THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Computational Techniques

for
Turbulence Generated Noise

MATTIAS BILLSON

Division of Thermo and Fluid Dynamics
CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden, 2004



Computational Techniques for Turbulence Generated Noise
Mattias Billson
ISBN 91-7291-423-8

© MATTIAS BILLSON, 2004

Doktorsavhandlingar vid Chalmers tekniska hogskola
Ny serie nr 2105
ISSN 0346-718X

Division of Thermo and Fluid Dynamics
Chalmers University of Technology
SE-412 96 Goteborg

Sweden

Telephone +46-(0)31-7721000

Printed at Chalmers Reproservice
Goteborg, Sweden



Computational Techniques for
Turbulence Generated Noise

MATTIAS BILLSON
Division of Thermo and Fluid Dynamics
Chalmers University of Technology

ABSTRACT

Computational techniques for the noise generated by high Mach num-
ber subsonic jets have been investigated. The main focus has been on
the hybrid noise prediction method SNGR (Stochastic Noise Genera-
tion and Radiation), which is based on unsteady source modeling for
the inhomogeneous linearized Euler equations (ILEE).

The unsteady source model developments include a time filtering
technique and the use of a convective operator to evolve the source
field in the inhomogeneous mean flow of a jet. The unsteady source
modeling also includes anisotropy in terms of Reynolds stresses as well
as length scales.

Inhomogeneous linearized Euler equations in conservative formu-
lation are derived and it is shown that when a proper source field is
specified, the proposed ILEE accurately predict the sound generation
and propagation in inhomogeneous flows.

The proposed SNGR method has been applied to three high Mach
number subsonic jets. It is found that, when properly calibrated, the
results from the method in terms of sound pressure level directivity
are in good agreement with measurements. The spectral content in
the emitted sound however, shows some discrepancies, especially at
low frequencies. The model is found to accurately predict the increased
sound emission of an increased jet exit Mach number, but that a heated
jet could not be properly evaluated due to numerical instabilities.

An anisotropic model of the two-point velocity correlation tensor for
homogeneous turbulence is proposed whose functional form is deter-
mined by six scalar correlation functions. The model is still under de-
velopment but is believed to enable more accurate statistical Lighthill’s
analogy based noise predictions from anisotropic turbulence.

Keywords: jet noise, aeroacoustic, SNGR, source terms, linearized
Euler, CAA, absorbing boundary conditions, anisotropic, correlation
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Nomenclature

Roman letters

a normalized Reynolds stress tensor

a; coefficients of the symmetric convective scheme
b; coefficients of the upwinded convective scheme
Co ambient speed of sound

D diameter
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k turbulence kinetic energy

kx  highest modeled wave number

L longitudinal length scale

L, turbulence length scale

X1



M  Mach number

n normal vector

P pressure

Q solution vector, (p, pu, pv, pw, peg)

R rotation matrix

r separation, x — y

R;;  (r) velocity correlation tensor (homogeneous turbulence)
Ry, (x,71,7) Space-time correlation of v velocity component
R;;  (y,r) velocity correlation tensor

St Strouhal number, fD;/U;

t time

T;;  Lighthill stress tensor

T, pairing time

U mean axial velocity

u velocity vector

u; synthesized velocity field (random)

u, convection velocity

U Fourier mode amplitude

vy synthesized velocity field (filtered and convected)
W characteristic variables

Zo start of buffer layer

Tmaz €nd of buffer layer

x spatial coordinate

y spatial coordinate

Greek letters

e

cell size

Kronecker delta

initial vorticity thickness
time step size

turbulence dissipation rate
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specific heat ratio
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molecular viscosity
angular frequency
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Fourier mode direction
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time separation
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Tij viscous stress tensor
T Reynolds stress tensor
T turbulence time scale
0 space angle
Subscripts

amb ambient

J jet exit condition

m time step

n mode number

Superscripts

* principal axes of Reynolds stress tensor
a anisotropic

iso  1isotropic

m time step number in time filter

T transpose

B time-average

/ fluctuation related to time-average

n

Favre time-average or rotated coordinate system
fluctuation related to Favre time-average
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Chapter 1

Introduction

The research area of aeroacoustics started in the era of the first jet
engine propelled aircraft. It was realized that with the new types of
engines, the jet engines, there was a potential noise hazard. The first
turbojet engines were produced for military airplanes and in that appli-
cation the noise was not really of such a large concern. The main goal
was to deliver thrust and the jet engines did that better than any other
engine. When jet engines were to be used for civil aircraft however
the noise issue became an important factor. With improved technology
giving larger and more powerful power plants for commercial aircraft
the noise levels increased rapidly. The noise emitted at takeoff from a
commercial aircraft in the 60’s was more than the combined shouting
power of the earth’s population.

The research in the area of jet noise began in the late forties and it
was in 1952 that the real breakthrough came, when Sir James Lighthill
published the first of his two-part paper on aerodynamically gener-
ated sound. The second paper followed in 1954.2 The approach of
Lighthill was to try to find the sources of sound in turbulent flow. This
was achieved in terms of an acoustic analogy where the basic idea was
to rewrite the compressible equations for fluid motion in such a way
that the left-hand side consisted of the second-order linear wave equa-
tion governing sound propagation in a homogeneous medium at rest.
All other terms were moved to the right-hand side and considered as
sources. The resulting wave equation with source term is

@ 12 p _ a2Tij
ot? Oamj(?xj 8.7)18.7)]

where p is the density, ¢, is the ambient speed of sound and T;; =
pviv; + (p — pc3)di; — 75 1s the Lighthill stress tensor containing all non-

(1.1)
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linearities, and v;, p, 7,; and §;; are the velocity, pressure, viscous stress
tensor and Kronecker delta respectively. The right-hand side in equa-
tion 1.1 involves second spatial derivatives of products of velocities re-
sulting in the famous quadrupole source distribution of turbulence.’3

Lighthill managed to find a formal integral solution to the wave
equation 1.1 by using a Green’s function. One of the major assumptions
in the solution to the acoustic analogy is that acoustic propagation is
assumed to take place in a homogeneous medium at rest. This means
that there can be no solid bodies present and that refraction of sound
due to shear is not taken into account unless these effects are inherent
in the source field. This means that any effect of inhomogeneity in the
flow must be represented by the source field which is used to evaluate
the source terms since this is not part of the wave operator in equation
1.1. Extensions of Lighthill’s acoustic analogy to incorporate the effect
of solid surfaces in the flow was published by Curle* in 1955 and later
also by Ffowes Williams and Hawkins® among others.® The interac-
tion of the turbulence with the surfaces introduces sources which were
found to have a dipole®?3 character which is illustrated by a numerical
example by Pérot et al.®

Lighthill' also included the effect of convected turbulence on the di-
rectivity of the radiated sound. The theory predicts that there is an
amplification of the emitted sound in the direction of the convection
and a reduction in the opposite direction. In the case of a subsonic
jet at high Mach number or a supersonic jet this effect is an important
factor of the sound field directivity. This convective amplification is sin-
gular though at sonic speeds, and Ffowes Williams!? refined the theory
such that the singularity was removed.

The power of Lighthill’s analogy based methods is the possibility to
use statistical models of the sound generation and emission. This is
quite remarkable since sound generation and propagation is inherently
time dependent. The noise generation is modeled based on correlations
and estimations of the scales in the turbulent region and the propaga-
tion is solved as an integral equation. For applications of these meth-
ods, see Refs. [3,9,11-16]. The work done on statistical methods in
this project is limited to an anisotropic model for the two-point velocity
correlation tensor. The two-point velocity correlation tensor is central
in statistical Lighthill’s analogy based methods since it represents the
spatial structure of the turbulence. A model of the anisotropy concept
in terms of length scale is also presented.

Another important effect in inhomogeneous flows is the refraction of
the generated sound. When the sound is propagating out of the jet to

2



Chap. 1: Introduction

the far-field the local speed of a wave-front will be a function of both the
thermodynamic speed of sound and the local convection velocity. In the
down-stream direction, the wave-front will tend to bend out from the jet
since the local speed of the wave at location B is higher than that in A,
see figure 1.1. This makes the sound refract out from the jet and cause
a cone of silence in the axial direction, especially for high frequencies
which are more affected by spatial variations in the mean flow. This
effect will be amplified if the jet is heated compared to the surrounding.
In 1974 Lilley'” developed an analogy in which the refractional effects
were included in the wave operator. Some effects of inhomogeneity of
the flow were included in the wave operator and were not required to
be specified in the source terms. This had a price though, the simplicity
of the analogy was lost and the general solution could not be found by
an integral method.

Core B transition B developed jet

F region i region

Figure 1.1: Refraction of sound wave.

The general understanding at the time was that turbulence con-
sisted of small eddies which were more or less randomly distributed.
The source of noise in turbulence was of course believed to be the same
eddies. At the beginning of the seventies the discovery of large turbu-
lence structures in jets and free shear flows changed the focus in the
aeroacoustic community. The large turbulence structures were found
to dominate the overall dynamics and mixing of free shear flows and
it was also shown that they are a strong source of sound in supersonic
jets.!® However, these large structures are not as important for the
sound generation in subsonic jets. For further reading on the impor-
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tance of large turbulence structures in jet noise, see Tam.!® If a su-

personic jet is imperfectly expanded, shock cells will form close to the
jet exit. There are two additional sources of sound in jets that can be
identified in the presence of shock cells. These are screech tones and
broadband shock associated noise, see Ref. [20] for references. Since
these sources are associated with supersonic jets they are not within
the scope of this work.

Until the nineties, all estimations of jet noise were restricted to
analogies with solutions based on dimensional arguments and statisti-
cal information. Rapid increase in the available computer power opened
for the possibility to directly solve the compressible Navier-Stokes equa-
tions using Direct Numerical Simulations (DNS) or Large Eddy Sim-
ulations (LES). Solving the compressible Navier-Stokes equations (or
simplifications thereof) with the aim of predicting sound generation
and propagation is called Computational Aeroacoustics (CAA). Well-
performed DNS and LES simulations are very valuable tools for the
understanding of noise generated by turbulence and inhomogeneous
propagation of the generated noise. They capture flow-acoustic interac-
tion, refraction, diffraction, presence of solid objects, convectional and
other effects that may affect the flow and sound field. It is not feasible
yet though, to use these methods in industrial applications, even if LES
might be used in a near future given that the computer development
continues as it has in recent years.

But until then it is worth while to continue to develop methods
for jet noise estimations which are less computationally intensive. A
method called SNGR or Stochastic Noise Generation and Radiation
method has been developed by Bechara et al.,?! Bailly et al.?2 and
Bailly and Juvé.?? In stead of being based on statistical estimations
of the turbulence to be used for an integral solution of an acoustic anal-
ogy it is based on unsteady source modeling. These sources are used
to evaluate source terms to an appropriate equation governing acous-
tic wave propagation which is solved on a computational grid for the
final sound prediction. By solving the wave operator on a computa-
tional grid to extend the acoustic solution from the near-field to the
far-field instead of relying on an integral solution, the use of a simple
wave operator such as the linear homogeneous wave equation (which
does not include effects of inhomogeneities such as refraction) is obso-
lete. The most general approach is to use the linearized versions of the
first principles governing fluid flow as a wave operator. The inhomoge-
neous linearized Euler equations are therefore used as wave operator
in the original SNGR formulations,?-2% where the terminology inhomo-

4



Chap. 1: Introduction

geneous linearized Euler equations refers to that the equations have
source terms. The SNGR method of Bailly and Juvé? has been further
developed in the present work. The changes concern the methods of
introducing time dependence and convection to the synthesized turbu-
lence. The method has also been changed such that the synthesized
turbulence can have anisotropy in both velocity and length scales. The
proposed method has been applied to both generic test cases and high
Mach number subsonic jet flows and the results have when possible
been validated to measurements and other prediction methods.

Common for all methods to perform an aeroacoustic noise prediction
based on solving the discretized flow equations is that there are very
high requirements for the numerical methods. The requirements in a
CAA computation as compared to a CFD (Computational Fluid Dynam-
ics) computation are stricter in every aspect. The main reason for this
is related to the scale disparity between the turbulence scales and the
acoustic scales. The smallest turbulent scales must be resolved with
high accuracy at the same time as the largest acoustic scales must
have room to propagate out from the source region to the surround-
ing ambient region in the computational domain. On the same domain
the smallest acoustic scales must be accurately propagated without nu-
merical dispersion or dissipation errors. The numerical scheme must
in order to meet these requirements have a very high fidelity and the
grid resolution is still high in the whole computational domain with a
very large degree-of-freedom in the problem as a result. The require-
ments of the free-field boundary conditions are also much higher in
CAA compared to CFD. The free-field boundary conditions must have
very high level of absorption of out going waves in order to simulate
the non-existence of the computational boundary. As a consequence, a
large portion of the work related to CAA (and in this work) is on ensur-
ing that the numerics are at the state of the art and that the number
of unknown numerical factors are kept to a minimum.
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Chapter 2

Goals and Motivation

The goals of the present work have evolved during the work process
and the level of ambition has been adjusted to the level of progress.
The main original goals were however:

e To investigate the possibility to develop a noise prediction method
for turbulent jets which is considerably less computationally costly
than LES and DNS and more flexible and general than existing
statistical methods.

e To increase the understanding of the important aspects of per-
forming a noise prediction when using CAA methods both in terms
of numerical requirements and in the sound generation process.

The motivation of the project is the renewed focus on aeroacous-
tics in the aircraft and jet engine industry. This interest is driven by
stricter legislative standards and harder competition for the best con-
cepts both in terms of efficiency and overall noise levels from commer-
cial jet airliners. Jet exhaust related noise is a major noise source from
a modern jet aircraft at take-off, and any progress in prediction meth-
ods which can be applied to industrial size jets would be a valuable tool
in the development of future more quiet jet engines.
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Chapter 3
The SNGR Method

This chapter is focused on describing the proposed Stochastic Noise
Generation and Radiation (SNGR) method. A short overview of the
method will first be given followed by a more detailed presentation of
the individual steps in the following sections. Some technical deriva-
tions and definitions are left out and referred to in the Appendix or in
the papers, mainly Papers II-1V,24-26

3.1 Stochastic Noise Generation and Radi-
ation - Overview

The SNGR model applied to a jet is performed in three steps. These
are:

step 1. A Reynolds-Averaged Navier-Stokes solution of a compressible
turbulent jet is calculated using, for example, a £ — ¢ turbulence
model.

step 2. An unsteady turbulent velocity field with the same local tur-
bulence kinetic energy, time scale and length scale as the RANS
solution is generated using random Fourier modes.

step 3. The inhomogeneous linearized Euler equations (ILEE) are sol-
ved using the mean flow field computed in step (1) as mean flow
solution. Source terms derived in a similar way as for Lighthill’s
wave equation are evaluated using the turbulence field generated
in step (2). The linearized Euler equations then govern the prop-
agation of sound from the turbulent field to the surrounding far-
field.
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The three steps in the SNGR method will be described in the follow-
ing sections.

3.2 Reynolds Averaged Navier-Stokes Solu-
tion

The Reynolds Averaged Navier-Stokes solution of the flow has two pur-
poses. One is to serve as the reference solution in the linearized Euler
equations in step (3) of the SNGR method. As such the RANS solu-
tion is important for the proper development of the solution to the lin-
earized Euler equations. Effects of convection and refraction in the
mean shear of the RANS can strongly affect the propagation of the
acoustic waves. The other purpose is that the source field generated in
step (2) of the SNGR method will be generated based on the solution of
the RANS equations. The spatial and temporal distribution of energy
in the generated turbulence in step (2) will be based on the turbulence
kinetic energy and dissipation rate. The generated velocity field will
also be convected by the velocity field from the RANS solution.

The standard & — ¢ RANS model has been used in the jet noise sim-
ulations. The simulations have been performed by Eriksson?’ in ax-
isymmetric variables. The reason for using an axisymmetric mesh for
the RANS computations is that the computational domain could be ex-
tended to several hundred jet diameters from the nozzle exit. This is
required if the proper development of the jet is to be achieved in the
RANS simulations. The RANS solutions of the jets are in good agree-
ment with measurements and show typical standard £ —s RANS model
behavior for a round jet.

The axisymmetric solution was then transferred to the 3D compu-
tational mesh used in the linearized Euler computations. Each of the
computational cells in the 3D mesh was split into 10 x 10 x 10 sub-
volumes. The location of the center of each sub-volume (7,7,z) was
expressed in axisymmetric coordinates (z,7) and the solution in this
sub-volume was interpolated from the axisymmetric RANS solution.

