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This work is an attempt to capture the sound field of a high Reynolds number, high Mach
number subsonic jet without LES or DNS. The method used is called the SNGR (Stochastic
Noise Generation and Radiation) method and was first proposed by Bechara, Bailly, Lafon
Candel and Juvé.1,2 The SNGR method is based on using the information given from a RANS
solution to generate a time dependent velocity source field which is used to evaluate source
terms for the linearized Euler equations. The solution to the linearized Euler equations
provide the acoustic information of the flow.

This method has in the present work been further developed with a new time depen-
dence and convection of the generated velocity field.

The developed method has been applied to a Mach ��� ��� cold jet at �
	���
������������������������
and compared to recent LES computations and measurements of the same jet.

Introduction
An aeroacoustic problem can be divided into ge-

neration of sound and propagation of the generated
sound. Solving the full compressible Navier-Stokes
equations using LES or DNS captures both. The
computational cost however of the two methods
prohibits the use of them for most industrial ap-
plications.

There has recently been some progress in a new
modeling approach called SNGR1,2 (Stochastic No-
ise Generation and Radiation) model. It is based
on the idea that the linearized Euler equations are
a wave operator for acoustic perturbations. In-
troducing suitable sources to the linearized Euler
equations result in accurate predictions of the ge-
neration and propagation of acoustic perturbations.
The objective is that this approach will cost less
computationally than performing a LES, especially
at high Reynolds numbers.

In the SNGR method a RANS solution provides
time averaged information about the flow field. The
challenge is then to use the information given from
the RANS solution to generate an instationary tur-
bulent velocity field with the same local statistical
properties as the RANS solution. This generated
turbulent field is used for evaluation source terms
in the linearized Euler equations. Solving the li-
nearized Euler equations with the source terms
provide the propagation of sound from the source
region to the far-field.

The present paper is organized as follows. The
role of the RANS solution is briefly discussed in
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the following section followed by the presentation
of the derived source terms for the linearized Euler
equations. The basic concept of how the synthesi-
zed turbulence is generated is desribed and then
the differences between the present method and
the ones proposed in Refs. (1,2) are discussed. The
differences concern how time dependence and con-
vection is introduced in the generation of the synt-
hesized turbulence.

Comparison of the synthesized turbulence with
theory for isentropic turbulence will first be presen-
ted. Next a simulation of a 3D jet is presented be-
ginning with the computational setup and followed
by the results which are compared to both measu-
rements, Jordan and Gervais3,4 and recent Large
Eddy Simulations, Andersson et al.5 Differences
between the measurements and the present simu-
lations are then investigated and this is followed by
the conclusions.

The SNGR method
The SNGR model is performed in three steps.

These are:

step 1. A Reynolds-Averaged Navier-Stokes solu-
tion of a compressible turbulent jet is calcu-
lated using, for example, a ����� turbulence
model.

step 2. An instationary turbulent velocity field
with the same local turbulence kinetic energy,
time scale and length scale as the RANS solu-
tion is generated using random Fourier modes.

step 3. The linearized Euler equations are solved
using the mean flow field computed in step (1)
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as mean flow solution. Source terms derived in
a similar way as for Lighthill’s wave equation
are evaluated using the turbulent field genera-
ted in step (2). The linearized Euler equations
then gives the propagation of sound from the
turbulent field to the surrounding far-field.

RANS for Jet Computations
The Reynolds-Averaged Navier-Stokes solution

(RANS) of the flow field is computed using a stan-
dard � � � turbulence model. The purpose of the
RANS solution is to provide a mean flow solution
for the linearized Euler computation. The RANS
solution is also used in the stochastic modeling of
the turbulent field. The SNGR model needs in-
put parameters in the form of turbulence kinetic
energy, length scale and time scale. The turbulence
kinetic energy is one of the solution variables from
the RANS computation and the turbulence length
scale and time scale are computed from the turbu-
lence kinetic energy and the turbulence dissipation
rate. For more details, see Billson.6

Linearized Euler Equations with
Source Terms

A formal derivation of the source terms for the
linearized Euler equations is given in Billson.7 Gi-
ven here is only the final set of equations.
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(1)

The left-hand side of equations 1 is the linearized
Euler equations. The right-hand side contains all
non-linearities that emerged when the Euler equa-
tions were rewritten into the linearized Euler equa-
tions. Thus, equations 1 are still the full non-linear
Euler equations. If the right-hand side of the equa-
tions is treated as a source and is in some way
known, then the left-hand side is a wave operator
responding to the source.

A validation of the derived source terms has been
performed in the case of a forced 2D mixing layer
in Billson6 where the solution of the linearized Eu-
ler equations with the derived source terms was
compared to a direct simulation of the same flow.
The source terms were shown to be working well
and given that they are evaluated from a physi-
cal solution, the response from the linearized Eu-
ler equations is in good agreement with the direct

numerical simulation used to evaluate the source
terms.

