the filtered Navier-Stokes Eq. 23 over a time interval from ¢ to ¢ + At
and over the control volume gives

t+At o t+At
/ ZClth +/ (@;a ) dtdV =
cov cov 3%
— ——dtdV + / / dtdV (49)
/t /CV p Oz; ov 5%8%
t+AL
/ / O%is gray
cv 0z;
This may be discretized as
aptt —ap O ni1-nt1 O nnt1
T:—ozaT(U a;tt) — (l_a)&rj (apaj™) +
2gn+l 2 ot
1 1 _ [ _ ] 50
ay8$j8$j +( a)ya$]‘8l‘j @ (9&7]' + ( )
(1- )073 B g@P"H B (1-a)dP"
0zr; p Oz p Oz
to give
1 opP™tt 1 oP"
“ntl _ n —n+1 - — 51
a; * + AtH (u} ) — paAt oz p(l a)At 9o, (51)
where
0
H(g™ ~n+1 —y— (pntlEzntl) _ 1— = (zmmntl
(a?,artt) = a@w,- (a; aj )—(1-a) o2; (al aj )+ 2
82 n+1 - 82 8Ti7;+1 (1 )37‘3 (5 )
(9:1:18% -y 8$,6:EJ — Oz; Tli-e Oz;

The Crank-Nicolson method results from setting a = 0.5 in Eq. 51. In the
present work o = 0.6 was used. The standard form of control volume formula-
tion of Eq. 51 is

ap(@)p™ = a Z anp (@) + b (53)
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where 1 = 1,2,3 and
b=(1-0a) 3 ans(ti)n, + (ap — (1 — @) 2o ans)(U:)p + S

ap=a%+a), anp

o _ AV
ap = Ag

The source term S includes the pressure terms and one part of the subgrid
stresses given by %(VTZ—;Z). Eq. 53 can now be solved to give a}t" which

does not satisfy continuity. An intermediate velocity field @} is computed by

. . .. . . apnt!
subtracting the implicit part of the pressure gradient term, i.e, % T
a gprtl
ay =aytt + — (54)

’ p Oz

We take the divergence of Eq. 54 requiring that continuity equation for the
" . . . ourts .
face velocities should be satisfied at time step n + 1, i.e % = 0 to obtain

8Pn+1 14 6a:,face

dz;0z; Ata Oz

(55)
The face velocities #; fqce are obtained by linear interpolation.
The numerical algorithm is given by:
. Solve the discretized Navier-Stokes Eq. 53.
- Create an intermediate velocity field 47 ;,.. given in Eq. 54

. Solve the Poisson equation 55.
. Compute the face velocities, which satisfy continuity, as

PO g 8Pn+1

W N =

5. Repeat steps 1 to 4 till convergence is reached.
. Compute the turbulent viscosity vr.
7. Next time step.

=2

5.3 Computing time

CALC-LES has recently been parallelized by Silicon Graphics [14] and all com-
putations were done on the 64-processors ORIGIN 2000 (recently installed at
Chalmers). A typical CPU time per iteration on four processors on a mesh with
600000 nodes was 12 sec and the number of iterations per time step is 3 or
4. Even if the pressure equations is solved with en efficient multigrid method,
solving of the pressure equations is still very expensive. Time per iteration and
number of iterations for each time step are given in Table 2.
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| Mesh | Ncpu | Titeration | Niteration |

A 1 8.61 2
B 4 12.15 4
c 4 10.94 3-4
D 4 24.89 3

Table 2: Time per iteration Tjterqtion in seconds and number of iterations
Niteration-

6 Some results

The flow around a surface-mounted cube contains almost no statistically equiv-
alent points over which the results can be averaged. Because of the inability to
average over statistically equivalent points, the symmetry was used as a measure
of whether the simulation has been run long enough. The averaging times in
the simulation varied between 35H /U and 150H/U where H is the cube height
and U is the bulk velocity at the inlet. All computations were started with
uniform inlet velocity which was changed to one-seventh-power profile after 500
time steps. The reason for doing this is that the pressure solutions were un-
stable when computations were started with one-seventh-power profile. In this
work some global quantities, such as mean and RMS lift and drag coefficients
were computed. A time-averaged resolved velocities and turbulent stresses were
computed and compared with experimental results. In the case of u'v’, both re-
solved quantity (u'v'); and the SGS quantity (m12); were computed as suggested
by Reynolds [11], while for other quantities the SGS quantities were impossible
to compute and only the resolved quantities were compared with the experi-
ments. Here (.); denotes time-average.