The interpolation of the solution in the axisymmetric mesh was based
on a cell-to-node transformation of the solution where the volume aver-
aged solution was transfered to the grid nodes. The solution in the sub-
volume was then interpolated within a cell by using the node-based so-
lution in the axisymmetric mesh. The contribution to the solution from
each sub-volume to the average solution in the whole 3D cell solution

10
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was accumulated using volume-weighted accumulation. This ensured
a minimum of error in the conservation of mass, momentum and en-
ergy in the transformation of the solution from the axisymmetric mesh
to the full 3D mesh.

The RANS solution is also used in combination with Boussinesq as-
sumption to predict the Reynolds stress anisotropy which is used as
input for the anisotropic method to generate synthesized turbulence.

3.3 Generation of Synthesized Turbulence

This section concerns the generation of an unsteady turbulent velocity
field, i.e. step (2) in the SNGR method. A time-space turbulent ve-
locity field can be simulated using random Fourier modes. This was
proposed by Kraichnan?® and Karweit et al.?’ Later Bechara et al.,?!
Bailly et al.?? and Bailly and Juvé?? used this to generate synthesized
turbulence in the framework of the SNGR method.

The synthesis of velocity fields in this work is based on the same ap-
proach as in the above mentioned references. The present method does
however differ in the way time dependence and convection effects are
introduced. This will be shown later in this section. First the genera-
tion of a space distribution of the synthesized turbulence is presented.
A random velocity field can be constructed as a sum of Fourier modes

N
w(x) = 2212” cos(ky, - x + )0y, (3.1)
n=1

where 1,, ¥, and o, are amplitude, phase and direction of the n'*
Fourier mode. The direction o, has length |o,| = 1. Figure 3.1 shows
the geometry of the n'* mode in wave space.

The orientation of vector k, is chosen randomly on a sphere with
radius k,. This to ensure isotropy of the generated velocity field. By
the assumption of incompressibility the continuity equation gives the
following relation

k, - 0,=0 for all n (3.2)

The wave number vector k,, and the spatial direction o, of the n'*» mode
are thus perpendicular.

The space angles ¢, a,, 6, and the phase v, are chosen randomly
with probability functions given in table 3.1. The probability function

11
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k1

k2

0

ky n

Figure 3.1: Geometry in wave-space for the n* mode.

p(pn) = 1/(2) 0<n<2m
p(¥n) = 1/(27) 0 <n<2r
p(f,) = (1/2)sin(f) | 0< 0, <

p(an) = 1/(2m) 0<a, <27

Table 3.1: Probability distributions of random variables.

of 0, p(6,) = 1/2sin(0) is chosen such that the distribution of the direc-
tion of k,, is uniform on the surface of a sphere, see figure 3.2, i.e. the
probability of a randomly selected direction is the same for all surface
elements dA.

The amplitude 4, of each mode in equation 3.1 is computed from
the turbulence energy spectrum function E(k,) corresponding to the
energy spectrum for isotropic turbulence. This gives

iin = \/E (k) Aky (3.3)

where Ak, is a small interval in the spectrum located at k,, see figure
3.3. A model spectrum is used to simulate the shape of the energy
spectrum for isotropic turbulence. In this way the sum of the squares
of 4, over all n is equal to the total turbulence kinetic energy

N
k=Y (3.4)
n=1
The spectrum E(k,) is subdivided with a linear distribution as
k, =k +dk}' for n=1,2,...,N (3.5)

12
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ks

R k
<
AN \\ 2

ki

Figure 3.2: The probability of a randomly selected direction of a wave
in wave-space is the same for all dA on the shell of a sphere.

where
(ky — k1)
N -1
The energy spectrum for isotropic turbulence is simulated by a mod-
ified von Karman-Pao spectrum

dk; = (3.6)

u’ o (kke) B 2
Bl = o e @)

where k is the wave number, k, = ¢/4v=3/* is the Kolmogorov wave
number, v is the molecular viscosity and ¢ is the turbulence dissipation
rate. u” is the rm.s. value of the velocity fluctuations corresponding
to the turbulent kinetic energy, u” = 2k/3. There are two free param-
eters in equation 3.7. The numerical constant o which determines the
kinetic energy of the spectrum and the wave number k. correspond-
ing to the most energy containing eddies at the peak in the spectrum.
The available information from the RANS solution is the turbulence ki-
netic energy k, and the dissipation rate . These are used to determine
«a and k., and thereby the shape of the spectrum and the distribution
of energy over different wave numbers. The numerical constant « can
be determined by the requirement that the integral of the energy spec-
trum, equation 3.7, over all wave numbers should be equal to the total
turbulent kinetic energy
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log(E(k))

ke  kn log(k)
Figure 3.3: Model energy spectrum

= / " Bk)dk (3.8)
0

Since equation 3.7 is derived for infinite Reynolds number « can be
found independently of k., by integrating equation 3.8 to get

4 T(17/6)

= ~ 1.452 .
o = T/3) 76 (3.9)
The turbulence length scale from the RANS solution is defined as
/2
L, = fLT (3.10)

where f; is the length scale factor used to calibrate the length scale of
the synthesized turbulence. Assuming that the length scale from the
RANS solution is the same as the integral length scale for isotropic
turbulence gives the following relation

w [ E(k)
L= — — A1
T o /0 k dk @.10)
which is used to determine the wave number k. corresponding to the
most energetic length scales. The relation of £, to L; and « is then

I«
55 I
where « is given in equation 3.9 and L; is obtained from the RANS
solution.

ke (3.12)
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3.3.1 Time Dependence

Using equation 3.1 together with the other relations in the previous
section a single realization of a turbulent velocity field is synthesized.
A prescribed time evolution of the turbulence is introduced through a
time filter. This is done in the following way. First generate a real-
ization of the turbulent velocity field u*(x) (using equation 3.1) where
superscript ()™ denotes time step. Each generated field u}*(x) for all
1 < m < N is independent of the others and they have a zero statisti-
cal mean in time. In other words the generated velocity field is locally
white noise in time. A new turbulent velocity field can then be com-
puted via the filter equation (Paper III and IV2?26)

v (x) = av" 7 (x) + b(ul(x) + ul" " (x)) (3.13)

where a = exp (—At/7r) and b = fa/(1 —a)/2. 1 is referred to as the
time scale and defines the time separation for which the autocorrela-
tion function is reduced to exp (—1). The factor f4 is an amplitude factor
used to modify the level of the filtered turbulent field v{*(x). When f, is
equal to one the expression for b ensures that the root mean square of
v{*(x) is the same as for u}’(x). Typically a is a number close to one and
b close to zero. The time scale of the filter in equation 3.13 is computed
from the RANS solution as

T = fo (3.14)

where the time scale factor f, is introduced for the possibility to modify
the time scale.

Figure 3.4 shows a 1/3 octave power spectral density of u-velocity
component computed from synthesized turbulence filtered using the
equation 3.13. The time scale in the spectrum is 7, = 0.001 s. Also
shown is the analytical discrete Fourier transform of the autocorrela-
tion of the filter equation 3.13. Both curves show a near constant level
for low frequencies with a quadratic slope for higher frequencies. At
the resolution limit the energy goes to zero, i.e. there are no odd-even
fluctuations in the filtered velocities. Shown is also the w=5/3 line for
high frequencies predicted by isotropic turbulence theory.?°

3.3.2 Convection Operator

To account for convection of the generated turbulent field v]*(x) a sim-
ple convection equation is solved for v} ~*(x)

15
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107

Figure 3.4: 1/3 octave power spectral density of u. Solid line: syn-
thesized velocity; dashed line: analytical expression for equation 3.13;
dash-dotted line: w=%2 line

o(pvy ) N d(puvi™)
815 835]-

before it is used in equation 3.13. The convected and time filtered ve-
locity field vi*(x) is then used when evaluating the source terms in step
(3) in the SNGR method.

The convective operator and the time filter (equations 3.15 and 3.13)
were introduced to avoid a problem of spatial de-correlation in the pre-
vious formulations of the generation of synthesized turbulence.??23.28.31
In these studies the synthesized turbulent velocity was given by

=0 (3.15)

N
w(x,t) =2 Z Up, cos(ky, - (x — tu.) + ¥y, + wpt)o, (3.16)
n=1

i.e. time dependence and convection were introduced directly in the
Fourier modes. In this expression u, is the local convection velocity
computed in the RANS solution, and w, is the angular frequency of the
n'* generated mode. Batten et al.?! reported that the convective argu-
ment (x — tu.) causes spatial de-correlation of the synthesized velocity
field in shear flows. The reason for this is that the local convection ve-
locity u. will vary cross the shear layer so that x — tu. becomes very
different for points close to each other as time ¢ in the simulation be-
comes large. This de-correlation does not occur in the present method
since the convected velocity field v]"~*(x) in equation 3.15 is continu-
ously filtered in the time filter operator (equation 3.13). The random
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velocity fields u}*(x) used as input in equation 3.13 are well correlated
in space for all times since they do not include the de-correlating con-
vection term (x — tu.). The total effect of the convection operator and
the time filter is a well correlated synthesized velocity field even in
shear flows, which is shown for high Mach number jets in Papers 11
and IV 2426

3.3.3 Anisotropy

The method to introduce anisotropy in the generation of synthesized
turbulence is fully described in Paper II1,?° and only the final expres-
sions are presented here.

The goal is to generate a velocity field with an anisotropy specified by
a model Reynolds stress tensor 7. The idea is to introduce anisotropy to
the synthesized velocity field in the principal axes of the model stress
tensor since in these axes, the cross-correlation components in the ten-
sor are all zero and the anisotropy of the flow is determined by the
normal components. The generated anisotropic velocity field is then
rotated from the principal axes of the model stress tensor back into the
normal coordinate system.

Let superscript (-)* denote a variable that is expressed in a coordi-
nate system aligned with the principal axes of a model Reynolds stress
tensor 7. An anisotropic velocity field u*(x*) is then generated (cf.
equation 3.1) by the equation

N
u®(x*) =2 iy cos(ks - X" + ) (3.17)

n=1

where the direction of the anisotropic velocity component 1, is

o =aer | |o%|#£1 (3.18)

n

The tensor

r
ok
is the normalized Reynolds stress tensor in the principal coordinate
system. The wave number k%* in equation 3.17 is defined by

(3.19)

a = —

DN W

k¥ = a*"!/2K* (3.20)
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This modified wave number is introduced to make sure that the result-
ing velocity field will have zero divergence for a homogeneous anisotropic
field, i.e. k%* - % = 0.

The final expression for the anisotropic velocity field expressed in
the normal coordinate system is then computed by

u’(x) = Ru®(x") (3.21)

where R is the rotation matrix that diagonalizes the stress tensor 7.
The resulting stress tensor associated with velocity field u®(x) is the
same as the model Reynolds stress tensor 7. The rotation matrix R
consists of the eigenvectors of the model stress tensor 7 and the nor-
malized stress tensor expressed in the principal axes a* is a diagonal
tensor with the normalized eigenvalues of 7 in the diagonal. Time de-
pendence and convection of the anisotropic turbulence velocity field in
equation 3.17 is introduced in the same way as in the isotropic case.

The proposed method to generate anisotropic turbulence has been
used in a test case which is described in section 5.4.2 and in Paper II1%°
as well as for turbulent high Mach number subsonic jets in Paper IV26
which are presented in section 5.5.

3.4 Inhomogeneous Linearized Euler Equa-
tions, ILEE

The third step in the SNGR method is to compute the sound field as-
sociated with the synthesized turbulence generated in step (2). An ap-
propriate system of equations must be chosen which governs acoustic
wave propagation and has source terms representing turbulence. One
could for example use the Lighthill equation,! which is derived from
the Navier-Stokes equations without assumptions. Properly computed
source terms would give an accurate prediction of the sound field as-
sociated with the source field. Since Lighthill’s equation is the linear
wave equation for a homogeneous medium at rest all effects of inho-
mogeneity such as the presence of solid boundaries or shear as well as
non-linear effects must be specified by the source terms.

Following the original presentation by Bechara et al.,2! the inho-
mogeneous linearized Euler equations are used as wave operator for
the acoustic prediction in the present work. The formulations used in
[21-23] were based on primitive formulations of the ILEE whereas the
conservative formulation is used in the present work. The advantage
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of the ILEE compared to the Lighthill equation is that effects of inho-
mogeneities are retained in the wave operator and the source terms do
not need to describe all such effects.

3.4.1 Conservative Formulation

The inhomogeneous linearized Euler equations used in the present
SNGR method are based on conservative formulation using (¢, (pu)’,
(pv)', (pw)', (pey)') as solution variables. The derivation of these equa-
tions is presented in Paper I32 and only the final expression is given
here. The linearized continuity equation, inhomogeneous momentum
equations and inhomogeneous energy equation can in conservative for-
mulation be written as

o, olpu) _

ot 0z 0

A 4 2 o + ) = P+ 10) =

- a%j(pu;'u}' - puiuj) 322
a(gio)l + %(%o(puj)' + 3 (pho)’ = p'hol;) =

a n_n NN
- %j(ﬂhouj — phguj)

where over-line (-) and prime (-') denote time-average and associated
fluctuation respectively. Tilde (-) denotes Favre time-average and the
double prime (-”) is the associated fluctuation. The total enthalpy and
pressure in equation 3.22 are introduced to enable a short notation and
the decompositions of total enthalpy and the pressure into averages
and fluctuations are consistent with the decompositions of the primary
solution variables.3?

The inhomogeneous linearized Euler equations above, equations 3.22,
have been derived from the Euler equations without approximations or
assumptions of the nature of the flow. The equations above are in fact
still the non-linear Euler equations. But if one argue that the terms on
the right hand side of equations 3.22 are in some way known and con-
sidered as source terms, then the equations on the left hand side are
the linearized Euler equations. The right hand side could for example
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be given by a Large Eddy Simulation or a Direct Numerical Simula-
tion which also would provide the reference solution (p, pu, pv, pw, péy)
for the linearized Euler equations. The equations 3.22 would then be
an analogy for acoustic generation and radiation. In the SNGR method
the reference solution (p, pu, pv, pw, pey) is given from the solution of
the RANS equations (step (1)), and the source terms (right hand side
in equation 3.22) are evaluated from the synthesized turbulence in step

(2).

3.4.2 Stability in Shear Flows

Free shear flows can be categorized based on in which way they show
a tendency for instability, see Huerre and Monkewitz33 . One of these
categories of unstable flows is the convectively unstable flow. A distur-
bance in a convectively unstable flow grows in time but is convected
downstream and thus leaving the starting point undisturbed. If the
flow is homogeneous in the stream-wise direction this instability exists
for all downstream positions. In developing flows there may be a region
of local convective instability with surrounding stable regions. This can
be called a local convective instability region. Unheated turbulent jets
with uniform density are examples of flows which in the initial shear
layers experience local convective instabilities.

For the non-linear flow-equations the instabilities reach a finite limit
through non-linearity and undergo transition to turbulence. For lin-
earized flow equations there is no non-linearity which limits the am-
plitude through transition. It is only the convection and locality of
the instability that keeps the amplitude of the disturbance finite. The
disturbances can reach quite large values before they are convected
out from the local convectively unstable region. By convection these
disturbances are transported through the computational domain until
they reach the outflow boundary. Once there they pose a considerable
challenge for the outflow boundary condition, see sections 4.4.3 and 5.1.

For a noise prediction simulation the instabilities are of concern due
to coupling between vorticity waves and acoustic waves in shear flows.
The instabilities are mostly of vortical structure and the disturbances
are convected downstream by the mean flow. But if there is a coupling
of the vorticity waves with acoustic waves the disturbances will be able
to propagate out from the region of the original disturbances as acous-
tic waves. If the amplitudes of these acoustic waves are large they can
dominate the numerical solution and make evaluation of the flow diffi-
cult.
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In jet simulations it has been found that the most unstable modes
are at relatively low frequencies. Numerical simulations indicate that
instabilities are at frequencies lower than that of the dominating sound
generation. The most unstable modes in the simulations in the present
work have been found to have Strouhal numbers St = fD;/U; lower
than 0.1 whereas the dominating frequencies of the emitted sound of
high Mach number subsonic jets are above St = 0.1. This opens for the
possibility to filter the solution of the emitted sound below a specified
frequency. This is possible since the system of equations is linear and
there is thus no spectral transfer of energy between different frequen-
cies. The far-field jet noise predictions presented in the present work
have been filtered in this manner to avoid the effect of these low fre-
quency instabilities. This has been done as a last resort to be able to
evaluate the far-field acoustic data.

There has however been some progress in efforts to make the LEE
stable in shear flows. The approaches have been focused on decoupling
vorticity and acoustic waves. For example Bogey et al.?* did this in
a formulation of the linearized Euler equations using primitive vari-
ables by discarding spatial derivatives of the reference solution. This
decouples the acoustic and vorticity waves and has a stabilizing effect
on the solution, see Bogey et al.?* A less aggressive modification of the
governing equations has been proposed by Zhang et al.?> For axisym-
metric simulations in ducted flows in the z-direction they discarded
the derivative of the axial mean velocity component in the radial di-
rection, 0u/dy. This also had a stabilizing effect on the disturbances.
Both types of modifications of the governing equations in [34] and [35]
do however introduce non-conservativeness of mass, momentum and
energy. And even if both [34] and [35] have reported good results for
the investigated flows by using these modified equations, it is unclear
which effect these modifications have on the solution to the equations
in other flows than those presented.