Stochastic Modeling of Turbulence
This section concerns the generation of an insta-

tionary turbulent velocity field, i.e. Step (2) in the
SNGR method. A time-space turbulent velocity fi-
eld can be simulated using random Fourier modes.
This was proposed by Kraichnan8 and Karweit et
al.9 and further developed by Bechara et al.1 and
Bailly and Juvé.2 The velocity field is then given by

)+* 
�,-� �/.
01
2436587

 2:9<;�= 
�> 2 , �@? 2 ��A 2 (2)

where 7

 2 , ? 2 and

A 2 are amplitude, phase and
direction of the B *�C Fourier mode. Figure 1 shows
the geometry of the B *�C mode in wave number
space.

0
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Fig. 1 Geometry for the N�OQP mode.

The vector
> 2 is chosen randomly on a sphere

with radius � 2 . This to ensure isotropy of the ge-
nerated velocity field. By the assumption of in-
compressibility the continuity equation gives the
following relation

> 2SR A 2UT � V ;XWZYX[\[ B (3)

The wave number vector
> 2 and the spatial direc-

tion
A 2 of the B *�C mode are thus perpendicular. The

angle ] 2 is a free parameter chosen randomly, see
figure 1. The phase of each mode ? 2 is chosen with
uniform probability between �_^ ? 2 ^`.ba . The pro-
bability functions of all the random functions c 2 ,
? 2 , d 2 and ] 2 are given in table 1.

� 
 c 2 � �febg 
 .ba � �_^ c 2 ^`.ba
� 
 ? 2 � �febg 
 .ba � �_^ ? 2 ^`.ba
� 
 d 2 � � 
 e#gX. � =ih\j 
 d � �_^ d 2 ^ka
� 
 ] 2 � �febg 
 .4a � �_^ ] 2 ^`.ba

Table 1 Probability distributions of random vari-
ables.

The probability function of d , � 
 d 2 � �le#g4. =�h"j 
 d �
is chosen such that the distribution of the direction

2 OF 14

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2003–3282



PSfrag replacements

���

���

���

���
	 �


��

��
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Fig. 3 von Kármán-Pao spectrum

of
> 2 is uniform on the surface of a sphere, see fi-

gure 2, i.e. the probability of a randomly selected
direction is the same for all surface elements %'& .

The amplitude 7

 2 of each mode is computed

so that the turbulence energy spectrum function( 
 � 2 � correspond to the energy spectrum for iso-
tropic turbulence. This gives

7

 2 �*) ( 
 � 2 �,+ � 2 (4)

where
+
� 2 is a small interval in the spectrum loca-

ted at � 2 , see figure 3. A model spectrum is used
to simulate the shape of an energy spectrum for
isotropic turbulence. In this way the sum of the
squares of 7


 2 over all B is equal to the total turbu-
lence kinetic energy

� �
01
24365 7

.-2 (5)

The spectrum
( 
 � 2 � is subdivided with a linear

distribution as

� 2 � � 5 �0/ � 2�1 52 V ;�W B � e43 .53768686.3:9 (6)

where

/ � 2 � 
 � 0 � � 5 �9 � e (7)

It has been argued in previous studies2 that a lo-
garithmic distribution compared to a linear distri-
bution results in a better resolution of the spectrum
for low wave numbers corresponding to the most
energy containing eddies. This is true but it has
the side effect that the amplitudes of the highest
wave numbers which then are poorly resolved are
amplified by the increasing

+
� 2 for higher wave

numbers in equation 4. A comparison of the energy
distribution and the amplitude distribution for li-
near and logarithmic wave number distributions is
presented in the result section. This comparison
shows this effect and a linear distribution of the
wave numbers is therefore used in this work.

The energy spectrum for isotropic turbulence is
simulated by a von Kármán-Pao spectrum

( 
 � � � ] 
�� ;��<


� g � < �>=? e � 
 � g ��< � -A@ 5CBED:F %�G 1 -8HJI D IEK7L ;>M (8)

where � is the wave number, ��N � � 5OD =QP 1.R:D = is the
Kolmogorov wave number,

P
is the molecular visco-

sity and � is the dissipation rate.

 � ;

is the r.m.s.
value of the velocity fluctuations corresponding to
the turbulent kinetic energy,


 � ; � . � g�S . There are
two free parameters in equation 8. The numerical
constant ] which determines the kinetic energy of
the spectrum and the wave number �5< correspon-
ding to the most energy containing eddies at the
peak in the spectrum. The available information
from the RANS solution is the turbulence kinetic
energy � or, equivalently S 
 � ; g4. , and the dissipation
rate � . These must be used in order to determine
] and � < and thereby the shape of the spectrum
and the distribution of energy over different wave
numbers. The numerical constant ] can be deter-
mined by the requirement that the integral of the
energy spectrum, equation 8, over all wave num-
bers should be equal to the total turbulent kinetic
energy

� �UTWV& ( 
 � � / � (9)

Since equation 8 is derived for infinite Reynolds
number ] can be found independently of ��< by in-
tegrating equation 9 to get

] � XY a[Z

 e�\Xg^] �
Z

 e#g�S �`_ e�6 X�a .�\^] (10)
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The turbulence length scale from the RANS solu-
tion is defined as

� �������
&�� B
	� �

R:D -
� (11)

Assuming that the length scale from the RANS so-
lution is the same as the integral length scale for
isotropic turbulence gives the following relation

� � a
. 
 � ; T V& ( 
 � �

�
/ � (12)

which is used to determine the wave number ��< cor-
responding to the most energetic length scales. The
relation of � < to

�
and ] is

��< � � aa4a ]� (13)

where ] is given in equation 10 and
�

is obtained
from the RANS solution.