All time-averaged velocities and stresses are compared with the experiments
only for the values z = 0 and z = 1. They are shown in Fig. 12 to Fig. 57.
All cases gave very similar results for almost all time-averaged velocities and
turbulent stresses. Mean velocity profile (u); was disturbed for z = —1.0 and
z = 0.0 as it is shown in Figs., 12, 13, 34, 46. This is probably due to bad mesh
in that part of the domain. (@); became better with the grid refinement for
z = 0.5 and £ = 1.0. This improvement is not noticed in the region behind the
cube. Mean velocity profile (9); for z = 1.0,z = 0.0 is given in Figs. 17, 18, 36
and 48 both for the node before the surface and for the node after the surface.
This is done because there are no nodes on the surface of the cube.

Generally the results for the velocities are in much better agreement with the
experiment than the results for the stresses. The author has concluded from the
comparison between resolved mean turbulent stress (u/v'); and real turbulent
stress (u'v'); + (T12); that the difference between them is almost negligible.
All results were compared with the results of both Workshops. The author has
found that the results from this work are very similar to the results of H. Wengle
from Univ. der Bundeswehr Munchen, Germany.
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| Mesh | CL | CL,Tms | CD | CD,rms | C’.FLQE | CFLy | CFLZ |
0.5178 | 0.0244 | 0.6371 | 0.0420 1.55 2.54 2.23
0.5366 | 0.0260 | 0.5593 | 0.0379 | 7.99 2.92 4.80
0.5264 | 0.0557 | 0.5717 | 0.0859 6.82 3.36 2.93

- - - - 6.00 3.56 | 42.51

SQw e

Table 3: Mean and RMS values of lift and drag coefficients and CFL values.

6.1 Global Quantities and Numerical Stability

The convection Courant Number defined as CFL; = ﬁit, (1 = z,y,2) is com-

puted at the end of each calculation, and maximum values are given in Table 3.
The author has found that the regions with largest CFL values are located
in the front of the cube, at the nodes closest to the surface. Only a small part
of the domain has that high values of CFL. Even few nodes with high CFL can
make convergence very bad. In the case D the value of CFL in 2-direction is
equal to 42.51 which caused divergence. The author has noticed that refinement
of the mesh in the z-direction increases CFL much faster than refinement of the
mesh in the z-direction.
Calculation for the case A was run on 1 CPU while for the cases B,C and D, 4
CPUs were used. It is obvious that high CFL values make calculation unstable.
The mean and RMS values of the time averaged drag and lift coefficients are
given in Table 3, and the time history of Cp and C is given in Figs. 2, 3,4, 5, 6, 7.
There are no experimental values for drag and lift coefficients known to the au-
thor. The values of mean and RMS values for cases A and B are very similar.
There is a big difference in RMS values between cases A and C and between
cases B and C. Drag and lift coefficients for the case D are not reliable (calcu-
lation crashed) and are not given in this paper.
The case studied in this paper was a test case at 6th ERCOFTAC/IAHR/COST
Workshop on Refined Flow Modelling in Delft (1997), using RANS Models. The
velocity profiles, especially further downstream of the cube, are much better pre-
dicted by LES in the present work. The turbulence stresses are in significantly
better agreement with the experimental values. For this superiority of LES,
high price has to be paid. The surface streamlines on the floor of the channel
for the cases A and C are shown in Fig. 8 and 9. The author has found a slight
lack of symmetry in the right part of both figures. This is an indication that
these simulations have not been run long enough. In Fig. 10 isosurface of the
velocity and isosurface of the pressure are shown. The main features of the flow
around small aspect ratio obstacles are shown in schematic form in Fig. 11 [12].
The author has found very good agreement between Figs. 10 and 11.

6.2 Conclusions

A refinement of the mesh does not automatically produce better results. Only
refinements in z-direction and z-direction were done in the present work. It is
possible that the refinement in the y-direction should give some improvement
in the accuracy.

It is very difficult to study sensitivity to grid refinement because refining the
grid change also the model. This is because A in vp = (C;A)?2|S| is defined as
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Figure 3: Time history for C,. Mesh A.

A = (A1 A2A3)/3. Tt is possible to define A so that it is mesh independent but
this should increase the cost of the calculation.

It is well-known that boundary conditions can affect the solution within a do-
main if the domain is too small. The author didn’t find any indication that this
is the case in the present work.