Ewert and Schréder®® have performed a more elaborate change of
the linearized Euler equations. By splitting the solution variables in
the equations into an incompressible vortical part and a compressible
rotation-free part the vorticity and acoustic modes have been decou-
pled. The resulting equations have been shown3%37 to be stable even
for globally unstable flows.

An brief investigation of the effects of modifying the linearized Euler
equations has been performed in the present work. The test case and
the results are fully presented in section 5.3. It is just mentioned here
that the results indicate that modifying the equations may introduce
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errors in the refraction of acoustic waves in inhomogeneous flows.
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Chapter 4
Numerical Method

4.1 Linearized Euler Equations Solver

The solver for the linearized Euler equations is based on the G3D3®
series of codes developed by Lars-Erik Eriksson at Volvo Aero Corpo-
ration. These codes solve compressible flow equations on conserva-
tive form on a general structured boundary-fitted, curve-linear non-
orthogonal multi-block mesh.

The solver in the present work is an extended version of a code for
solving the linearized Euler equations in CFD applications. The de-
velopments consist of increased numerical accuracy required for Com-
putational Aeroacoustics (CAA). In the present state the code uses an
explicit four-stage fourth order Runge-Kutta time marching technique.
The convective fluxes are evaluated using a six-point finite volume
stencil. Upwinding of the convective fluxes based on characteristic
variables is used to ensure numerical stability. The code has been par-
allelized using MPI (Message Passing Interface) to make parallel com-
putations possible. The Finite Volume Method (FVM) used in this work
is briefly described below. For more details on the numerical methods
see Eriksson.%?

The Kirchhoff-Helmholtz*® method is used in the test cases to extend
the prediction of the acoustic solution to the far-field, and the details
related to this method are discussed in section 4.3. This is followed
in section 4.4 by a description of the absorbing boundary conditions
used in the computations using the linearized Euler equations. The
finite volume method solver used for solving the flow equations is first
presented in the following sections.
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4.1.1 Finite Volume Method

The linearized Euler equations can be written on a compact conserva-
tive form as

/! F
aaQt + % =0 (4.1)
J
where
r B B (pu;)’ s
Q=1 (pui)' Fy= | u(pu) + ui(puy)' — puu; +p'di; | (4.2)
(peo)’ ho(pu;)" + uj(pho)” — p'hotl;

The Finite Volume Method used is based on a discretization of the
equations on a structured, non-orthogonal curve-linear multi-block mesh.
This is done by integrating 4.1 over a control volume (2

aQ’ OF;
gy = 4.
v+ Qadev 0 (4.3)

Introducing a volume average Q' of Q' over €2 and using Gauss theorem
on the second term we can write

oQ’

ot
where dS; = n;dS is a surface normal element on 0. In words equation
4.4 says that the rate of change of the volume average of the state
vector (' is equal to the integral of the flux through the boundary of
volume €). If ) is the volume defining a cell in a computational mesh
the flux term can be rewritten as the sum of the fluxes through the cell
faces of control volume 2

/Fj-de: Z/ Fj - ds; (4.5)
o ace

all faces

v

+ / F;-dS; =0 (4.4)
o

Assuming that Fj is constant over each face, equation 4.5 can be writ-
ten as

_ face face
/aQF,--dsj_ " Flee. s (4.6)

all faces

where ij %¢ is the surface normal vector times the surface area of the
face. The governing equations discretized on a structured mesh can
now be written as
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0qQ’

Vat

face face __
+ ZFJ - Sl = 0 (4.7)

all faces

Solving equation 4.7 is done by estimating the values of F; on the faces
and then use a time marching technique to advance the solution in
time. The procedure is then repeated using the new solution from the
last time step.

4.1.2 Convective Fluxes and Artificial Dissipation

The convective fluxes are computed using an approach based on a trans-
formation of the solution on the cell face into characteristic variables,
see Appendix 7.4. The reason for this is to be able to add a small
amount of artificial numerical dissipation through an upwinding of the
convective scheme. The methodology is as follows.

I-Direction

° ™y ° ™ i
Q4 Q' Q'; Q'
Qf
Figure 4.1: Estimation of face value @/ is based on cell averages Q'; to

Qs

The solution vector ¢ is computed on the face in a right-hand side
upwinded version and a left-hand side upwinded version. The upwind-
ing is based on adding a dissipative term to the system of equations.
This term is multiplied by a small number ¢ to add a small amount
of dissipation, see Appendix 7.2. This is illustrated here using a four-
point stencil

QF =b,Q', +5,Q, + bsQ'5 + 04 Q,

f I i I I (48)
QR:b4Q1+b3Q2+b2Q3+le4

where Q£ is the left-hand side upwinded and Qé is the right-hand side
upwinded estimates on the face and the upwinded coefficients b; are
given by

25



Computational Techniques for Turbulence Generated Noise

bi=a1+e dy
bs = ay € dy
by = a3+ € dj (4.9)
bis=ast € ds
bs = a5 € ds
bg = ag = € dg

The coefficients a; are the coefficients of the symmetric convective scheme
and d; are chosen to approximate an odd order derivative which is
scaled with the small parameter ¢, see Appendix 7.2.

The left and right-hand side upwinded solution vectors Q% and Q7
are transformed in the I-direction into vectors for the characteristic
variables, WL(”) and W}(z") representing one-dimensional waves through
the cell face, see Appendix 7.4. Using the reference solution in the
linearized Euler equations an average of the two neighboring cells is
computed as

Q. =0.5(Qy + Q) (4.10)
which is used to compute the eigenvalue \(™ associated to each charac-
teristic variable, see Appendix 7.4. In three dimensions there are five
characteristic variables corresponding to one entropy, two vorticity and
two acoustic waves with the eigenvalue associated to each characteris-
tic variable representing the velocity of that wave.

The solution is transformed back from characteristic variables to
physical variables using information about the eigenvalues. If the eigen-
value A\ associated to the characteristic variable W™ is positive, the
left-hand side upwinded version is used in the transformation back to
physical variables and if the eigenvalue A\(") is negative, the right-hand
side upwinded version is used. This corresponds to an upwinding of
each characteristic variable depending on the direction in which the
wave is traveling through the face. Finally the flux through the face,
equation 4.7, is computed using the solution estimated on the face.

The numerical scheme used in the present work is the six-cell fi-
nite volume version of the fourth-order Dispersion Relation Preserving
(DRP) scheme proposed by Tam,*! and a sixth-order derivative of the
solution vector is used in the upwinding of the numerical scheme. The
coefficients of the numerical scheme are given in Appendix 7.5 and the
resulting dispersion relation and dissipation relation are shown in Ap-
pendix 7.2.
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4.1.3 Time Marching

When the spatial fluxes are computed as in the section above, equation
4.7 can be written on the form

0Q’

ot

where F is the sum of the spatial fluxes per unit volume. The time in-

tegration is performed using a four-stage 4:th order low storage Runge-
Kutta time marching technique

=F (4.11)

Q.= Q, + AF(@Q,)

Q.= Q,+AF(Q)

' ' 1 !

le-|—1 = Q,m + AtF(Q,***)

where Q',, is the solution at time step m and Q',,,, is the computed
solution at time step m + 1.

The time step At is chosen such that the highest CFL-number in
the computational domain is below a specified value. The time step is
given by At = CFL/SR where SR is the convective spectral radius.*?
The numerical scheme is stable up to CFL about unity. The maximum
CFL-number is however chosen to 0.5 in most computations. Above
this CFL-number the amplitude error caused by the artificial numeri-
cal dissipation starts to become important for low wave numbers. See
Appendix 7.2 for a stability analysis of the fully discretized equations
using the above specified scheme.

(4.12)

4.2 Solver for the Convective Operator

The numerical methods for solving the convective operator (equation
3.15) in the proposed SNGR method are the same as for the linearized
Euler equations except for the order of accuracy. An upwinded third
order numerical scheme is used for the convective fluxes and a second-
order three stage Runge-Kutta method is used for time stepping. The
numerical coefficients for the convective scheme are given in Appendix
7.5. The boundary conditions for the convective operator are based on
characteristical variables and are presented in section 4.4.
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An important detail in the proposed SNGR method is that all scales
which are synthesized must be resolved by the numerical schemes in
all steps of the computations. The synthesized velocity field must be
resolved on the mesh so that the convective operator (equation 3.15)
can propagate it without too much dispersion of amplitude errors (see
Appendix 7.2). Through the evaluation of the source terms in equation
3.22 there is a doubling of the wave numbers and frequencies so that
the requirements on the solution of the ILEE is even higher than that
of the convective operator. This doubling comes from the non-linearity
of the source terms, see equation 3.22. The resolutions for the highest
modes in the near-field of the jet simulations are 7 and 3.5 cells per
wavelength respectively for the numerical schemes for the convective
operator and the solver for the ILEE.

4.3 Kirchhoff-Helmholtz Method

Kirchhoff-Helmholtz integration*’ is a method to predict a state vari-
able governed by the linear homogeneous wave equation at a point,
based on information of the same state variable from a closed surface
enclosing all non-linear sound generating structures. In aeroacoustics,
this is used to predict the pressure disturbances outside of the com-
putational domain for the flow field. Given here is a short presenta-
tion of the Kirchhoff-Helmholtz method. For a more detailed analysis,
see, 40,43,44

The Kirchhoff-Helmholtz surface is assumed to enclose all non-linear
effects and sound sources. Outside this surface the field is linear and is
governed by the wave equation. The Kirchhoff formulation for a quan-
tity @ satisfying the wave equation outside a stationary control surface,
can be written as (Pierce**)

B(x, 1) = 1 /[g@ 18_(13 1 or o0d
s

4 r20n  ron + cor On Ot |, d5 (4.13)
In the above equation [|» stands for evaluation at the emission time.
The normal derivative of the distance between the surface and the ob-
server, Or/dn, is actually cos(#), where 6 is the angle between the vector
r = x — y and the outward pointing normal vector n. Equation 4.13
gives ® at an arbitrary point x at time ¢ outside of the control surface S
as a function of the information given at y on the surface S at time 7'.
The Kirchhoff-Helmholtz integration method relies formally on the
use of a closed integration surface enclosing all sound sources. In a real
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jet case however, it is not feasible to extend the computational domain
in the axial direction to ensure that all sound generating structures are
inside a closed surface, see figure 4.2. There is always a portion of the
downstream boundary through which a considerable amount of vor-
ticity is convected. To minimize the error in the Kirchhoff-Helmholtz
integration, the integration surface is left open on this boundary. This
is a violation of the conditions under which the theory holds. However,
Freund et al.*> have shown that the major contribution to the solu-
tion at an observation point comes from a point on the surface that
intersects a line between the observer and the source point, see figure
4.2. The errors involved using the open surface are smaller than what
would have been the case if the surface would have crossed the outflow
region.

Observation point

777777777777777777777777777777777777777777777777777777777777777777777777777777777

Kirchhoff-Helmholtz surface

open region

Source region

Kirchhoff-Helmholtz surface

Figure 4.2: Kirchhoff-Helmholtz surface for jet case. - - - : Kirchhoff-
Helmholtz surface.

The implementation of the Kirchhoff method used in this work is
based on a forward time formulation which enables direct integration
of equation 4.13 during the simulation of the linearized Euler equa-
tions without having to save the surface pressure for post-processing.
The Kirchhoff-Helmholtz integral method implementation used in this
work has been validated using a test case consisting of a monopole in
a box, see Billson.*® The results were in excellent agreement with the
analytical solution.
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4.4 Boundary Conditions

4.4.1 Characteristic Variable Based
Absorbing Boundary Conditions (Cvba)

The boundary conditions presented here are similar to the ones pre-
sented by Thompson*®4” but the details are not the same. The formu-
lation of the boundary conditions presented here is derived by Eriks-
son.?® The boundary conditions are based on a characteristic variable
based representation of the governing equations in the direction of the
outward facing normal vector n. This transformation is presented in
Appendix 7.4 and only the outline is given here.

The governing equations can be transformed into a set of decoupled
equations in one direction. The transformed equations govern propa-
gation of planar waves in the direction of the analysis. The degrees
of freedom are the five characteristic variables, W, each governed by
the equation

oW @) oW @)
2" — 4.14
ras A o 0 (4.14)

where A\ is the characteristic speed associated with the characteristic
variable and ¢ is the spatial variable in the n-direction.

The sign of the characteristic speeds )\’ at the boundary gives infor-
mation about the direction in which the characteristic variable W is
traveling. This information is used to set up the boundary conditions.
The boundary condition is set up as

Specify W® at boundary if A0 <0 (4.15)
Extrapolate W from interior domain if A® >0 ’
The expressions above state that if information of W is transported
into the domain, the value of W has to be given as a boundary con-
dition. If the information of W is transported from the inside of the
domain, toward the boundary, the value of W does not need to be spec-
ified and W is extrapolated from the solution. When the appropriate
action has been made on each characteristic variable, the solution is
transformed back into the state variables again. This boundary condi-
tion gives complete absorption of planar waves propagating normally
toward the boundary. For waves with oblique incidence to the boundary
there will only be a partial absorption, see figure 4.3.
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Figure 4.3: Absorbed wave v.s. partially reflected wave.

4.4.2 Modified Characteristic Variable Based
Absorbing Boundary Conditions (Cvba)

The modified boundary conditions based on characteristic variables
are equal to the original boundary conditions based on characteristic
variables except for one detail. The original boundary conditions are
completely absorbing for waves traveling with normal incidence to the
boundary. This is a result of choosing the boundary normal vector n
as direction for the local analysis describes above. The idea with the
modified version of the original boundary conditions is that if the direc-
tion of the waves propagating toward the boundary is known, the local
analysis of the governing equations is made in that direction. This
leads to complete absorption in this direction, see figure 4.4.2. The
problem is then to choose the direction in which performing the anal-
ysis. In many problems the direction to the main source region is ap-
proximately known and the direction of the analysis of the boundary
conditions can be chosen accordingly. Tests of these modified boundary
conditions are presented in section 5.1.

4.4.3 Buffer Layer

At the far-field and inflow boundary the only disturbances reaching
the boundary are acoustic waves. The energy content in sound waves
is usually very small and even if there is a small fraction of the dis-
turbance which is reflected back into the computational domain the
energy of the reflected wave will be very small.
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n
Outgoing wave

Direction of local analysis

At the outflow however there are vorticity and entropy disturbances
convected with the flow reaching the boundary as well as acoustic dis-
turbances. The energy content in vorticity and entropy waves is very
large at the outflow compared to acoustic waves. So if the boundary
condition at the outflow does not completely absorb all energy from
the vorticity and entropy disturbances very large acoustic disturbances
will reflect back into the computational domain. These waves will be
an artifact of poor boundary conditions and not part of the correct so-
lution. This contamination of the solution must be avoided. To ensure
that there are no reflections from the outflow region a buffer layer is
often applied. The buffer layer is an extension of the computational
domain in the downstream direction in which extra terms are added
to the equations. The way this is done was first proposed by Colonius
et al.*® Assuming that the buffer layer is added in the computational
domain in the z-direction, the terms added to the governing equations
are

Q" coo () ,
o _..._m(Q) (4.16)
where
T —z 2
0(2) = Omaz (7" ) (4.17)
Tmaz — Zo

where c¢q is the local reference speed of sound. The strength of the
buffer layer, 0,,.., is chosen to achieve a certain amount of damping and
zo and z,,,, define the beginning and end of the buffer layer (assuming
that the flow is mainly in the z-direction). The parabolic shape of o(z)
reduces the risk that the damping term will cause reflections into the
computational domain.

32



Chapter 5

Test Cases

This chapter is a summary of the most important numerical tests which
have been performed in the project. Some of the cases have been pub-
lished in one of the Papers I-IV2426:32 or are documented in an internal
report, Paper V.*° These documents are found in the back of this thesis
and only a short presentation of the results is given here. Other tests
have not been published elsewhere and are fully described here.

5.1 Absorbing Boundary Conditions

Bogey and Bailly®® have proposed two boundary condition test cases
for boundary conditions formulated in three dimensions. The first case
consists of a Gaussian acoustic pulse in a uniform mean flow and the
second is an axisymmetric vortex in a uniform mean flow. The bound-
ary conditions tested in [50] were reformulated versions in spherical
coordinates of the boundary conditions proposed by Tam and Dong.5!
The test showed that the boundary conditions performed well as non-
reflective boundary conditions for an acoustic pulse. In the vortex test
case there was some reflection into the computational domain. The
two test cases suggested in [50] are in the present work performed us-
ing the boundary conditions based on characteristic variables (Cvba)
as well as a set of modified boundary conditions based on characteris-
tic variables (MCvba), see section 4.4. The computational setup and
the results are presented and discussed below.