Time dependence and Convection – previous
studies

In earlier studies, two methods have been deve-
loped to introduce time dependence in the synthe-
sized velocity field.1,2 The first method by Bechara
et al1 is based on independent generation of velo-
city fields ) * 
�,-� (see equation 2) in every time step
in the same manner as described above. The inde-
pendent solutions are then filtered in time in every
point to give a desired time correlation. The second
method Bailly and Juvé2 is based on introduction
of time dependence in the actual generation by ad-
ding a time dependent term in the Fourier modes.
The generated time dependent turbulent velocity)-* 
�, 3 ��� is then given by

) * 
�, 3 ��� �/. 01243+5 7
 2 9 ;�= 
�> 2 
�, � � )�
 � � ? 2 ��� 2 ����A 2
(14)

In this expression )�
 is the local convection velo-
city computed in the RANS solution, and � 2 is the
angular frequency of the B *�C generated mode. The
angular frequency � 2 is a random function given by
a Gaussian probability function

� 
 � 2 � � e
� 2 Y .ba % H 1 H���� 1 ���^L ; D - � ;� L (15)

where � 2 is the mean angular frequency of the B *�C
mode determined by � 2 � 
�� � 2 , Bailly.2

The second method to introduce time dependence
is attractive from computational point of view due
to the difference in required computational effort

and storage. In the first method a number of Fou-
rier modes have to be generated in each time step.
The resulting velocity fields need to be filtered a
posteriori to get suitable statistical properties. This
data need to be stored before it is used in the source
terms in the linearized Euler computation, step (3).
In the second method the velocity field can be ge-
nerated for each time step independently and does
not need to be filtered. It is then possible to in-
clude the generation of the turbulent velocity field
in the solver. The only data that need to be sto-
red in order to repeat a computation in this case
are the random functions given in table 1. The first
method is however attractive in the way that the
time correlation can be chosen to follow a specified
behavior. This is done through the filtering of the
independent samples. This type of control is not
possible in the second method. Also, choosing the
relation between the angular frequency � 2 and the
wave number � 2 is somewhat arbitrary but at the
same time an important parameter for the sound
generation. The first method does not include any
convection whereas the second does through the
term

> 2 
�, � � ) 
 � in the cosine argument.

Time dependence and Convection – present work
A way to retain the control of the time correlation

and at the same time keep the required computa-
tional effort at a reasonable level is to introduce
the time filter directly as the velocity field is gene-
rated. To include convectional effects a convection
equation is solved for the filtered velocity field. The
proposed method to introduce time dependence and
convection is as follows. First define a realization
of the generated turbulent velocity field as )��* 
�,-�
where superscript denotes time step � . Each gene-
rated field )��* 
�,-� for all e�� � � 9 is independent
of the others and they have a zero statistical mean
in time. In other words the generated velocity field
is locally white noise. A new turbulent velocity field
can then be computed via the equation

� �* 
�,-� ��� � � 1 5* 
�,-� � � ) �* 
�,-� (16)

where � �"!$#�% 
 � + � g�& � and � � ) 
 e � � - � . & is
referred to as the time scale and defines the time
separation for which the autocorrelation function
is reduced to !'#�% 
 � e � 6 The expression for � ensu-
res that the root mean square of �(�* 
�,-� is the same
as for )(�* 
�,-� . The time scale is computed from the
RANS solution as

&U�)��* �
� (17)

where the factor � * is introduced for the possibility
to modify the time scale.

To account for convection of the generated tur-
bulent field �+�* 
�,-� a simple convection equation is
solved for � � 1 5* 
�,-�
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��
 � � � 1 5* �
��� �

��
 ��
(� � � 1 5* �
��� � �`� (18)

before it is used in equation 16. Absorbing
boundary conditions based on characteristic vari-
ables are used when solving equation 18.

Using equation 16 to introduce time dependence
as compared to equation 14 has the advantage of
requiring a smaller number of modes. In equa-
tion 14 the velocity field is totally determined by
each realization. A large number of modes is
then required to accurately describe isotropic tur-
bulence. In equation 16 the velocity field ���* 
�,-� at
a certain time is the weighted sum of all previous
independent velocity fields )��* 
�,-� each with diffe-
rent random parameters. Much fewer modes are
then required to ensure accurate statistics. This
property is shared with the first method described
above.

The second method presented above has a di-
sadvantage of loosing the space correlation cross a
mean shear flow through the convective argument> 2 
�, � � )�
 � in equation 14. This has been reported
by Batten.10 This de-correlation does not occur in
the present method, as will be shown in the results.