In the present work one-seventh-power profile was used at the inlet. The author
has found very poor agreement with experiments near the inlet. The fully de-
veloped channel flow at the inlet will be used in the future work, because that
is the only proper inflow condition.
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Figure 8: Time-averaged streamlines of the mean flow projected onto the floor
of the channel (left) and time-averaged streamlines of the mean flow projected
onto the centerline (right). Mesh A.
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Figure 9: Time-averaged streamlines of the mean flow projected onto the floor
of the channel (left) and time-averaged streamlines of the mean flow projected
onto the centerline (right). Mesh C.
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Figure 10: Isosurface of the time-averaged velocity coloured with pressure (left)
and isosurface of the instantaneous pressure (right). Mesh A. In the case of the
velocity the section plane was made at y = 0.5 and in the case of the pressure
the section plane was made at y = 1.5.

Figure 11: Schematic representation of the flow around a surface-mounted cube.
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Figure 16: Mean velocity profile (7);. Mesh A and Mesh B.
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Figure 26: Mean turbulent stress (v'?);. Mesh B.
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Figure 33: Mean turbulent stress (u'w’);. Mesh B.
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43



1.5¢

0.5f

15

-0.5 0

1

0.5
2=102=10
Exp.(u-w) o
Mesh C —
. . " .
-0.5 0 0.5 1 15

1.5¢

0.5¢

15

z=0.5,2=1.0

Exp.(u-w) o
Mesh C —

Figure 35: Mean velocity profile (@);. Mesh C.




, 2=-1.0,2=00 ) 2 =0.5,2=0.0
15} 15} e
1r ( ) 1r
Exp.(u-v) +
Exp.(u-v) +
Mesh C — p-(u-v)
0.5¢ 0.5} Mesh C —
0 —0:5 0 0:5 1 1:5 0 —0:5 0 0:5 1 1:5
2 z=1.0,2=0.0 2 z=15,2=0.0
: Exp.(u-v) +
1.5t 3} Mesh C (—'n) - 1.5}
:| Mesh C (4+n) — N Exp.(u-v) +
1l e 1l +¢++ Mesh C —
0.5 ’,’ 0.5 !
0 —0:5 /0 0:5 1 1:5 0 —0:5 0 0:5 1 1:5
o z=20,2=0.0 2 z=2.5,2=0.0_
1.5f 1.5f
1 t Exp.(u-v) + 1} 1 Exp.(u-v) +
e Mesh C — . Mesh C —
0.5 Y 0.5 i
E:
0 . § . . 0 . +# . .
-0.5 0 0.5 1 -0.5 0 0.5 1 1.5
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the surface. (In the present work there is no nodes at the surface of the cube!)
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Figure 37: Mean velocity profile (7);. Mesh C.
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Figure 38: Mean velocity profile (@w);. Mesh C.
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Figure 39: Mean turbulent stress (u’?);. Mesh C.
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Figure 40: Mean turbulent stress (u’?);. Mesh C.
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Figure 41: Mean turbulent stress (v'?);. Mesh C.
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Figure 42: Mean turbulent stress (F)t Mesh C.
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Figure 43: Comparation between resolved mean turbulent stresses (u'v'); ' — ./
and (u'v'); + (112): '='. Exp. (u —v) is denoted with +. Mesh C.
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Figure 44: Comparation between resolved mean turbulent stresses (u'v’); ' —
and (u'v'); + (112): '—'. Exp. (u —v) is denoted with +. Mesh C.
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Figure 45: Mean turbulent stress (u'w')
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Figure 46: Mean velocity profile (@);. Mesh D.
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Figure 47: Mean velocity profile (@);. Mesh D.
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Figure 48: Mean velocity profile (7);. Mesh D. In the case z = 1.0,z = 0.0 is
with (—n) denoted one node before the surface and with (+n) one node after
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the surface. (In the present work there is no nodes at the surface of the cube!)
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Figure 49: Mean velocity profile (¢);. Mesh D.

z=0.0,2=1.0 ‘ o z=0.5,2=1.0
1.5f
Yy 1
0.57
"y 15 005
) z=10,z=10
1.5f
Exp.(u-w) o
Yy 1 Mesh D —
0.57
005 05 1 15

Figure 50: Mean velocity profile (&);. Mesh D.
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Figure 51: Mean turbulent stress (u'?);. Mesh D.
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Figure 52: Mean turbulent stress (u'?);. Mesh D.
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Figure 53: Mean turbulent stress (v'?);. Mesh D.
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Figure 54: Mean turbulent stress (v'?);. Mesh D.
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Figure 55: Comparation between resolved mean turbulent stresses W'y ' =
and (u'v'); + (112): '='. Exp. (u —v) is denoted with +. Mesh D.
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Figure 56: Comparation between resolved mean turbulent stresses (u'v'); ' — .
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Figure 57: Mean turbulent stress (u'w')
Mesh D.
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