The computational mesh consists of a N* mesh with N = 100 cells.
The spatial extent of the mesh is —50 < z,y,2z < 50 with a constant
cell size A = 1. The test case has been normalized by the variables in
table 5.1. In the test cases below the L,-norm of the pressure distur-
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bance is computed for each time step. This is used as a measure of the
performance of the boundary conditions. The norm is defined by

. N3 1/2
Lo(9) = mzpfjm)] 1)
4,5,k
length scale VAN cell size
velocity scale : ¢ ambient speed of sound
time scale : Afey
density scale : po ambient density
pressure scale : pc3

Table 5.1: Normalization variables

5.1.1 Gaussian Acoustic Pulse

The first test case consists of an initial Gaussian acoustic pulse in a
mean flow in the z-direction with Mach number M = 0.5, mean density
p =1 and mean pressure p = 1/v. The initial condition is

o = eexp[—ar?|

up = 0

uh, = 0 (5.2)
uy = 0

p = eexp[—ar?]

where o = (In2)/b%, b = 3, ¢ = 1072 and r is the radius from the center
of the pulse located in origo. More details on the test case can be found
in [50].

The pressure disturbances [p’|/e in the zy plane are shown in figure
5.1. The left column represents the Cvba boundary conditions at times
t = 40, 80 and 120. The center column represents the MCvba boundary
conditions at the same times. In the test by Bogey and Bailly there
were no visible reflections back into the computational domain using
the same scale for the iso-contours as in figure 5.1, whereas the re-
sults using the Cvba and MCvba show reflections. The outgoing wave
reaches the boundary with a level of |p'|/e =~ 0.02. The reflected waves
from the boundaries have an amplitude of |p'|/e ~ 0.001 or about 5%
of the original wave amplitude. In the test by Bogey and Bailly the
reflection was below 2% and below the scale of the iso-contours.
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Figure 5.1: Scaled pressure disturbance [p|/e. Left column: Charac-
teristic variable based boundary conditions, Cvba. Center column:
Modified Cvba. Right column: Modified Cvba with moving source
correction. At times ¢t = 40 (top), 80 (middle) and 120 (bottom). Iso-
contours from 2.5 x 10~* to 1.6 x 102 using 4 levels with a geometrical
ratio of 4.
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The time history of the L, norm for the acoustic pulse is shown in
figure 5.2(a). The norm is normalized by the initial value of the norm
at time ¢t = 0. The norm decreases in steps as the pulse reaches the out-
flow, side and inflow boundaries. The non-zero value of L, ~ 3 x 1072
at times ¢ > 150 represents the amount of reflected waves. This cor-
respond to about one order of magnitude lower compared to the initial
value. The corresponding result of Bogey and Bailly is about two order
of magnitude decrease of the L, norm at time ¢ = 150.

The results from the modified and the original Cvba boundary con-
ditions are similar with just slightly less reflection from the modified
boundary conditions. One would expect the modified boundary con-
ditions to perform better than the original boundary conditions. But
it should be noted that the direction of the one-dimensional analysis
was specified as if the source was located in the center of the computa-
tional domain, (zo, o, 20) = (0,0, 0). The center of the source is however
moving with the local convection speed so the estimate is actually not
such a good approximation by the time the acoustic pulse reaches the
boundary.

To illustrate the point the same computation was performed using
the modified Cvba in which the origin of the moving source was spec-
ified as (zo, 0, 20) = (ut,0,0). The resulting pressure iso-contours are
shown in the right column of figure 5.1 and the L, norm is the dash-
dotted line in figure 5.2(a). The result is much improved up to ¢ = 140.
The increase in the norm after ¢ = 140 is related to that the source by
then is outside the computational domain and thus inverting the di-
rection of the one-dimensional analysis for the outflow boundary. The
result is encouraging since the source location is often approximately
known and the modified boundary conditions would in that case be ef-
ficient as absorbing boundary conditions for acoustic disturbances.

5.1.2 Convected Axisymmetric Vortex

The second test case proposed in [50] is that of a convected axisymmet-
ric vortex. The mean flow is defined by p = 1, © = (M,0,0), M = 0.5,

P = 1/v. The initial velocity disturbance is defined by

Uy = eT—O(r —ro)exp [—a (z° + (r — ro)?) ]
i~ (5.3)
Up = —€-“wexp [—a (2” + (r = 10)?)]
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Figure 5.2: Evaluation of boundary conditions. (a) Gaussian acous-
tic pulse in uniform mean flow, (b) axisymmetric vortex in uniform
mean flow. Solid lines: modified Cvba boundary conditions; dashed
lines: Cvba boundary conditions.; dash-dotted line in (a): modified
Cvba boundary conditions with moving source specified

where
- (y2 + 22)1/2’ 6 = arctan(z/y) (5.4)

The vortex radius is ry = 20, o = (In2)/b%, b = 5 and € = 0.03. The initial
density and pressure disturbances are set to zero.

The vorticity magnitude |w3| = |0u,/0x — 0u)/0y| in the zy plane is
shown in the left column of figure 5.3 and the pressure disturbance in
the right column. The times are ¢ = 50, 100 and 150. The figures show
the vortex as it is convected out of the computational domain. The
pressure iso-contours are chosen so that the initial pressure distur-
bance in the vortex is smaller than the lowest iso-contour. When the
vortex is convected through the boundary, it generates acoustic waves
which propagate into the domain and contaminate the computational
domain.

The time history of the L, norm of the pressure disturbance is shown
in figure 5.2(b). An initial disturbance is generated from the sudden
start of the vortex. The hydrodynamic pressure disturbance associ-
ated with the vortex is settled after ¢ ~ 20 with a norm L, = 6 x 10~".
When the vortex reaches the boundary at about ¢t = 70, reflection of
acoustic waves cause a drastic increase in the L, norm with a peak of
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Ly, = 2 x 1072 when the vortex center reaches the boundary at t = 103.
This represents an increase in the L, norm of about 3.5 orders of mag-
nitude. The corresponding result from the test by Bogey and Bailly®° is
an increase in the L, norm of about 2 orders of magnitude. Clearly the
boundary conditions based on asymptotic analysis of the Euler equa-
tions (Ref. [50]) are more efficient as absorbing boundary conditions
for vorticity than the characteristical variable based boundary condi-
tions.

From the two tests above it can be concluded that the Mcvba is a
good alternative for radiation boundary conditions where only acoustic
waves reach the boundary. In the outflow region where vorticity and
entropy waves reach the boundary both the boundary conditions pre-
sented in [50] and the present boundary conditions are insufficient and
a buffer layer boundary condition is required. In combination with a
buffer layer the Mcvba and the Cvba are used in the simulations in the
present work.
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[N [

Figure 5.3: Mcvba results. Vorticity magnitude |ws| = |0uf/0x — 0u' /0y|
(left) and pressure amplitude |p/| (right) for times ¢ = 50 (top), 100 (mid-
dle) and 150 (bottom). Iso-contours: vorticity from 5 x 10~ to 80 x 10~*
and pressure from 5 x 107¢ to 80 x 10~% using 5 levels with a geometrical

ratio of 2.
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5.2 2D Mixing Layer

The forced 2D mixing layer test case was presented in Paper 1.32 The
purpose of the test case was to validate that the derived ILEE in con-
servative form did give the acoustic solution associated with a specified
source field. Simplified source terms with only fluctuating velocities to
be used in the SNGR method were also evaluated.

The use of a forced 2D mixing layer as a test case for different acous-
tic analogies was first presented by Colonius et al.,?? who performed a
Direct Numerical Simulation (DNS) of a forced mixing layer and com-
pared the results with Lilley’s acoustic analogy.!” Bogey et al3*5% made
a sound prediction with Large Eddy Simulation (LES) and Lighthill’s
analogy as well as LES and the linearized Euler equations (as derived
in [22]) on a forced mixing layer. The results of the direct simulations
and the analogies in [562] and [34,53] were in good agreement.

In Paper I, a direct simulation of a forced 2D mixing layer was car-
ried out. The direct simulation also provided the mean flow and source
field for the inhomogeneous linearized Euler equations, equation 3.22.
Simulations were performed using the full source terms in equation
3.22 as well as using simplified source terms suited for the SNGR
method. See Paper I?? for more details on the different source term
formulations. The solutions to the inhomogeneous linearized Euler
equations were compared to the solution of the direct simulation and
showed a good agreement.

The mixing layer consists of an upper stream with a Mach number
of M, = 0.5 and a lower stream with Mach number M, = 0.25. At the
interface between the two streams a hyperbolic-tangent profile is used
as inflow boundary profile. The mean inlet stream-wise profile is

~ U1 + U2 U1 - U2 2y
e h .
Uin 5 + 5 tan (5w(0)> (5.5)

where U; and U, are the upper and lower velocities respectively. The
initial vorticity thickness ¢,,(0) = 0.02 [m] defines the thickness of the
incoming velocity profile, see figure 5.4. The velocity at the inflection
point is defined by U, = (U; + U;)/2. The span-wise velocity v;, is
set to zero at the inlet. The pressure and density are constant over
the inlet and are set to normal atmospheric conditions. The Reynolds
number for this flow based on the initial vorticity thickness §,(0) is
Re, = 6,(0)Uy/v = 1.58 x 10°.

A two-dimensional laminar shear layer is unstable by nature and
will start to break up if the computational domain is long enough. This
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Figure 5.4: Computational domain. Absorbing boundary conditions
(abs. b.c.) are used at all boundaries

process might take some time though and the laminar part of the shear
layer can be quite long in the stream-wise direction. The acoustic field
produced in this process will also be more or less stochastic with peaks
in the spectra for the frequencies corresponding to the natural insta-
bility frequencies of the shear layer. To get better control of the shear
layer and to make it break up faster, forcing is applied at the inflow
boundary. This forcing is done using the inflow absorbing boundary
conditions. The incoming vorticity characteristic variable is modulated
at the fundamental frequency of the incoming profile. The resulting
forcing enters the span-wise inflow velocity component as

Vin = Uin + Asin(wpt) (5.6)

where A is the amplitude of the forcing. The forcing is only applied
in the region of the hyperbolic-tangent profile. Since the forcing is in-
cluded as a part of the absorbing boundary conditions, the forcing does
not interfere with the absorbing property of the boundary condition and
the amount of spurious waves created by the forcing is kept to a mini-
mum. An important detail is that the forcing added in the direct simu-
lation is also added in the linearized Euler simulation. The reasoning
behind this is that unless this is done, the boundary condition for the
linearized Euler simulation is not consistent with the sources evalu-
ated from the direct simulation and disturbances not present in the
direct simulation appear in the solution to the linearized Euler equa-
tions.

Bogey et al.?® computed the fundamental frequency based on the

41



Computational Techniques for Turbulence Generated Noise

instability theory of Michalke®* as

fo=0.132 [5U(°O)} (5.7)

The shear layer is forced at two frequencies. The fundamental fre-
quency f, and half the fundamental frequency f;/2. In this way the
forcing at the fundamental frequency will induce the creation of vor-
tices at a frequency of f; which are convected downstream by the con-
vection velocity. The second forcing at half the fundamental frequency
will in turn induce a process where two successive vortices start to roll
up around each other. This pair of vortices will after a short period of
time start to merge and form a larger vortex. The frequency of this
pairing will be denoted f, = fy/2 and the pairing time 7, = 27;. In
this work, A = 0.2 for the forcing at the fundamental frequency f, and
A =0.1for fy/2. A more detailed description of the test case is given in
Paper 1.22

Figure 5.5 shows a snapshot of the vorticity in the near-field and the
dilatation in the far-field for the direct simulation and the linearized
Euler simulation with full source terms (equation 3.22). The solutions
are very similar and the phase and amplitude seem to agree well. Some
wiggles that are visible in the direct simulation are absent in the linear
solution. The reason for this is probably non-linearities in the direct
simulation. The solutions from the linearized Euler simulations using
the simplified source terms (see Paper I32) are not shown due to the
fact that it is hard see any difference in the solutions compared to the
full source term simulation.

Figure 5.6 shows the instant pressure fluctuation at a line at z =
2.0[m] and 0.5 < y < 3.0[m]| for the direct simulation and the different
linearized Euler solutions. The average pressure has been corrected
for the direct simulation to avoid a problem with a low frequency drift
in the pressure. The phase and amplitude of the linearized Euler so-
lutions are in good agreement with the direct simulation except very
near the mixing layer. The deviation in this near-field region is a re-
sult of an error in the time-average of the pressure. The solutions for
the different source terms are clearly very similar.

The main conclusions from the 2D mixing layer test case is that
the inhomogeneous linearized Euler equations on conservative form
accurately predict the sound field related to a specified hydrodynamic
source, and that the simplifications of the source terms do not notice-
ably affect the results.
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(a) Direct simulation (b) Linearized Euler simu-
lation

Figure 5.5: Vorticity and dilatation for direct simulation and linearized
Euler equations using the full source terms, equation 3.22.
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Figure 5.6: Pressure disturbance at z = 2.0[m], 0.5 < y < 3[m]. Solid
line: direct simulation; others: different source terms
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5.3 Modified Linearized Euler Equations

In an attempt to avoid the stability problems of the linearized Euler
equations in shear flows (see section 3.4.2), the equations were modi-
fied using the same approach as Bogey et al.?* The aim is to make the
resulting equations stable in free shear flows. The method used here
is simply to discard the spatial derivatives of the reference solution
in the linearized Euler equations. The resulting equations in compact
form are (see Appendix 7.1)

Q) 0Q Q' Q"
5 + A 9 + By o +Cy o =0 (5.8)
where the following terms have been neglected
0Ay 0By 0C
0 + 0 + 0 QI (59)

ox dy 0z

The neglected terms in the modified equations contain the spatial
derivatives of the reference solution. The resulting equations are equal
to the full linearized Euler equations only for a homogeneous reference
solution in which the derivatives of the reference solution are zero and
the characteristic variables are analytically decoupled. The modified
equations have a much weaker coupling between different character-
istic variables and are therefore more stable in shear flows than the
original equations.

This is shown in figure 5.7 where planar acoustic waves with Strouhal
number St = f D;/U; = 0.36 are generated inside the nozzle of a Mach
0.90 low Reynolds number jet.’® The resulting sound field is repre-
sented by the axial acoustic intensity p'u”. The full linearized Euler
equations (Eq. 3.22) are used for the result in figure 5.7(a) and the
modified (Eq. 5.8) in figure 5.7(b). In both cases the sound waves exit
the nozzle and are refracted out of the core region due to the mean flow.
If there were no interactions between different types of characteristi-
cal variables, these would be the only disturbances in the solutions.
In figure 5.7(a) however, the sound waves excite strong vorticity waves
which are convected downstream. These are seen as the disturbances
in the centerline region. The strong excitation of vorticity waves in fig-
ure 5.7(a) are not present in figure 5.7(b). There are some disturbances
in the centerline region which are clearly not acoustical but the level is
much lower than in figure 5.7(a).

The modified equations are clearly more stable than the full lin-
earized Euler equations, as vorticity is not as strongly excited in the
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(a) Full linearized Euler equations
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Figure 5.7: Axial acoustic intensity p'u” from plane acoustic waves gen-
erated in the nozzle.

presence of mean shear. There are however other differences in the
solutions from the different sets of equations. The refraction of the
acoustic waves is not the same in figures 5.7(b) and 5.7(a). There is a
much larger intensity in the waves upstream of the nozzle using the
modified equations than the full equations indicating that the modified
equations do not give the correct refraction at the nozzle exit.

Figure 5.8 shows the pressure disturbances caused by a monopole
located in the shear layer of the same Mach 0.90 jet as before. The full
linearized Euler equations are used for the result in figure 5.8(a) and
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Figure 5.8: Pressure disturbances in zz plane from monopole located
at (.’L‘o, Yo, Z()) = (4Dj, O, 3/4D])

the modified in figure 5.8(b). From the solutions in figures 5.8 there is
a clear difference in the directivity of the sound field. This shows that
the refraction of the sound generated from a monopole is not the same
for the two sets of equations. The conclusion must be that the neglect of
the mean shear terms as described above affect the sound propagation
in a non-physical way. The modified equations are more stable which
is positive but they lack some directional effects due to the absence of
the terms in equation 5.9
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The conclusions from the results are valid for the present formula-
tion where (p', (pu)’, (pv)’, (pw)’, (peo)’) are used as solution variables. In
[34] for example where (o', pu’, pv', pw’, p') are used as solution variables
(see section 3.4.2), the results of the same tests may be different since
it is not exactly the same terms which are neglected when the modifi-
cation is made to the equations.