Correlations of Generated
Turbulence – Homogeneous Case

To see if the generated turbulent velocity field
has the specified time and length scales, the au-
tocorrelation and two-point correlations are compu-
ted from a generated homogeneous velocity field.

Using a first-order filter as in equation 16, the
specified autocorrelation is an exponentially decay-
ing function which in a discrete time separation is

� �* � � 1��*

 � �* � - ��� � (19)

where � is the number of time steps separating ���*
and � � 1��* and the overline denotes an average over
many realizations � . The specified and the compu-
ted autocorrelations are shown in figure 4.

The longitudinal two-point correlation
�
6
�� 3 ��3i� � g 
�
-
 ��3 ��3i� � is compared to the � -function
for isotropic turbulence11 and the transversal��� 
�� 3 ��3 � � g ��� 
 �'3i�'3i� � is compared to the � -function.
The results are shown in figure 5. The correlations
in time and space clearly follow the specified
correlations.

3D Jet Simulation
The simulated jet is a Mach � � ��6 \ a , � !f�	�
 � g P � \ a ��3i���X� cold jet with a nozzle diameter

of
	 � � ��6 � a ? � @ . Jet flow conditions are shown in

table 2.
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Jet exit conditions
Diameter,

	 �
: ��6 � a m

Mach number, M : �'6�\ aPressure, � � : e �(e46 S kPa
Temperature, 7 � : ./8�8 K

Ambient conditions
��9 �;: : e �(e46 S kPa
7 9 �;: : ./8�8 K

Table 2 Flow conditions

Source Region
The region in which the SNGR is applied is

restricted to the region where the largest sources
are expected. This region is a cylinder that starts
from the nozzle and continues in the axial direction
down to

� g 	 � � . X . Within this cylinder the source
region is the set of cells where

P * g P=< �'6 ��]�e . This
limit is chosen for numerical reasons to ensure that
the Kolmogorov wave number is larger than the
peak wave number � < in the model von Kármán-
Pao energy spectrum. This limit is quite arbitrary
but convenient since the turbulence kinetic energy
turns out to be very small where this value of

P * g P
is reached.
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Numerical Solver
The code for the linearized Euler equations is ba-

sed on the finite volume method. The equations
are discretized on a structured curv-linear non-
orthogonal boundary-fitted multi-block mesh. The
convective terms are discretized with a six point
stencil. The coefficients of Tam’s12 fourth-order dis-
persion relation preserving finite difference scheme
is converted to the equivalent finite volume coeffi-
cients. A fourth-order four step Runge-Kutta time
marching technique is used for the time stepping.
Artificial selective damping is used to prevent spu-
rious waves from the boundaries and regions with
stretching to contaminate the solution. The man-
ner in which the artificial selective damping is in-
troduced is described in Eriksson.13

The boundary conditions are based on local one di-
mensional analysis based on characteristic varia-
bles, Billson.6

A buffer layer is applied in the outflow region to
attenuate vorticity and entropy disturbances before
they reach the outflow boundary. The attenuation
is done by adding a damping term to the governing
equations in the outflow region of the computatio-
nal domain, see Refs. (6,14).

Computational setup
The block structure of the mesh is shown in fi-

gure 6. The spatial resolution is homogeneous+ � g 	 � � �'6\e in the axial direction in the region
� \k^ � g 	 � ^ . � . The resolution in the ��� -plane
is chosen so as to resolve the core of the jet and
initial mixing layer with

+ � g 	 ��� ��6 �4S with incre-
ased mesh size further away from the nozzle exit.
The mesh support acoustic waves up to a frequency
equivalent to Strouhal number � � � � 	 � g 
 � � e46 awith little dispersion and dissipation.

The buffer region is the part of the computational
domain from

� g 	 � � . � to the down-stream out-
flow at

� g 	 � � S�\ . Stretching of the mesh in the
down-stream direction in the buffer layer has the
additional effect that the artificial numerical dis-
sipation at high wave numbers makes the buffer
layer more efficient.

The time step is
+ � � 8'6 ] a � e�� 1�B = equivalent to

a maximum CFL-number based on spectral radius
of �	��
 ���'6 a .For the base-line simulation (see results section)
the length and time scale factors used are � � � e46 �
and ��* � e�6 � . In the random field 9 � SX� modes
are used and the lowest and highest wave numbers
are � 5 � a and � 0 �l.X� � corresponding to � 5 �
�
� B 
 � < � g a and � 0 � .ba+g 
 ] + � � respectively.

A linear distribution of the energy spectrum
(equation 8) is used in the present work as oppo-
sed to logarithmic in previous work.1,2,8,9 When
using a logarithmic distribution the amplitudes of
modes at low wave numbers are suppressed and
the amplitudes of modes at high wave numbers are

a) � -plane through centerline.

b) � -plane at
nozzle exit.
Dashed line
indicates nozzle
exit diameter.

c) � -plane at end of
computational domain.

Fig. 6 Slices of the block structure of the lineari-
zed Euler mesh.

emphasized due to the increasing
+
� 2 in equation

4 for higher wave numbers. Using a linear distribu-
tion gives a homogeneous distribution of the

+
� 2 .