5.4 Turbulence In a Box

The motivation for the box-turbulence test case which is presented in
Paper III?° was to have a simple generic test case in which turbulence
could be generated and compared to theory. Homogeneous isotropic
and anisotropic turbulence generated by the proposed SNGR method is
presented and near-field and far-field statistics are compared to theory.

The test case consists of a box measuring 1 x 1 x 1[m] resolved by
128 equally spaced cells in each direction. A source region is defined as
the cube with 64 cells in each direction in the center of the box. Tur-
bulence is synthesized in the source region and the source terms to
the ILEE are evaluated from this source field. Care is taken to avoid
end-effects in the evaluation of the source terms by only evaluating
the source terms in the interior of the source region. The ILEE are
solved in the whole box and the acoustic solution is propagated out
from the source region toward the boundaries. The modified bound-
ary conditions based on characteristical variables (see section 4.4) are
used as absorbing boundary conditions and the amount of reflections
are minimal. The Kirchhoff method is used to extend the solution to
the far-field in 108 observer points placed on three circles, one in each
coordinate plane (see figure 5.9). Each circle has a radius of 100 box
sizes.

The reference state in the box is a stagnant fluid with a density of
p = 1.2 kg/m? and pressure p = 100 000 Pa. The input turbulence kinetic
energy and dissipation rate for the anisotropic synthesized turbulence
are k = 763 m?/s?> and ¢ = 763 x 10® m?/s® respectively. The length
scale, time scale and amplitude factors are set to f, = 1, f, = 3 and
fa = 1. This gives a turbulence with time and length scales?* of the
synthesized turbulence equal to (7, L;) = (0.003,0.028) [s, m|. For more
details see Paper III.25
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Figure 5.9: zy-plane through computational domain with 36 observer
points. Small box: SNGR source region; Large box: LEE domain

5.4.1 Isotropic Turbulence

First some results will be presented from an isotropic case and the
characteristics of the sound generated from the synthesized turbulence
will be discussed. One can argue that both length and time scales of the
turbulence must match a generated sound wave in order to get a strong
noise generation. The turbulence spectral energy distribution in this
isotropic case has a peak at wave number k, = 21 corresponding to a
length scale of L, = (27)/k, = 0.3 [m]. Since the source terms in the in-
homogeneous linearized Euler equations involve quadratic terms, u;u7,
the sound generating structure will be of length L, ~ L, /2. For a speed
of sound of 342 m/s this corresponds to a frequency of f = 2280 Hz for a
sound wave which matches the length scale of the peak energy mode.
This matches the region of peak energy of the far-field sound which can
be seen in figure 5.10 showing the 1/3 octave power spectral density of
pressure at observer position 1.

The noise generated by isotropic turbulence theoretically scales with
frequency as w~"/? for high frequencies.’® This scaling of the far-field
noise is shown as the dashed line in Figure 5.10. The simulated and
the theoretical data are in good agreement for high frequencies for up
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to about 8000 [Hz] with a drop-off for the simulated results above this
frequency. This is directly related to the mesh resolution and the nu-
merical scheme in the linearized Euler computation.

2000 4000 6000 8000 10000 12000 14000

f

Figure 5.10: 1/3 octave power spectral density of far-field pressure.
Solid line: sampled data; dashed line: theory of isotropic turbulence

5.4.2 Anisotropic Turbulence

The test case for the anisotropic synthesized turbulence was conducted
in the same way as for the isotropic case above. The only difference
was that a specified anisotropic Reynolds stress tensor was prescribed
in the generation of the synthesized turbulence. See section 3.3.3, or
Paper I1I% for more details.

The near-field statistics of the synthesized turbulence was first in-
vestigated, including anisotropy of the turbulence in term of velocity
and length scales. The normalized model stress tensor used in the first
anisotropic case (case 1) is shown in table 5.2. The model stress tensor
is diagonal and the anisotropy is evident from the differences in the di-
agonal components. The diagonal components of the normalized stress
tensor determine the scaling of the individual velocity components in
the generation of synthesized turbulence (equation 3.18). Also shown
is the stress tensor computed from the statistics of the synthesized ve-
locities.

Table 5.3 shows the normalized model and sampled stress tensors for
a case (case 2) where the anisotropy is the same as in case 1. The only
difference is that the model tensor has been rotated by 45 degrees. The
diagonal components are equal in this case and the anisotropy of the
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1.5 0 0 1.499 0.002 -0.003
0 05 0 0.002 0.495 0.002
0 0 1 —0.003 0.002 1.005

Table 5.2: Normalized Reynolds stress tensor elements. case 1. Left:
model tensor; Right: sampled from SNGR method.

1 05 0 0.998 0.494 —0.005
0.5 1 0 0.494 0.996  0.003
0 01 —0.005 0.003 1.006

Table 5.3: Normalized Reynolds stress tensor elements. case 2. Left:
model tensor; Right: sampled from SNGR method.

tensor is only seen as a u/v’ cross correlation. The results validate that
a velocity field having an anisotropic stress tensor can be simulated
using the proposed technique.

It is also shown in Paper III?° that the length scales of the synthe-
sized turbulence experience an effect of anisotropy. This is illustrated
in figure 5.11(a) where the longitudinal and transversal two-point cor-
relations in the direction of the largest normal stress component in
the principal axes are plotted. Figure 5.11(b) shows the corresponding
correlations in the direction of the smallest normal stress component.
Shown are also the respective correlations for the isotropic case. Both
the longitudinal and transversal correlations in figure 5.11(a) are in-
creased by the anisotropy illustrating that the correlations increase in
the direction of the largest stress component. The opposite effect with
a reduction of the correlations in the direction of the smallest stress
component is evident in figure 5.11(b).

The OASPL (Overall Sound Pressure Level) of the emitted sound
from the anisotropic turbulence in case 1 and 2 are shown in figure 5.12.
The directivity of the OASPL indicates that the direction of maximum
sound emission can be deduced from the Reynolds stress tensor when
rotated into the principal axes. The sound emission is strongest in the
direction of the largest normal stress component and weakest in the
direction of the smallest one.

Also shown is the OASPL directivity as predicted by a statistical
model based on Lighthill’s acoustic analogy.! The statistical model is a
modified version of the expressions presented by Ribner.?
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Figure 5.11: Two point correlations. Dashed line: longitudi-
nal anisotropic; solid line: longitudinal isotropic; dash-dotted line:
transversal anisotropic; dotted line: transversal isotropic
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Figure 5.12: OASPL in zy-plane at radius R = 100 for angles # = 0 :
10 : 360 degrees. Circles: SNGR method; solid line: statistical model.

One can see that the direction of the sound directivity is the same
for the numerical results and the statistical model. The degree of di-
rectivity in terms of OASPL is however twice as large for the statistical

model compared to the numerical results.
The reason for the difference in the sound emission directivity lev-
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els between the numerical results and the statistical model is unclear.
The expression of the velocity correlation tensor used in the statisti-
cal model is a simple modification of the isotropic correlation tensor by
Batchelor’” and might be a too crude model (see Paper III). The true
degree of sound directivity from anisotropic homogeneous turbulence
can not be deduced from the present results. A more accurate model
(see Paper V) for the velocity correlation tensor is needed for evaluation
of the results from the synthesized turbulence.

The 1/3 octave power spectral density of the far-field pressure for
case 1 is shown in figure 5.13. Spectra are shown for observer loca-
tions 1 and 10 (see figure 5.9) equivalent to 0 and 90 degrees from the
x*-axis respectively. The spectral behaviour of the far-field sound also

10_4 i
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10y

2000 4000 6000 8000 10000 12000 14000
Frequency

Figure 5.13: 1/3 octave power spectral density of the far-field pressure.
Case 1. Solid line: observer point 1 (z* direction); dashed line: observer
point 10 (y* direction)

reflects the anisotropy of the generated turbulence. The spectral con-
tent is shifted toward lower frequencies in the direction of the larger
Reynolds stress in the principal axes and toward higher frequencies in
the direction of the smaller Reynolds stress. There is also a large differ-
ence in the peak levels in the two spectra which is due to the difference
in compactness of the turbulence in the two directions.
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5.5 High Mach Number Subsonic Jets

One goal of the present work was to develop a modeling method for jet
noise predictions which could be used as an industrial tool for acoustic
design of jet engine exhaust nozzles. The hybrid method SNGR was
found to be an interesting approach and showed promising results by
Beachara et al.?! and Bailly et al.2?22 The method was in a developing
stage and was believed to have the potential to be a good compromise
between LES and statistical methods.

Three jets simulated using the SNGR method will be presented.
These are high Reynolds number jets with jet exit Mach numbers of
0.75 and 0.90 respectively. The Mach 0.75 jet was simulated both as
cold and hot where the ratio of the temperature at the jet exit and the
ambient fluid were T;/T,,,, = 1 and T} /T, = 2 respectively. The flow
conditions for the three jets are shown in table 5.4.

Case MO075¢ MO0O75h MO090c

M, 0.75  0.75 0.90
T;/Tomy 1.0 2.0 1.0
ho; 321841 611137 336162 J/kg
Poj 147116 122685 171329 Pa/m>

Pamb 1.2256 1.2256 1.2256 kg/m?
Tt 288 288 288 K

D, 0.05 005 005 m

Table 5.4: Flow parameters for the simulated jet cases. subscripts (-);
and (-)a.ms denote jet exit and ambient conditions respectively.

The cold Mach 0.75 jet has been used when evaluating the develop-
ments of the proposed SNGR method. As a test of the generality of
the proposed SNGR method the hot Mach 0.75 jet and the Mach 0.90
jet were simulated. Data from LES®® and measurements'® of the same
jets are used to evaluate the results from the proposed SNGR method.
Some results from the simulations will be given below. For more details
see Papers II and 1V.2426

5.5.1 Near-field Calibrated Results

The first approach in Paper 1124 to calibrate the model parameters was

to compare the near-field statistics of the synthesized turbulence to
that of LES solutions of the same flow. The main parameters were

53



Computational Techniques for Turbulence Generated Noise

the length scale factor f; and the time scale factor f, which determine
the length and time scales of the synthesized turbulence based on the
RANS solution (see equations 3.10 and 3.14).

This calibration was done using two-point space-time correlations in
the shear layer of the jet. Correlations computed from LES by Anders-
son et al.5® were compared to those from the synthesized turbulence in
the proposed SNGR method. These two-point space-time correlations
in the axial directions in the shear layer computed from the LES and
the synthesized turbulence are shown in figure 5.14. The length and
time scale factors were calibrated to f, = 1/6 and f, = 1.0 respectively
in these near-field calibrated results. From the space-time correlations
the spatial two-point correlation and the convected reference field au-
tocorrelation were computed. These are shown in figure 5.15 and show
that the LES and synthesized turbulence are in good agreement both
in length and time scales.

1.2
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X " RO
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TU. j / Dj
(a) LES by Andersson (b) Synthesized velocity field

Figure 5.14: Two-point space-time correlation?* in the axial direction at
(z/Dj,r/D;) = (10,0.5). Different lines represent separations r,/D; =
[0:0.1: 3]

The far-field sound prediction was however not in the same good
agreement with the measurements of the same jet when these factors
were used. The OASPL directivity for the cold Mach 0.75 jet at /D, =
30 and /D, = 50 are shown in figure 5.16 and the 1/3-octave power
spectral density of the far-field pressure at (r/D,, #) = (30, 30) is shown
in figure 5.17(a). Shown are also the same quantities computed from
the measurements by Jordan and Gervais.!5 As can be seen, the sound
pressure level is overpredicted by about 10 dB and the spectral peak is
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Figure 5.15: Correlations at (z/D;,r/D;) = (10,0.5). Solid line: synthe-
sized velocity field, dash-dotted line: LES by Andersson

at a too high frequency compared to the measurements.
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Figure 5.16: OASPL (dB) at r/D; = 30 and r/D; = 50 for different
angles f# from jet axis direction. Solid line: present method; circles:
measurements

The errors in the far-field results could either be related to the use of
the inhomogeneous linearized Euler equations as an acoustic analogy
in combination with the Kirchhoff method or related to some property
of the synthesized turbulence.

To validate the ILEE as an analogy in Paper I1,?* the far-field acous-
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Figure 5.17: 1/3-octave power spectral density of pressure in an obser-
vation point at (r/D;,0) = (30, 30). Near-field calibrated results.

tic solution was computed in two different ways. The proposed SNGR
method including the Kirchhoff integral method was used (as presented
above) as well as the double time derivative formulation of the Lighthill
acoustic analogy, see Crighton.’® The Lighthill analogy solution was
computed directly from the synthesized velocity field, see figure 5.18
whereas the Kirchhoff solution was based on the solution to the lin-
earized Euler equations and thus included all steps in the present
method.

Figure 5.17(b) shows the 1/3-octave power spectral density of the
far-field pressure computed using the Lighthill analogy and the Kirch-
hoff method. The far-field spectra are almost identical except for very
low frequencies where there is presence of disturbances in the Kirch-
hoff method solution originating from hydrodynamic instabilities in the
solution of the linearized Euler equations. The spectral peaks are lo-
cated at the same place and the levels are the same in the two curves.
The conclusion is that the linearized Euler equations with source terms
presented here indeed produce the correct sound field associated with
a specified turbulence source field. This confirms the results from the
2D mixing layer in section 5.2. The cause of the poor agreement with
measurements in the far-field noise prediction is thus not related to the
inhomogeneous linearized Euler equations but must be related to some
property of the synthesized turbulence.

The reason for the shift in the spectral peak in figure 5.17(a) was
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Figure 5.18: Near-field to far-field solutions using Lighthill and Kirch-
hoff methods.

found to be related to incorrect length scales in the generated turbu-
lence. Even if the two-point correlations in figure 5.15(b) are in good
agreement with the LES, the synthesized turbulence does not contain
the correct length scales. This is due to poor resolution in the genera-
tion of synthesized turbulence, see Paper I1.2 The conclusion in Paper
IT was that the generated turbulence should have a larger length scale
factor f; and thus a larger two-point correlation than the LES since
the spectrum used as model for the distribution of kinetic energy in
the turbulence has been truncated in the higher wave numbers.

The reason for the overprediction of the sound pressure level was
further investigated in Paper I1.24 The effects of divergence of the source
field, the convection operator and the time scales in the synthesized
turbulence were evaluated. The time scales in the synthesized source
field were found to affect the level of the emitted sound by changing
the compactness of the turbulence, but both the convection operator
and the existence of divergence in the turbulence had minor effects
on the level of the emitted sound. It has furthermore been suspected
that the reason could be due to non-compact sources associated with
modes with low wave numbers and high frequencies in the synthesized
turbulence, see Ref. [60]. This low wave number — high frequency prop-
erty of the synthesized turbulence is present in the generation of the
synthesized turbulence due to the time filter which is used to develop
the turbulence in time (equation 3.13). The overprediction of the emit-
ted sound in the present SNGR method is though not related to this
effect as can be seen in Fig. 5.19. The figure shows the 1/3 octave
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power spectral density of the far-field pressure from synthesized homo-
geneous isotropic turbulence generated in a box. The computational
setup was the same as for the box-turbulence in the previous section
except that in the present test all modes in the synthesized turbulence
had the same wave length. Two cases were computed with wave num-
bers of length £ = 27 rad/m and k = 54 rad/m respectively.

Power spectrum

v

2000 4000 6000 8000 10000 12000 14000
Frequency, Hz

Figure 5.19: 1/3 octave power spectral density of the far-field pressure.
Solid line: £ = 27; dashed line: k£ = 54

The spectra show a peak at frequencies corresponding to the wave-
lengths of the turbulence in each case. There is also noise generated at
frequencies lower than the peak frequency which is attributed to alias-
ing effects and non-linearity of the source terms to the linearized Euler
equations. There is no increase in the noise from the low wave num-
ber case at high frequencies though, which would be the case if there
was a non-compact source associated with low wave numbers with high
frequencies in the generation of the synthesized turbulence.

The test does however show that there is a direct relation between
the frequencies in the generated sound and the wave lengths of the
synthesized turbulence. This relation is due to that the time filter (Eq.
3.13) which filters the velocity field only has one time scale which acts
on all wave numbers. The filter also allows fluctuations at all resolv-
able frequencies, with most energy at low frequencies and a quadratic
decrease in energy at high frequencies, see figure 3.4. Relevant for
the sound generation is that there is always a matching frequency for
every wave number such that the noise generation is very efficient.
This strong relation is probably not the case in real turbulence which
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is much less efficient as a noise generator.

The correct values of the length scale factor and time scale factor
were due to the truncation of the model spectrum in the generation of
synthesized turbulence difficult to determine based on the near-field
correlations. As an alternative approach, the factors were instead cal-
ibrated based on the far-field noise predictions. A third parameter
called the amplitude factor f4 (see equation 3.13) was also added to
calibrate the amplitude of the far-field noise level by modifying the am-
plitude of the generated turbulence.

The effect of the far-field calibrated values of f;, f, and f4 on the
near-field of the synthesized turbulence is that spatial correlations no
longer are in agreement with the LES data due to increased length
scale factor and that the kinetic energy of the generated turbulence is
lowered by the amplitude factor (see Papers II and IV?426),

5.5.2 Far-field Calibrated Results

In Papers II and IV?*426 results are presented from the proposed SNGR

method where the parameters in the model are calibrated based on the
agreement with measurements in the far-field noise predictions. In the
results below the model parameters have been calibrated to measure-
ments by Jordan and Gervais'® for the cold Mach 0.75 jet. The results
from the heated Mach 0.75 and the Mach 0.90 jets are used to evaluate
the generality of the method. The length and time factors were set to
fr =1, f; = 1 respectively for the far-field calibrated results.

Anisotropy

A method to generate anisotropic synthesized turbulence was devel-
oped in Paper II1?°> and the method was applied to the same cold Mach
0.75 jet as above in Paper IV.26 The main questions related to the near-
field of the new anisotropic method were if the two equation &£ —¢ RANS
model would be able to predict an anisotropic Reynolds stress field
which agreed with the LES data of the same jet and if the synthesized
turbulence could simulate this inhomogeneous anisotropic turbulence
field.

The normalized normal Reynolds stress tensor components in the
shear layer of the jet from the LES and the RANS are shown in figure
5.20. The results from the LES show a larger difference between the
different components, indicating that the RANS model can not predict
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the anisotropy of a strong shear flow. What is then not taken into ac-
count however is the role of the cross stresses in the Reynolds stress
tensor. Figure 5.21 shows the same normalized Reynolds stress terms
but expressed in a coordinate system aligned with the principal axes
of each stress tensor. In this principal coordinate system, the cross
stresses are zero and all effects of anisotropy in the tensor are man-
ifested by the normal stresses, see Papers III and IV?%26 for details.
One can now see that the degree of anisotropy in the RANS and the
LES are really of the same order.

Correlations
Correlations

z/D; z/D;
(a) RANS (b) LES

Figure 5.20: Normalized normal Reynolds stress tensor components
in shear layer, (y,z)/D; = (0.5,0). In zy-coordinates. Solid line: aj;;
dashed line: ay,; dotted line: as;.

The synthesized anisotropic turbulence has been shown to be able
to simulate a specified anisotropic Reynolds stress tensor in a homoge-
neous case, see Paper II1.2° A validation that the anisotropy of a shear
flow can be simulated is shown in figure 5.22 where the u/v' correla-
tion from the RANS and the synthesized turbulence in the shear layer
of the cold Mach 0.75 jet are plotted. The cross-correlation from the
synthesized turbulence is in good agreement with that of the RANS
solution. More details on the near-field turbulence of the Mach 0.75
jet in terms of length scale anisotropy is presented in Paper IV.? It is
shown that the length scale anisotropy of the synthesized turbulence
is in agreement with the model theory.
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(a) RANS (b) LES

Figure 5.21: Normalized normal Reynolds stress tensor components
in shear layer, (y,z)/D; = (0.5,0). In zy*-coordinates. Solid line: aj;;
dashed line: aj},; dotted line: aj,.
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Figure 5.22: Normalized v/v'-correlation in the shear layer, (y,z)/D; =
(0.5,0). Solid line: RANS; dash-dotted line: anisotropic SNGR sam-

pling

Far-field Results

The OASPL directivity from the cold Mach 0.75 jet for the locally iso-
tropic and the anisotropic SNGR methods are shown in figure 5.23.
The amplitude factor was in both cases set to f4 = 0.316. The results
show that the directivity of the predictions are about the same even
if the generated sound is increased in the results from the anisotropic
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model. The anisotropy in the model does evidently increase the emitted
sound. A new calibration of the amplitude factor was performed in
Paper IV to correct the emitted noise levels and all results below from
the anisotropic model were produced using f, = 0.265.
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Figure 5.23: OASPL (dB) at r/D; = 30 for different angles 6 from jet
axis direction. Cold Mach 0.75, f4 = 0.316 Solid line: present method;
circles: measurements

The OASPL directivity for the cold and heated Mach 0.75 jets and
the Mach 0.90 jet using the anisotropic method are shown in figure
5.24. The OASPL directivities are generally in good agreement with
the measurements except for angles below § = 40 degrees. The drop
below this angle can be attributed to the open Kirchhoff surface in
the downstream direction (see section 4.3). The trend from the cold
Mach 0.75 jet to the cold Mach 0.90 jet in Figs. 5.24(a) and 5.24(b)
is quite well captured and the agreement with the measurements are
relatively good. This is however not the case for the change from the
cold to hot Mach 0.75 jets in Fig. 5.24(a). The reason for this might be
twofold. The first reason can be related to that the synthesized source
field in the SNGR method only contains velocity fluctuations and that
sources of sound related to high temperatures are thus not taken into
account. The second reason can be related to that the simulation of the
hot Mach 0.75 case is considerably shorter than for the other cases, and
the statistics are thus based on fewer samples (10 000 for the hot jet and
30000 for the cold). The reason for this were disturbances which grew
rapidly in the hot jet simulation. The cold jets are convectively unsta-
ble,® meaning that there are unstable regions in the jets but that the
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disturbances are convected downstream and thus leaving the region of
the original instability. The hot jet however, seems to be absolutely un-
stable.?® The disturbances from the unstable regions are not convected
away fast enough and the disturbances can grow without bound due
to the linearity of the linearized Euler equations. The results from the
hot Mach 0.75 jet are therefore not statistically reliable. If the hot jet is
to be simulated using the present approach, a modified set of equations
would be desirable. Such equations could for example be the acoustic
perturbation equations (APE)3%37 which are reported to be stable for
arbitrary inhomogeneous mean flows.
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(a) Anisotropic Mach 0.75 cold and (b) Anisotropic Mach 0.90
hot

Figure 5.24: OASPL (dB) at r/D; = 30 for different angles 6 from jet
axis direction. f4 = 0.265 Solid line: present method cold; Dashed line:
present method hot ; circles: measurements cold; plus signs: measure-
ments hot

Figures 5.25 and 5.26 show the 1/3 octave power spectral density of
the far-field pressure from the isotropic and anisotropic simulations of
the cold Mach 0.75 jet. The observer positions in figures 5.25 and 5.26
are (r/D;,0) = (30,30) and (r/D;, 8) = (30, 90) respectively.

The spectral results at 30 degrees from the jet axis in figure 5.25 are
improved compared to the near-field calibrated results in figure 5.17(a)
with a shift in the spectral energy content toward lower frequencies
in the far-field calibrated simulation. The two spectra in figure 5.25
indicate that the far-field noise spectrum for the anisotropic simula-
tion is in somewhat better agreement with the measurements than the
isotropic simulation even though both the isotropic and anisotropic re-
sults still show a lack of energy at low frequencies. The results at 90

63



Computational Techniques for Turbulence Generated Noise

degrees from the jet axis in figure 5.26 are in good agreement with the
measurements. The difference in the shape of the spectra between the
isotropic and anisotropic cases is small.

The anisotropy which is evident in the near-field statistics above is
not as pronounced in the far-field results. A reason for this might be
that most of the directivity of a jet is a result of the convective ampli-
fication! in the sound generation and the refraction of the generated
sound. The convective amplification increases the sound emission in
the flow direction and lowers the emission in the up-stream direction.
The refraction has the effect (mainly for high frequencies) of directing
the sound emitted down-stream out from the axial direction toward
the radial direction. These effects are the same for the anisotropic and
isotropic simulations and if the directivity in the sound emission due
to anisotropy is not strong enough, the resulting sound field directivity
is masked by the convective amplification and the refraction.
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(a) Isotropic f4 = 0.316 (b) Anisotropic f4 = 0.265

Figure 5.25: 1/3-octave power spectral density of pressure in an obser-
vation point at (r/D;,0) = (30,30). Cold Mach 0.75 Solid line: present
method; dashed line: measurements

The results from these jet noise computations using the proposed
SNGR method show that the method has the capability to predict vary-
ing flow conditions in terms of jet exit Mach number, but the absolute
level of the generated sound does need calibration.
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Figure 5.26: 1/3-octave power spectral density of pressure in an obser-
vation point at (r/D;,6) = (30,90). Cold Mach 0.75 Solid line: present
method; dashed line: measurements
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5.6 Classical Theory

Statistical models for turbulence-generated noise have been developed
ever since 1952 when Sir James Lighthill presented the first of two
papers on aerodynamically generated sound.? In these models, the
two-point velocity correlation tensor is the basis of the statistical rep-
resentation of the turbulence structure and is strongly related to the
sound emission directivity.

In 1969 Ribner® used isotropic turbulence theory by Batchelor®” to
model the velocity correlation tensor in the framework of Lighthill’s
analogy in order to estimate the noise generated by a jet. In this pre-
sentation the one local length scale and turbulence intensity required
to be specified in the isotropic theory were taken as the axial longi-
tudinal length scale and the intensity of the axial velocity component
respectively. The anisotropy of the turbulence in a real jet was thus
not properly taken into account. This model has also been evaluated
by others, e.g. Bailly et al.*

In 1973 Goldstein and Rosenbaum!! introduced anisotropy in the
model of the velocity correlation tensor by considering axisymmetric
turbulence developed by Chandrasekhar.’! Other models based on the
same axisymmetric theory have been presented by Khavaran,'? Bechara
et al.,'® Bailly et al.,'* Devenport et al.'® and Jordan and Gervais.'®
Even though proper anisotropy can not be taken into account, this is
an improvement over the isotropic model. The choice of local axis of
symmetry is though arbitrary since the turbulence is not really ax-
isymmetric in any direction (except on the jet centerline if the jet is
geometrically axisymmetric). The same arbitrariness holds for the de-
gree of anisotropy in the axisymmetric model.

An attempt to construct a more general model of the velocity correla-
tion tensor R;;(y,r) based on the homogeneous turbulence assumption
but including anisotropy in turbulence intensities and length scales
was developed by Billson et al.*® (Paper V). The same derivation is also
given in this section and the results from Paper V are presented.

A functional form of R;;(y, r) in terms of six one-dimensional correla-
tion functions will be derived. A closure model where these correlation
functions are related to single point statistics will also be presented.
This closure is however preliminary and is not to be taken as a ready-
to-use model.
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5.6.1 Anisotropic Model of the Two-point Velocity
Correlation Tensor

The strategy is to express the second-order two-point velocity correla-
tion tensor R;;(r) in terms of a correlation R;;(7;) where 7; denotes a
separation in a coordinate system x which has z; parallel to r. De-
fine two coordinate systems x = (z1, 22, 3) and X = (Z1, To, T3) with the
same origin, see figure 5.27. Let x be rotated compared to x such that
7, is parallel to a separation r = (71, 75, 73) expressed in the x coordinate
system. One possible orthonormal set of rotation vectors relating x to
x is then

T
o= (2,22,1)
—Tr T T
ey = <—2 —1,0) (5.10)

2 T
T1Tr3 ToT3 Ty
eg=|—,—, ———

ey Try . TTR

where r = (r? +72+72)1/2 and r;, = (r? +r2)/? respectively. A rotation
matrix E = (eg, ez, e3) will relate x to x and vise versa as

x=Bx (5.11)
x=E"x '
and the spatial separation r = (71,79, 73) will be related to r as
T = ETI' = (61,62,63)TI' = (T,O,O)T (512)

1.e. any separation r results in a separation in the first component r;
in the coordinate system x. For simplicity the notation will here after
be changed to tensor notation. The rotation matrix will be denoted by

With the assumption of homogeneous turbulence a velocity correla-
tion tensor can be defined in the x coordinate system as

R;j(r) = u;(x)u;(x +r) (5.13)

where the overline (-) denotes an appropriate average and u;, u; are
velocity components. For homogeneous turbulence there is no depen-
dence of x for R;;(r). By using the rotation matrix E;;, the correlation
tensor R;;(r) can then be expressed as
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Figure 5.27: Original and rotated coordinate systems xy and xy (in two
dimensions). Velocity components u; and u; in respective coordinate
system.

Ri]’ (I‘) = Eik Ejl ﬁkl(r = Ezk Ejk ékl(ﬁ 0, 0) (514)

where }NEZ-]- (r,0,0) are correlations of pairs of velocity components u, v
and w with separation in the 7;-direction. These can be expressed indi-
vidually as
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Ryy(r,0,0) = _:Fllf('r)

R(r,0,0) = ~F2(r)

Esz&(?“, 0,0) = —7'3377,(7")

ﬁ)l?(ra 0,0) = —7'12?12(7') (5.15)
§13(Ta0a0) = —‘7'13]?13(7')

Ras(r,0,0) = —F3 fos (1)

where f(r) is the longitudinal velocity correlation function and g(r) and
h(r) are the transversal correlation functions related to v and w respec-
tively. fio(r), fi3(r) and fo3(r) are the corresponding cross correlation
functions. The assumption of homogeneous turbulence also ensures
that R;;(r,0,0) = Rj;(r,0,0). The normalization is done by the corre-
lation tensor at zero separation (i.e., the Reynolds stress tensor 7;;),
which is computed from the stress tensor in the original coordinate
system x as

;ij = Ekz Elj Tkl (516)

Equations 5.14 to 5.16 show that the two-point velocity correlation ten-
sor R;;(r) can be expressed in terms of six scalar correlation functions
and the Reynolds stress tensor. How well equations 5.14 and 5.15 rep-
resent a true homogeneous anisotropic turbulence field lies in the ac-
curacy of the modeling of the scalar functions.

The true functional forms of the scalar functions for a homogeneous
anisotropic velocity field is not known. A simple model of the correla-
tion functions which is based on the isotropic model will nevertheless
be presented. The longitudinal correlation function can for example be
modeled as

fr) = e /AL (5.17)

where L is the longitudinal length scale in the direction of the spatial
separation 7;. Following the expressions for isotropic turbulence®” and
using equation 5.17 the transversal correlation functions can be related
to the longitudinal as

2 _ 2 9o
o) =hir) = )+ LLD LT e g
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For simplicity, the cross correlation functions are modeled in the same
way as the longitudinal correlation function, i.e.

Fro(r) = fis(r) = fas(r) = /7 (5.19)

The functional form of the correlation functions and especially their rel-
ative shapes (equations 5.18 and 5.19) are not validated to any aniso-
tropic turbulence. Further work is needed to develop models for these
functions for a general homogeneous anisotropic turbulence.

Length scale anisotropy

Recent results from the SNGR (Paper II1)?® method where anisotropy
has been included in the synthesis of artificial turbulence suggest that
the length scale of the turbulence in different directions can be deduced
from the individual components of the Reynolds stress tensor. The re-
sults indicate that the length scale in a certain direction is related to
the corresponding relative magnitude of the normalized normal stress
tensor component. The following relation can for example be used as
a model of the length scale anisotropy for the length scale in the 7;-
direction.

: 37 12
L = Lis° <~ ol ) (5.20)
Ti1+ Too + T33

where L*° is the longitudinal length scale in limit of isotropic turbu-
lence.

Equations 5.14 to 5.20 together with the rotation matrix E = Ej;
defined by the vectors in equation 5.10 can be used to model a gen-
eral anisotropic two-point correlation tensor R;;(r) for homogeneous
turbulence. The full expressions for the different components of the
correlation tensor are quite large and are thus not given here. For the
isotropic case the cross correlation functions fi5(r), fi3(r) and fo3(r) as
well as the off-diagonal components of the Reynolds stress tensor will
be analytically zero and equations 5.14 and 5.15 reduce to the isotropic
model of R;;(r) given by Batchelor.?”

Ro(r) = Ry ) = (L2000 s) sz

The accuracy of the model lies in the correctness of the expressions
for the correlation functions in equations 5.17 to 5.19 and the length
scale anisotropy in equation 5.20. One flaw of the model is that when
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the expressions in equations 5.17 to 5.20 are used to model the correla-
tion functions, the resulting two-point correlation tensor R;;(r) will not
fulfill the continuity condition

8R,~j (I‘) . aRZ](I')
87“1- N or i
These relations can be used to constrain the models of the correlation

functions in order to construct a more accurate model of the two-point
velocity correlation tensor.

=0 (5.22)

5.6.2 Preliminary Results

As R;;(r) is a function of the three-dimensional separation vector r it
is difficult to illustrate. For special cases though the general features
can be viewed in suitably chosen planes. Figures 5.28 to 5.32 show
correlation fields from the proposed anisotropic R;;(r) in the zy-plane
for z = 0. The interesting correlations in this slice are R;;, Ry, Ri»
where the dependence of r is omitted in the notation below.