Figure 7 shows the energy distribution of the
synthesized velocity fields for each mode for diffe-
rent down-stream positions in the center line (top)
and in the jet shear layer (bottom). Figure 8 shows
the amplitude of the same modes when computed
with equation 4. A linear distribution is used to the
left and a logarithmic to the right. The shift of the
peak towards higher wave numbers between the
energy and the amplitude in the logarithmic case
is clear from figures 7 and 8. This shift in the peak
is not present in the case with linear wave number
distribution.

To validate the present method the far-field ac-
oustic solution has been computed in two diffe-
rent ways, the Kirchhoff integral method15 and the
double time derivative formulation of the Lighthill
acoustic analogy.16 The Lighthill analogy solution
is computed directly from the synthesized velocity
field, see figure 9 whereas the Kirchhoff solution is
based on the solution to the linearized Euler equa-
tions and thus including all steps in the present
method.

Overall sound pressure levels (OASPL) and
spectra of the acoustic data are compared with the
LES of Andersson et al5 and the measurements of
the same flow by Jordan and Gervais.4 The predic-
ted acoustic data from the Kirchhoff integral met-
hod have been high-pass filtered to attenuate the
effect of natural hydrodynamic instabilities in the
linearized Euler equations. The Kirchhoff surface
is placed five cells from the outer boundary of the
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Fig. 8 Amplitude distribution

computational domain except in the outflow region
where the surface is not closed over the turbulent
region (see Ref. 17) and the Lighthill source region
is chosen as the same region in space as the SNGR
source region.

Choosing SNGR parameters
The SNGR parameters have been chosen in the

following way. The near-field is calibrated using the
length and time scale factors � � and ��* , see equa-
tions 11 and 17. The basis is that the near-field
should be well calibrated before one can expect the
solutions in the far-field to be in good agreement
with measurements or the LES solutions. Thus the
far-field pressure spectra and amplitude is deter-
mined by ��� and � * .

Results
The RANS solution which governs the statistic

property of the proposed SNGR methodology has

been validated against the LES data of Andersson
et al.5 and measurements, Jordan et al.18 This is
presented in Billson.6

Near-Field Results
Figure 10 shows the computed two-point space-

time correlation function,

� 5�� 5 
�, 3�� 3 & � � 
 � 
�, 3 ����
 � 
�, � � 3 � � & �� 
 � - 
�, 3 ��� � 
 � - 
�, � � 3 � � & � (20)

where
,

and � are the position and the space sepa-
ration in

� 5 direction respectively, overline

 6 � deno-

tes time average and & is time separation. In figure
10(a) the correlation is based on the LES data of
Andersson et al.5 and in figure 10(b) the correlation
is based on the synthesized turbulent velocity field.
Each curve represents the correlation in time of two
points separated by a constant distance in space
(axial direction). The envelope of the maxima of
the correlation curves corresponds approximately19

to the Lagrangian autocorrelation. The correlation
for each space separation at zero time separation
corresponds to the two-point space correlation and
consequently the integral length scale.

Figure 11(a) shows the Lagrangian autocorrela-
tion based on the space-time correlation for the
LES data and the synthesized SNGR velocity field
and figure 11(b) shows the two-point space correla-
tion for the same sets of data. The correlations are
in good agreement.

Since the spatial grid resolution is limited by the
upper wave number constraint � 0 � ] + � , the ki-
netic energy of the synthesized velocity field will
be lower than that of the RANS solution. The tur-
bulence kinetic energy of the RANS solution, the
resolved part (i.e. � 5 ^ � ^ � 0 ) of the energy
spectrum (equation 3) and the synthesized turbu-
lent velocity field in the shear layer are shown in
figure 12. There is a large difference in the energy
from the RANS solution compared with the resol-
ved energy spectrum. This difference is due to the
poor resolution in the

�
-direction which determines
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Fig. 10 Two-point space-time correlation (equa-
tion 20 in the axial direction at

� ) �
	 ����
 ��	 �  ��
����� � ��� �  

the upper wave number, � 0 , in the syntetisation.
The energy which is lost is at small scales, see
figure 13, and as such they are very compact as
sound sources. The energy of the synthesized tur-
bulence is however close to that of the resolved part
of the energy spectrum which would be expected. A
simulation where the convection operator has been
turned off (see below) is also included in figure 12.
Comparing the two curves for the simulations one
can see that there is a small decrease in energy
when the convection operator is used which is at-
tributed to the fact that the time filter, equation 16,
only has a limited time to feed the synthesized tur-
bulence with new energy as the convection operator
is transporting the velocity field down-stream.

The space and time correlations in figures 10 to
11 show good agreement between the LES and the
synthesized velocity field. The turbulence kinetic
energy levels in the simulations are lower than in
the RANS solution, and this should have the effect
of producing too low far-field sound levels. Even
so, the proposed method to convect (equation 18)
and filter (equation 16) the random velocity field
(equation 2) can model the space-time statistics of
an inhomogeneous turbulent velocity field.
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Fig. 11 Correlations at
� ) �
	 � ��
 ��	 �  �� ����� � ��� �  . So-

lid (black) line: synthesized velocity field, dash-
dotted (blue) line: LES by Andersson
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Fig. 12 Turbulence kinetic energy on a line in the
axial direction at 
 ��	 � ����� �

. Dash-dotted (blue)
line: RANS; dotted (red) line: resolved spectrum
(equation 8); solid (black) line: synthesized veloci-
ties (base-line case); dashed (magenta) line: synt-
hesized velocities (no-convection case)

Far-Field Results
Due to growing hydrodynamic instabilities in the

linearized Euler solution the far-field acoustic solu-
tion is high-pass filtered. This is done by applying
a two-point Butterworth low-pass filter and sub-
tracting the resulting signal. In this way, all low
frequency information, below � � � �'6\e is damped
by the filter. Figure 14 shows time series of the un-
filtered pressure disturbance, the low-pass filtered
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in the shear layer, 
 �
	 � � ��� �

and the resulting high-pass filtered signal.
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Fig. 14 Time series of pressure fluctuation at� 
 ��	 � �
�  � ��� � � � �  . Top: unfiltered; middle: low-
pass filtered; bottom: high-pass filtered

In figure 15 the OASPL is computed at constant
radius from the nozzle exit as a function of angle
from the axial direction. Except for the offset of
e � %�� the directivity is the same for the measure-
ments and the present method.
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Fig. 15 OASPL ( ��� ) at 
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and 
 �
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for different angles � from jet axis direction. Solid
line (diamonds): present method (base-line case);
dashed line (circles): measurements

The e#g�S -octave band-pass filtered power spect-
rum of pressure from the observation point at d �SX� degrees in figure 15(a) is shown in figure 16.
One can immediately see that there is a large dif-

ference in the frequency-content between the me-
asurements and the simulation. The peak in the
measured spectra is located at � � �f�'6 . as opposed
to � � � e�6 � � e�6 a in the simulation. Also as shown
in figure 15 and evident in figure 16, the amplitude
of the far-field signal is too high in the simulation.
The OASPL is about e � %�� larger than the measu-
red data corresponding to a far-field pressure amp-
litude that is about S times over-estimated.
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Fig. 16
�(���

-octave power spectrum of pressure in
an observation point at

� 
 ��	 � �
�  � ����� � � �� . Solid
(black) line: present method (base-line case); dash-
dotted (blue) line: measurements

Evaluation of Results

The near-field two-point statistics of the synthe-
sized turbulence seems to be in good agreement
with both measurements3 and LES data.5 This is
shown in figures 10 and 11. The energy of the synt-
hesized velocity field is however too low. Yet, the
emitted far-field sound is over-predicted and has
a different frequeny-content compared to the mea-
surements. Possible sources for these inconsistent
results in the present method has been classified as
related to:

I The numerical issues in the computations

II The use of linearized Euler equations with
source terms

III The synthesis of turbulence

The numerical issues account for numerical sche-
mes, truncation of the source region and limited
spatial and spectral resolution. In the second cate-
gory one can include the use of the derived source
terms for the linearized Euler equations, instabi-
lities related to solving the linearized Euler equa-
tions in mean shear and the use of Kirchhoff ’s in-
tegral method. The third category involve, for ex-
ample the spectral model of isentropic turbulence
and the time filter (equation 16) and convection
operator (equation 18).
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The numerical issues in the computations
The numerical issues have been thoroughly

tested and are well validated. The synthesized tur-
bulence is well resolved with a shortest wave length
of � � � 2 � ] + � for which the numerical scheme in
the convection operator (equation 18) has little dis-
persion error. The numerical method used for the
convection operator is the same as for the lineari-
zed Euler equations but with a four point stencil.
The truncated source region would cause unwanted
disturbances if the source term evaluation was per-
formed all the way to the source region boundary.
This is however avoided by evaluating the source
terms only in the interior of the source region.

The use of linearized Euler equations with source
terms

The far-field solution using the Lighthill analogy
is computed using the synthesized velocity fields� �* 
�,-� , i.e. the modeled SNGR velocities, see figure
9. The Kirchhoff far-field solutions are computed
from the solution of the linearized Euler equations
using all the steps in the present methodology.
If the far-field solution is the same for both the
Lighthill analogy and the Kirchhoff integral met-
hod then the conclusion must be that the second
category of possible reasons for inconsistent solu-
tions above (the use of linearized Euler equations
with source terms) can be ruled out.

Figure 17 shows the power spectrum of the far-
field pressure computed using the Lighthill analogy
and the Kirchhoff method. The far-field spectra
are almost identical except for very low frequencies
where there is presence of disturbances in the Kir-
chhoff method solution originating from hydrody-
namic instabilities in the solution of the linearized
Euler equations. The spectral peaks are located at
the same place and the levels are the same in the
two curves.
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Fig. 17
�(���

-octave power spectrum of pressure in
an observation point at

� 
 ��	 � �
�  � ����� � � �� . Solid
(black) line: Kirchhoff method; dash-dotted (blue)
line: Lighthill’s analogy

The conclusion is that the linearized Euler equa-
tions with source terms presented here indeed pro-

duce the correct sound field associated with a spe-
cified turbulent source field.