The different cases are described in tables 5.5 and 5.6. They cor-
respond to one isotropic turbulence case (case 1) and four anisotropic
turbulence cases (case 2-4). The degree of anisotropy in cases 2-4 is the
same but the principal axes of 7,; in cases 4 and 5 are rotated in the
zy plane by 45 degrees compared to cases 2 and 3. The modeled length
scale anisotropy (with L**° = 0.1) is used in cases 3 and 5 but a constant
length scale (L = 0.1) is used in cases 2 and 4. The Reynolds stress
tensors used for the different cases are given in table 5.6.

Case Description

1 Isotropic

2 Anisotropic, Principal axes of 7;; 0 degrees, L isotropic

3 Anisotropic, Principal axes of 7;; 0 degrees, L anisotropic
4 Anisotropic, Principal axes of 7;; 45 degrees, L isotropic

5 Anisotropic, Principal axes of 7;; 45 degrees, L anisotropic

Table 5.5: Case descriptions. Isotropic length scale denotes that equa-
tion 5.20 has not been used.

The isotropic reference case is plotted in figure 5.28, where R;; and
Ry, are identical but rotated by 90 degrees. They are positive with
a Gaussian shape in the longitudinal direction but have a dip with
a negative region in the transversal directions as prescribed by the
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Case Reynolds stress tensor

1 i = —[(400,0,0), (0, 400,0), (0, 0, 400)]

2,3 74 = —[(600,0,0), (0,200,0), (0,0,400)]

4,5 7 = —[(400,200,0), (200, 400, 0), (0, 0, 400)]

Table 5.6: Reynolds stress tensors 7;; expressed in x coordinate system

isotropic model. R;; has two positive and two negative lobes and is
zero on the coordinate axes.

With an anisotropy in case 2 where 7,; > T4, the corresponding two-
point correlations experience the same relations as seen in figure 5.29.
The general shapes of R;;, Ry and R, are otherwise the same as for
the isotropic case. With a length scale anisotropy (see equation 5.20) in
case 3 the contours of R,;, Ry, and R, are separated in z-direction and
compressed in y-direction.

In case 4, with the same degree of anisotropy as in case 2 and 3 but
with the principal axes of 7;; rotated by 45 degrees about the z-axis; the
Ri1, Ry, and Ry, slices become as in figure 5.31. The R;; and Ry, fields
are slightly modified by the rotation of the stress tensor. The big dif-
ference is however the R, field in which the positive lobe is increased
and the negative lobe is decreased both in magnitude and in size. Fi-
nally with length scale anisotropy included in case 5, the correlations
are increased in the 45 degree direction and reduced at —45 degrees.

(&1

(a) Ry (b) Ry (c) Ry

Figure 5.28: Case 1. Isotropic. Iso-contours. Light contours: high
levels, dark contours: low (or negative) levels. Levels: a) and b) [-
10:50:540]; ¢) [-60:10:-10 and 10:10:60]
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(a) R11 (b) Ra2 (¢) Ri2

Figure 5.29: Case 2. Anisotropic. Principal axes 0 degrees. Isotropic
length scale. Same scaling as case 1.

1 7,01
(a) Ry (b) Ry (o) Ris

Figure 5.30: Case 3. Anisotropic. Principal axes 0 degrees. Anisotropic
length scale. Same scaling as case 1.
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(a) R11 (b) Ra2 () Ri2

Figure 5.31: Case 4. Anisotropic. Principal axes 45 degrees. Isotropic
length scale. Same scaling as case 1.

(a) Ry (b) Ry (c) Ry

Figure 5.32: Case 5. Anisotropic. Principal axes 45 degrees. Anisotropic
length scale. Same scaling as case 1.
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Concluding Remarks

The main goal of the project was to investigate the possibility to de-
velop a noise prediction method for turbulent jets which is considerably
less computationally costly than LES and DNS and more flexible and
general than existing statistical methods. The work in the project has
been related to two approaches for jet noise predictions. The main work
has been devoted to improving the prediction capability of the SNGR
method and a minor part has been on anisotropic modeling of turbu-
lence related to statistical noise prediction theory. A general ready-
to-use SNGR method capable to predict the far-field noise in terms of
sound pressure level directivity and spectral energy content has not
been accomplished, but the proposed method has the capability to pre-
dict trends in the flow Mach numbers and can be used to evaluate dif-
ferent flow configurations.

The more technical conclusions based on the results from the papers
in the present thesis are as follows.

e Inhomogeneous linearized Euler equations (ILEE) on conser-
vative form have been derived. The possibility to use the ILEE
as a wave operator with source terms has been tested and the
results show that the approach accurately predicts sound gen-
eration from turbulence as well as propagation of the generated
sound. The accuracy of the noise prediction is shown to be de-
termined by the correctness of the source term modeling where
the space-time structure of the source field is the most important
factor.

e A method to stochastically generate anisotropic synthesized tur-
bulence has been proposed in the present work and is shown to be
able to generate turbulence with an arbitrary specified Reynolds
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stress field. The anisotropic method includes length scale aniso-
tropy which is determined by the relative magnitude of the nor-
mal Reynolds stress tensor components. The largest and smallest
length scales are thus found in the directions of the principal axes
of the model Reynolds stress tensor. The proposed method to gen-
erate synthesized turbulence requires three scaling factors. These
are the length scale, time scale and amplitude factors denoted by
fr, fr and f4 respectively and are used to calibrate the level and
spectral content in the generated sound from the synthesized tur-
bulence.

From generic test cases it is shown that the frequencies in the
generated sound from the proposed SNGR method is strongly re-
lated to the length scales in the synthesized turbulence. The time
scale in the generated turbulence affects the compactness of the
turbulence and thus the level of the generated turbulence. The di-
rectivity of the generated sound from the anisotropic synthesized
turbulence is determined by the relative magnitude of the normal
Reynolds stress components. The highest level of the generated
sound is found in the direction of the largest normal component of
the Reynolds stress tensor and are thus found in one of the prin-
cipal axes. The direction of the lowest generated sound is likewise
found in the direction of the smallest normal Reynolds stress ten-
sor component.

The jet noise predictions using the proposed SNGR method are
with properly calibrated model parameters within 3 dB in sound
pressure level directivity compared to measurements of the same
flows. The method accurately predicts the increased noise gen-
eration from a Mach 0.75 jet to a Mach 0.90 jet using the same
model parameters indicating that the method has the capability
to be used for evaluation of changes in flow Mach numbers. This
agreement was however not found when the Mach 0.75 jet was
heated. The reasons for this are believed to be related to an in-
creased instability of the heated jet and that the source field in
the stochastic method does not include high temperature effects.

The spectral content in the far-field sound is not in satisfactory
agreement with measurements. The emitted noise from the jet
simulations has an under-prediction of the sound at low frequen-
cies, even if the inclusion of anisotropy in the source field model-
ing slightly improved the spectral results.
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e The anisotropy in the Reynolds stress tensor predicted from the
Boussinesq assumption based the standard £—< RANS turbulence
model for the Mach 0.75 jet is in relatively good agreement with
LES solution of the same flow and can be used as input to the
proposed anisotropic SNGR method.

e The noise generation from the proposed SNGR method is too
strong unless the amplitude factor f, is used to lower the ki-
netic energy of the synthesized turbulence. The reason for this
is related to the time filter for the synthesized turbulence which
needs to be improved for the method to be a general noise predic-
tion method without calibration of the amplitude of the emitted
sound.

e An anisotropic model for the two-point velocity correlation ten-
sor for homogeneous turbulence has been proposed. The func-
tional form of the correlation tensor is determined by six one-
dimensional scalar correlation functions. A preliminary model for
the scalar correlation functions is also presented but further de-
velopment is required before a complete model can be presented.
In the framework of statistical noise prediction methods, the pro-
posed model may enable accurate modeling of the noise generated
by anisotropic turbulence.
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Chapter 7

Appendix

7.1 The Linearized Euler Equations

This section presents the linearization of the Euler equations on con-
servative form. The Euler equations can be written in a compact con-
servative form as

0Q OE OF 0G _

8t+6m+8y+8z_0 (7.1)
where
P
pu
Q= pv
pw
Peo
(7.2)
pu pU pw
puu+p puv puw
E= pUY F=| ppv+p G = pvw
puw pow pww + p
phou phov phow

The solution vector can be decomposed into a reference solution and
a disturbance.

R=0Q+¢q (7.3)

The reference solution is assumed to be an average of the solution
variables, i.e. ensemble average of time-average which satisfies equa-
tion 7.1. A linearization of the equations around the reference solution
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is given by
E@Q) = E@+ (55) @ +HOT
PQ) = F(@+ 55) @ +HOT 7.
G(Q) = G(Q)o + (gg) Q'+ HOT

where subscript (-), indicates evaluation at reference solution. Using
the relations above in equation 7.1 gives

3Q0 + Q'
ot

2 (ron- (2),0)-
(‘% <F(Q)o + (gg) Q’) + .

£ e (12) ) v

The reference solution satisfies the Euler equations (equation 7.1).
Thus, subtracting the reference solution and neglecting the higher or-
der terms gives

8@’ 0 0

o T on 2 (4,Q) T 5y BoQ) + 5 (GoQ) =0 (7.6)

where Ay = (0E/0Q)o, By = (8F/8Q)0, Co = (0G/0Q)o. Equations
7.6 are the Linearized Euler Equations (LEE) on compact conservative
form. In tensor notation the equations are

o T om;
dpui) | 0 L o
ot + a—x](uj(puz) + ut(puj) — puu; +p (5Z-j) =0 (7.7)
d(pey) 0 A o~
ato + a—%(hO(pu]) + Uj(pho) — phouj) =0

The (-)" is a fluctuation associated with an ordinary time-average ()
and ()" is is a fluctuation associated with a Favre time-average (-) =

p(-)/p.
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The use of pressure and enthalpy in equation 7.7 is consistent with
the decomposition of the conservative solution variables in () and are
introduced to enable a shorter notation. These auxiliary variables are
expressed in the solution variables as

p=(—1) (peo_%M)

p (7.8)

pho = peg + p
The linearized Euler equations can also be written in primitive form

with solution vector ¢’ = [p', u”,v",w", p']. The transformation of equa-
tions 7.6 to primitive form starts with the Taylor expansion

0
RQ=Q(qp+¢)=0Q+ (a—cq?) ¢ +HOT (7.9)
0
which in linear theory is the same as
0
Q=Q—-Q= (a_Q) qd (7.10)
q/0

Using the definitions

_ (%@ (%
w=(2) o -(2)

we can rewrite equations 7.6 as

¢’ 4 0 4 0 4 0
E + MO 16__’1; (A()M()ql) + MO la—y (B()M()q,) + MO 1& (C()M()ql) =0 (712)

Equations 7.12 are the linearized Euler equations on compact prim-
itive form. The resulting equations are quite large in tensor notation
and are therefore not presented.

7.2 Stability Analysis of Hyperbolic Equa-
tions
In this section Fourier analysis is used for a semi-discrete stability

analysis of a one-dimensional convection equation. Relations for the
dispersion relation and the dissipation relation for an even-order space
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discretization are derived. Artificial dissipation through upwinding is
also taken into account in the analysis. Also a fully-discrete stability
analysis is performed for a four-stage Runge-Kutta time discretization.
Last, the correct way to introduce source terms in a 4:th order Runge-
Kutta time marching technique is presented.

7.2.1 Semi-Discretization

Start with the model equation (one-dimensional convection equation
with constant coefficient, c).

ou ou

Assuming that the spatial solution to equation 7.13 is known, the exact
solution to this equation can be written as

u(z,t) = ug exp(st) exp(—ikx) (7.14)

where uq is a constant amplitude and % is the wave number. The solu-
tion is decomposed into a time-dependent part and a space-dependent
part as shown in equation 7.14. Since the spatial dependence is known,
exp(—ikz), the time-dependence is to be determined, i.e. s in the time
dependent part of the solution. Inserting the equation 7.14 into equa-
tion 7.13 results in

sug exp(st) exp(—ikz) — ikcug exp(st) exp(—ikz) = 0 (7.15)

which in turn gives a relation for s as

s = 1kc or § = 1iw where w = ke (7.16)

where w is the angular velocity by which the solution varies in a given
point in space.

Reinserting this into the time dependent part of the solution, equa-
tion 7.14 gives that

z = exp(st) = exp(ikct) (7.17)

which has a purely imaginary exponent. The result is that the exact
solution to equation 7.13 will have a periodic behaviour in time with-
out damping or amplification. Furthermore, w is in direct proportion
to the wave number £, because the phase velocity, i.e. the velocity of
propagation defined by ¢ = w/k, is the same for all wave numbers.
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Now, an expression for s will be derived in the case of a semi-discreti-
zation of the one-dimensional convection equation 7.13. The equation
is discretized in space using a finite difference approximation. Dis-
cretized, equation 7.13 becomes.

(9’&]' + an
—_— C—
ot aiEj
where j is the number of the cell over which the equation is to be ana-

lyzed, see figure 7.1. Now we introduce a finite difference approxima-
tion of the space derivative on a equidistant mesh.

=0 (7.18)

j-3 j-2 j-1 j j+1 j+2 j+3
Figure 7.1:
a’LLj 1 M
a—:rj = H l;\r U/l'U/j_H (7-19)

and limit this analysis to N = M and let ¢; = —a_; with a¢g = 0. We can
then construct a central difference scheme, i.e. an even-order approxi-
mation of the spatial derivative. Equation 7.18 then becomes

ou; ¢ -
— = 2
5 T As l:E_MalU']—H 0 (7.20)

We can write the solution to equation 7.18 on the form

u; = ug exp(st) exp(—ikAxj) (7.21)

Insert this into equation 7.20 above. The space-dependent part has
been modified according to the space discretization. Observe that the
time dependent part of the solution is still continuous, i.e. not dis-
cretized. This gives

M
sug exp(st) exp(—ikAzxj) + ug exp(st)Aim Z a;exp(—ikAz(j +1)) =0

I=—M

(7.22)

89



Computational Techniques for Turbulence Generated Noise

which can be rewritten as

M
s = —Ai ay exp(—ikAzl) (7.23)
L —
Using the fact that a; = —a_; allows us to rewrite the above expression
for s to
c M
5= 2~ l_zl a;(exp(—ikAzl) — exp(ikAxl)) (7.24)
With the identity
sin(©) = &PUO) ;iexp(_Z@) (7.25)
we get
- A—C Z a; sin(kAzl) (7.26)

The approximation of z = exp(st) (equation 7.17) in the semi-discretized
case is then

2% M
2(k,t) = exp (Az—d > a sin(kAxl)) (7.27)
X
=1

In this case with an even-order discretization, the expression in the
exponent of equation 7.27 is also purely imaginary giving a numerical
scheme with zero numerical dissipation. Semi-discretized w is however
not directly proportional to £ any more (cf. equation 7.16). The relation
between w and £ is called the phase velocity or dispersion relation and
is defined by

¢t = = — (7.28)

where w and c¢* are dependent on k. The discretization of the spatial
derivative in equation 7.13 results in an incorrect dispersion relation,
and the phase velocity will be dependent on the wave number. Higher-
order schemes generally result in more accurate dispersion relation for
a larger range of wave numbers than lower-order methods.

As an example, the resulting dispersion relation for a 4:th order
space discretization is plotted in figure 7.2. The figure shows the phase
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velocity as a function of wave number. The wave number is scaled with
Aiw to give the quantity 6 = kAz. The phase velocity is scaled with <.
This gives a periodic function %Im(s) with period 7. This can be seen
by using the definition of wave number & = 27” where )\ is a wavelength.
By writing the wavelength as a factor £ times Az, A = £Az, we can
write

=" where 0<O<m (7.29)

The £ represents the number of grid points per wavelength that cor-
respond to a certain kAxz. For example, a value of kAz = § = 7 cor-
responds to a spatial resolution of 2 points per wavelength, kAz =
6 = w/2 corresponds to a spatial resolution of 4 points per wavelength
and so on. The exact solution is linear in £ (see equation 7.16) and is
shown as the dashed line in figure 7.2. The phase velocity of the 4:th
order semi-discretization is shown as the solid line in figure 7.2. For
low values of KAz corresponding to a high resolution (many points per
wavelength) the approximation follows the analytical solution but at
kAz ~ 7 /4 the phase velocity of the semi-discretized solution starts to
deviate from the analytical. To achieve a good numerical solution in
this case the required resolution according to this semi-discrete analy-
sis should be at least 8 points per wavelength (kAx < 7/4).