The synthesis of turbulence
There must be some feature in the synthesis of

turbulence that gives the errors in the far-field. To
investigate the reason for this, some parameters
in the SNGR model were changed in order to in-
vestigate their impact on the near- and far-field
solutions. The following parameters in the present
SNGR method were investigated

� Length scale, � �
� Time scale, � *
� Convection set to zero
� Divergence of source field
� Neglection of energy in wavespace

Length scale
Figure 18 shows the two-point space correlation� 5�� 5 
�, 3�� 3i� � in the shear layer for two different va-

lues of the length scale parameter and the corre-
sponding far-field power spectra of pressure are
shown in figure 19. As can be seen in figures 18
and 19 the increasing length scale results in far-
field spectra with increasing energy and also a shift
in the peak in the spectral energy. The compactness
of the source field is decreased with the increased
length scale and through the source terms in equa-
tion 1, this changes the peak in the far-field spectra
and the energy of the emitted sound.
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Fig. 18 Two-point space correlation located at� ) �
	 � ��
 � �
	 �  � ��� � � ��� �� . Solid (black) line: ��� � �

;
dash-dotted (blue) line: ��� ���

Time scale
Changing the factor for the time scale from � * �

e to � * � ] result in the autocorrelations in figure
20. The far-field power spectrum of pressure for
the increased time scale case is included in figure
19. The effect of increasing the time scale of the
source field clearly increases the amplitude of the
emitted sound. However, contrary to what might
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Fig. 19 Power spectrum of far-field pressure (1/3
octave band pass filtered. Solid (black): base-line
case; dashed (blue): increased length scale; dash-
dotted (red): increased time scale; dotted (ma-
genta): no-convection case; diamonds (green): ho-
mogeneous source field

be expected, the location of the spectral peak is not
drastically modified by the increased time scale.
The time scale in the present SNGR model seems
to primarily have an effect on the compactness of
the source field but that the effect is the same for
all scales and thus not changing the spectral peak
in the far-field sound.

0 1 2 3 4 5 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

PSfrag replacements

& 
 � g 	 �
Fig. 20 Lagrangian autocorrelation (time correla-
tion in the convected reference field). Solid (black)
line: ��� � �

; dash-dotted (blue) line: ��� � �

Convection set to zero
There was some concern that the convection

operator (equation 18) would cause the same de-
correlation that has been observed in the pre-
viously proposed method described above (equation
14), see Ref. (10). The time dependence and con-
vectional operator is not the same in the present
work however and the issue needs to be investi-
gated. Figure 19 shows the far-field spectrum for
a computation where the convection in the SNGR
model has been turned off. The result is almost
identical to the base-line case suggesting that the
convection operator does not greatly change the na-
ture of the emitted sound.

Divergence of source field
One of the assumptions made in the development

of the SNGR method is that the isotropic turbu-
lence is indeed isotropic. The homogeneity assump-
tion implied in this is used to ensure that the resul-
ting velocity fields are solenoidal and thus having a
zero divergence. A velocity field that is not solenoi-
dal will have a non-zero divergence which may be a
source of sound when the velocity fields are used to
evaluate the source terms. Some of the parameters
in the SNGR model are evaluated locally (in space)
from the RANS solution. These are the turbulence
kinetic energy � , the time scale & and the length
scale

�
of the synthesized turbulence. This local

evaluation of SNGR parameters will introduce di-
vergence and the role of this divergence as a source
of sound must be investigated.

The divergence evaluated from the LES and the
synthesized velocity field in the base-line case is
shown in figure 21. Two differences between the
synthesized velocities and the LES velocities are
evident in figure 21. One is the difference in ampli-
tude and the other is the shift in the peak region
of the divergence. In the LES the divergence is
most pronounced at

� ^ a , i.e. close to the end
of the potential core whereas the divergence in the
synthesized velocity field continues to grow down-
stream from this region.

The same property is shown in figures 22 and 23
for the case of no convection and also a case with
a homogeneous source term field. The state of the
source field in the homogeneous case was chosen
to that in RANS solution at the spatial location
�� 3 �4� � 
 a 	 � 3i�'6 a 	 � � , where the turbulence kinetic
energy � is large. The divergence of the synthe-
sized velocities in the no-convection case is clearly
lower than in the base-line case. The convection
operator in equation 18 does apparently introduce
divergence in this inhomogeneous mean flow. The
decrease in the divergence is even more evident in
the homogeneous case in figure 23. This is expected
since the homogeneous case satisfies the assump-
tions made for the flow to be solenoidal. The re-
sulting far-field spectrum is plotted in figure 19 as
the diamonds (green). The divergence introduced
by not satisfying the assumptions for the flow to be
solenoidal is clearly not the source of the inconsi-
stent results between the near-field (figures 10 and
11) and the far-field (figures 15 and 16).