7.2.2 Artificial Numerical Dissipation

High even-order central numerical approximations to first-order deriva-
tives have no inherent numerical dissipation. This is the reason why
they are used in numerical solvers instead of odd-order approxima-
tions. But to ensure that numerical stability is retained, some kind
of numerical dissipation has to be added to the solution. This is done
by adding an even-order derivative times a small coefficient ¢ to the
model equation (equation7.13). The model equation becomes

du  Ou ni1 07U

DS = (e (7.30)

where the sign of the term is given by (—1)"™!. To be dissipative, a
second-order derivative, n = 1, is added with a positive sign or a fourth-
order derivative n = 2 is added with a negative sign, and so on. The
semi-discretized model equation is then written as
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Figure 7.2: Dispersion relation for semi-discretization, 4:th order
scheme

8“' C 7.31
J =
—t + —x (l E NCLl’U,j+1 + El E Ndluj+l> 0 (7.3 )

The coefficients d; in equation 7.31 determine the order of the ap-
proximated term. The coefficients for a central difference approxima-
tion of a sixth-order derivative are given in Section 7.5. The amount of
dissipation added is controlled by the factor . The expression for s in
this case becomes

M M
c |, .
s =3 2i Z a;sin(kAzxl) — ¢ (do +2 Z d cos(kAxl)) (7.32)

=1 =1

and
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z(k,t) = exp(st) =

ot | e~ U (7.33)
exp | Ao Qz;alsm(kAxl)—s do—i-QZdlcos(kAxl)

1=1

When adding a dissipative term in this way, the exponent in the
expression for z is no longer purely imaginary but also includes a real
part. The effect of this can be seen if we rewrite equation 7.33 as

z(k,t) =

ict —
exp [A—x Z a; sin(kAxl)

=1

(7.34)

M
exp [—g (do +2 Z d cos(kAxl))

=1

If the exponent in the real part of equation 7.34 is positive for a cer-
tain k£ then the corresponding wave will be amplified in time and if the
exponent is negative for a certain k£ the corresponding wave will de-
crease in time. Observe that including dissipation with this technique
does not affect the dispersion, only the dissipation. As an example
the dispersion relation and dissipation relation of the standard 4:th or-
der scheme and the “Dispersion Relation Preserving” scheme (DRP) by
Tam*' are shown in figure 7.3. A 4:th order derivative is used to add
dissipation to the 4:th order scheme and a 6:th order derivative for the
DRP. Figure 7.3(a) shows a clear difference between the standard 4:th
order scheme and the DRP. The DRP scheme shows a negligible error
in the dispersion relation up to kAz ~ 7/2 while the standard scheme
gives the same amount of error at k Az ~ 7 /4. Figure 7.3(b) shows the
real part of s as a function of kAz. Negative values of Re(s) for a cer-
tain kAx correspond to dissipation of waves with wave number k. The
ideal form of the curves in figure 7.3(b) would be a zero value for all
wave number kAx up to KAz ~ 7 and then a very large negative value
of Re(s) at kAxz ~ 7. With this in mind one can see that the sixth-order
derivative added in the DRP scheme gives slightly better distribution
of the dissipation over different wave number £ than the fourth-order
derivative added in the 4:th order scheme.

7.2.3 Full Discretization

When stability analysis is based on the semi-discretized equations the
time variable is assumed to be continuous and the time derivative is

93



Computational Techniques for Turbulence Generated Noise

: : : T T T
3} - - Exact //, 0.01
—— 4:th order DRP 4
—— 4:th order DRP + 6th order derivative o
+ 4:th order
25/ o 4:th order + 4th order derivative
0.01F
—~ _
2l
©w oy -0.02F
S— ~—
E 15 ! 0.03F
< | © c° e H| © -0.04
° <
ir ®
0]
° 0.05
05F °. B —— 4:th order DRP °
) -0.06H{ —— 4:th order DRP + 6th order derivative
Q + 4:ithorder
o 4:th order + 4th order derivative
o ; ; ; ; ; i ~0.07 : : : ; ; .
0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
kAz kAx
(a) Dispersion relation (b) Dissipation relation

Figure 7.3: Dispersion relation and dissipation relation for semi-
discretization

assumed to be evaluated exactly. In a numerical solver, however, the
time marching is not exact. When using a Runge-Kutta time marching
technique the time dependent part of equation 7.21 is approximated by
a Taylor expansion of z = exp(st). To see this, begin by rewriting the
model equation, equation 7.18 on the form

ou,;
a—t’ = Au, (7.35)
where Au; is an approximation of the spatial derivative —c% at location

j. For a linear operator A, a four-stage 4:th order Runge-Kutta applied
on the model equation can be written as

1
u; = uj + ZAtAu?

*% n 1 *

J

U,;-H—l = uj + AtAu;™

1
wpt = 4 S AtA

where v is the solution at time step n and u?“ is the solution at time
step n+1 and j is the the current space location. This gives a 4:th order
time stepping in terms of the Taylor expansion

1 1 1
nt+l _ 14242 | 1 4343 4441, n
u; _[1+At+2At +6At +24At]u]+HOT (7.37)
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or equivalently

1 1 1
z =exp(st) = 1+ st + 582152 + 683t3 + ﬂs‘lt4 + HOT (7.38)

By inserting the resulting expression for s from the semi-discrete
analysis into equation 7.38 an expression is given for how the solution
develops in time when the time marching is done through a 4:th order
time marching technique. Two quantities will now be defined. The
amplitude error and the relative phase velocity. The amplitude error of
the approximation of z is defined by

_lz[ -1
RN (7.39)
and the relative phase velocity is defined by
cx —/z
- = 7.40
c keAt ( )

where /z is the phase of z and |z| is the amplitude. Although not ob-
vious here, ¢* is now not only a function of £Az, but also of the CFL
number and hence has a dependence on At¢t. This was not the case
in the semi-discrete analysis and this is the main difference between
the semi-discrete and the fully discrete analysis. The amplitude error
and relative phase velocity for a 4:th order space discretization and
the 4:th order DRP scheme combined with a 4:th order Runge-Kutta
time marching with CFL = 0.5 are shown in figure 7.4. The amount of
dissipation added is the same as in the semi-discrete case above.

The dependence of the amplitude error and the relative phase veloc-
ity on CFL-number is shown in figure 7.5. As can be seen in figures
7.5(a) and 7.5(b) the difference is small for all CFL-numbers in terms
of relative phase velocity and also for CFL-number up to 0.5 in terms of
amplitude error. For CFL = 0.6 there is a clear increase in amplitude
error. Based on this the conclusion is that the solution is more or less
independent of CFL-number up to approximately CFL = 0.5 with an
increase of numerical dissipation for higher values of the CFL-number.

7.2.4 Introducing Source Terms

Introducing source terms into the fully discretized equation 7.35 gives
an equation as

Ou;

5 = Au;j+o (7.41)
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Figure 7.4: Relative phase velocity and amplitude error for full dis-
cretizations

where o is an arbitrary source. A four-stage 4:th order Runge-Kutta
applied to this equation will be on the form

1

1
uit =u; + gAtAu;- + Atfo(o)

k%K% 1 k%
ui™ = uj + EAtAuj + At fs(0)

(7.42)

J

u?“ = uj + AtAu;™ + Atfy(o)

where f (o) is some linear combination of o evaluated at different times.
Expanding the expression 7.42 and identifying the linear combinations
to restore a 4:th order time marching scheme gives

1 1 1
urtt = [1 + AL+ S A+ S AN ﬁA‘lt“] uff
1 1 2 1 2 3 1 3 4 n
+ | ZAt+ ZAAY)? + — A2 (AL + — A3 (A o
6 6 12 24 (7.43)

+ [gAt + éA(At)Q + %AQ(At)?’} o™t

w

1
+ éAta”“ +HOT
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Figure 7.5: Relative phase velocity and amplitude error for full dis-
cretizations. For CFL numbers equal to: solid: 0.1; dashed: 0.3; dotted:
0.5; dash-dotted: 0.6

or in terms of Runge-Kutta time marching

1 1 1 1 1
*% n * n n+=
u;t =u; + §AtAuj + gAt <§a + 2° 2)

1 1 1 2 1 (7.44)

1
W =+ AtAUS 4 At (o7 + 40" 4+ 0™

By evaluating the source terms in the manner as in expression 7.44
the numerical accuracy of the time marching technique is restored to
4:th order. o, 0"z and o™ is the source evaluated at times n, n + %
and n + 1, respectively.

7.3 Numerical Issues in Lighthill’s Analogy
Lighthill’s acoustic analogy on both time derivative and divergence for-
mulation®® have been implemented into the numerical code for the lin-

earized Euler equations. In the present form the source terms are eval-
uated based on the synthesized velocity field in the SNGR method.
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There has been identified a problem which can occur when using the
time derivative (Lighthill-time) formulation of the Lighthill analogy.
Besides the physical noise prediction which is based on the time-space
distribution of sources in the method there can arise large amplitude
high frequency noise when the integral is solved over a discretized grid.

In a 1D test case with a stagnant mean fluid the generated noise fre-
quencies have been identified to relate to the cell size and the ambient
speed of sound as

fs =m— (7.45)

where m is any positive integer.

The cause of this spurious sound generation can be illustrated in
figure 7.6. For simplicity, let’s assume that the source term in the
Lighthill equation is constant in space but a function of time. The
constant space assumption will be lifted eventually but with the same
conclusions as in the present example. For a source terms which varies

_Tl

/ wem
i/%/ | [ 101

Pt to

Figure 7.6: 1D case of forward time integration of Lighthill source.
Source locations (cells) 1, 2,3 at times ¢, to ¢; and observer location O at
times 7y to 7.

with the frequency f, the peak positive value is said to occur at time ¢,.
After a time delay of 7;/2 the source will have a peak negative value
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and after another time delay of 7;/2 the peak positive value is reached
again. The forward time integration will from source location 1 at time
to add a positive value to the far-field sound at time 7, and a negative
at time ¢, + Ty/2 to forward time 7 + T /2. The same contributions will
be added from source location 2 but shifted in time by 7;/2 and so on
for each source location 3,4,5,.... The net result is that the far-field
sound at frequency f, will be amplified by the coherence of the source
distribution and similar amplification will occur for multiples of the
first spurious frequency f,. For lower frequencies than f, this amplifi-
cation can not take place since there will be a canceling effect from the
different source locations. This numerical phenomenon was illustrated
with a constant source in space in order to simplify the analysis. For
a source with finite spatial extent this amplification will of course be
localized to a typical correlation length.

A numerical example of this is shown in figure 7.7. The Lighthill
time formulation was integrated in a tube of 128 cells oriented in the
z-direction and the observer was located at 100 tube lengths from the
tube center point. The source was constant in space but consisted of
filtered white noise as in equation 3.13. The spurious frequency for
this case was f; = ¢o/Ax = 341.56/(1/128) = 43720 Hz and is clearly
visible as the first sharp peak in the power spectrum in figure 7.7. Two
higher modes are visible as well at frequencies 87440 and 131160 Hz. To
compare this effect of amplification with a case where the effect is not
present the far-field noise was recorded at a location 100 tube lengths
above the tube in the y-direction, see figure 7.8. In this case only the
background noise from the response of the source terms is visible.

In a more general case with convection the first spurious frequency
is a function not only on the ambient speed of sound but also on the
local convection velocity. This also introduces directivity in the value of
the spurious frequency. A simple estimation of the spurious frequency
in a convected flow is

_m(c0+u-n)
B |Ax - n|

s (7.46)

The effect is that the spurious frequency is lower in the direction
opposing the convection and higher in the direction of the convection.

It is obvious from this simple test that care has to be taken to en-
sure that the integrand in the analogy does not experience such high
frequencies otherwise the noise prediction could be polluted by these
spurious contaminant waves.
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Figure 7.7: Power spectrum of far-field pressure. Observer location 100
units in the z-direction

X x 10

Figure 7.8: Power spectrum of far-field pressure. Observer location 100
units in the y-direction
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7.4 Transformation of Solution to Charac-
teristic Variables

For a locally homogeneous flow the linearized Euler equations can be
written on the following quasi-linear form

Q' oF\ 0Q' oF\ 0Q' 0G\ 0Q' B
ot " (@)0 o (@)0 ay <_> 9z

50 0 (7.47)

where the derivatives of F, F and G with respect to Q are the flux

Jacobian matrices evaluated at the reference solution ). Consider a
linear combination of the flux Jacobians in some direction n = (o, 3,7)

such that
- oF OF oG
Ay = — i — 7.48
0 “(6Q>0+5<8Q)0”<6Q>0 (7.48)

Assuming that fluctuations are planar waves aligned with the vector
n they are governed by a one-dimensional equation in the n-direction.

oQ - 0Q"
a1 + Ay B¢ =

0 (7.49)

where A, is defined as above and ¢ is the the spatial variable in the
n-direction. Equations 7.49 consists of five coupled equations. These
cannot be solved independently without decoupling. This is done by
introducing characteristic variables, . Let

wi(
wi(
Q =TW where W= w6 (7.50)
W
(

where T and T~! are chosen to diagonalize A, according to

T AT = A = diag [\, A%, A%, 04 0\7] (7.51)
Inserting the above relation into equation 7.49 gives
ow ow
RSN et A
FTRINT:
Equations 7.52 are now decoupled and govern propagation of waves
in the ¢-direction. The columns of the matrix T are the eigenvectors to

0 (7.52)
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the matrix A, and )\ are the corresponding eigenvalues. The eigenval-
ues are also called characteristic speeds. The characteristic speeds can
be computed analytically and are given by

M=X=N=au+pr+ w0
M = ot + U+ Y0 + c\/a? + B2 + 72 (7.53)
)\5=aﬂ+56+7@—0\/m

where (u,v,w) is the local reference velocity vector. The sign of the
characteristic speed )\’ gives information about the direction the char-
acteristic variable W is traveling. A characteristic variable W) with
characteristic speed \* > 0 is traveling in positive n-direction and vice
versa.

The physical interpretation of the characteristic variables is

w® = entropy wave
W W6 = vorticity waves (7.54)
W® WO = acoustic waves

The solution can be transformed back to physical variables Q' using
equation 7.50. For more details on the characteristical variables, see
Eriksson.%?

7.5 Numerical Coefficients for
FVM and FDM

A centered finite difference approximation of a volume-averaged first-
order derivative can be written as

N

1 —
= Y abi (7.55)

i I=—N

¢
0z

where the coefficients are defined as in figure 7.9. The finite volume
approximation of the same volume-averaged first-order derivative is

9%
o0x

1 Tit1/2 a(b 1
T Az /I“/2 a_xdx = Az (fir1/2 — di-1/2) (7.56)

$iy1/2 and ¢;_y/» are point values (or face averages) of ¢ and the known
degrees of freedom are the volume-averaged ¢ in the cells. The estima-
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Figure 7.9: Definitions of coefficients.

tion of a face value must be given by the volume-averages and is given
by

N N
1 Titi+1/2 _
Pit1/2 = Z v Pdx = Z Py (7.57)
I=—(N-1) Titi-1/2 I=—(N-1)

Inserting equation 7.57 into equation 7.56 gives

% ' = Ax Z al¢i+l - Z al¢i+z—1 =
d I=—(N—1) I=—(N—1)
1 ) Nt ) ) (7.58)
Ax anPin + Z (ar — al+1)</5i+l — G- (N-1)Pi_N+12
I=—(N—1)

By comparing equations 7.55 and 7.58 the following relation can be
found between the finite difference and finite volume coefficients.

C_N = —Q_(N-1)
C = ap — Qp4+1 - (N — 1) S l S (N - 1) (759)
CN = an

Using the relations 7.59 the coefficients of a centered finite volume
approximation a; can be transformed to coefficients of the correspond-
ing finite difference approximation ¢; and vice versa.

The coefficients for a standard 4:th order approximation of a first-
order derivative are given in table 7.1, and the coefficients for the 4:th
order DRP scheme by Tam*! are given in table 7.2.
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— — 1 1
Cyg = —C_9 = 1z g = a1 = 12

— — 8 _ 7
Ci = —C_1 = D) a1 g = 12
Cyp = 0

Table 7.1: Coefficients for 4:th order approximation of a first-order
derivative. Left: finite difference scheme; Right: finite volume scheme

C3 = —C_3 = 0.02651995 az = a_g = 0.02651995
cog = —c_g= —0.18941314 ay =a_; = —0.16289319
cp=—C_1 = 0.79926643 ay = ay = 0.63637324
Cy = 0

Table 7.2: Coefficients for 4:th order DRP approximation of a first-order
derivative. Left: finite difference scheme; Right: finite volume scheme

The coefficients in table 7.3 relate to the addition of artificial numer-
ical dissipation by the addition of a dissipative term to the system of
equations, see Section 7.2.2. The coefficients for a central difference
approximation of 4:th and 6:th order derivatives are given in table 7.3.

dy=d o= 1 dg=d_3= -1
di=d1= —4 dy=d_o = 6
do = 6 di=d_1= -15

dy = 20

Table 7.3: Coefficients for central difference approximations. Left: 4:th
order derivative; Right: 6:th order derivative.
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