Neglection of energy in wavespace
The last parameter tested was the effect of the

poor resolution in the axial direction on the energy
content of the synthesized velocity field. It is clear
from figure 12 that a large portion of the energy
is neglected in the synthesized velocity field, espe-
cially in the beginnig of the shear layer where
the length scales are smaller than further down-
stream.
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Fig. 21 Divergence of velocity evaluated on a line
in the axial direction at a radius 
 � ��� ��	 � . So-
lid (black): synthesized velocities (base-line case);
dash-dotted (blue): LES by Andersson
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Fig. 22 Divergence of velocity evaluated on a line
in the axial direction at a radius 
 � ��� ��	 � . So-
lid (black): synthesized velocities (no-convection
case); dash-dotted (blue): LES by Andersson
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Fig. 23 Divergence of velocity evaluated on a line
in the axial direction at a radius 
 � ��� ��	 � . So-
lid (black): synthesized velocities (homogeneous
case); dash-dotted (blue): LES by Andersson

The effect of truncating the spectrum at the high
wave numbers is that the resulting two-point corre-
lation and the length scale become too large. This
can be seen in figure 24 showing the � -function
(longitudinal two-point correlation coefficient) for
isotropic turbulence (see Hinze11) based on the

wavespace-truncated energy spectrum, i.e. the re-
solved part of the von Kármán-Pao spectrum and
based on the same spectra but for all wave num-
bers.
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Fig. 24 � -function evaluated from the energy
spectrum (equation 8) located at

� ) ��	 � ��
 ��	 �  �
����� � ��� �  . Solid line: for all wave numbers; dashed
line: for resolved wave numbers.

In the base-line case above the parameter � � was
calibrated such that the two-point correlation in fi-
gure 11(b) would match the LES data. In doing so,
the value of the length scale parameter � � � e46 �
was determined using a velocity field computed
from a truncated spectrum. A length scale parame-
ter of � � � e46 � is consequently calibrated to a too
small value to compensate for the over-predicted
two-point correlation resulting from the truncation
of the energy at higher wave numbers.

The conclusion is that one should expect the two-
point correlations from the synthesized velocity fi-
eld to be larger than those of the LES data when a
large portion of the energy at the high wave num-
bers has been omitted.

The effect of an increased length scale factor can
be seen in figure 18 and figure 19 where the length
scale factor was increased to � �f� ] as compared
to the base-line case. Increasing the length scale
makes the synthesized turbulence less compact by
moving the energy to the lower wave numbers. This
also shifts the peak in the power spectrum of the
far-field sound towards lower frequencies, see fi-
gure 19. The amplitude of the far-field sound is
at the same time increased by the decreased com-
pactness of the synthesized velocity field. Also the
energy of the synthesized velocity field is increased
due to a better resolution of the synthesized veloci-
ties.

By using ��� � ] as in the length scale test above
and at the same time lowering the amplitude in the
time filter , i.e. � � ) � 
 e � � - � in equation 16 using� � ��6"e , the far-field solution shown in figures 25
and 26 is obtained. Observe that the calibration of
the amplitude

�
was performed so that the OASPL

would be in agreement with the measurements for
�� g 	 � 3 d � � 
 SX��3:SX� � . The far-field spectrum is in
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quite good agreement with the measured data as
well as the directivity which is within X %�� from
the measured OASPL.

The same arguments which were used for the
length scale factor and the two-point correlations
above can also be used for the time scale factor and
the Lagrangian autocorrelation. It is thus likely
that the time scale factor � * � e is too small and
should be increased to compensate for the trun-
cation of turbulence at high wave numbers. The
result in this case would be a decrease of the far-
field sound as shown in the time scale test above,
see figure 19.

A simulation using the present method with
increased time- and length-scale factors would re-
sult in an improved jet noise prediction compared
to the presented base-line case, without adjusting
the amplitude

�
in the time filter. Due to time

constraints this has not yet been performed.
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Fig. 25 OASPL at ) ��	 � � � �
and ) ��	 � � �
�

for ang-
les from jet axis direction. Solid line (diamonds):
far-field calibrated simulation; dashed line (cir-
cles): measurements
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Fig. 26 Power spectrum of pressure in an observa-
tion point at

� 
 ��	 ���
�  � ����� � � �� . Solid line: far-field
calibrated simulation; dashed line: measurements

Conclusions
A method has been presented in which a RANS

solution of a jet is the basis of synthesized tur-
bulence which in turn is used to evaluate source
terms for the linearized Euler equations. The li-
nearized Euler equations produce, when excited by

the source terms, the acoustic field connected to the
synthesized turbulence.

It is shown that the near-field statistics of a high
Mach number jet can be simulated using the pre-
sent method. Two-point statistics as space corre-
lations and Lagrangian time correlations based on
the synthesized turbulence are very close to those
of the LES. The associated far-field solution does
not agree well however, with those of the LES si-
mulations or measurements. The directivity of the
far-field sound is well predicted but the amplitude
and spectral information differ from the measure-
ments.

However, it is shown that the source terms to the
linearized Euler equations do make the equations
respond correctly to a given turbulent velocity field
and that the equations govern the associated sound
field. This confirms the results from Ref. (7).

It is further shown that the approach of calibra-
ting the near-field synthesized velocity field to the
LES solution will in fact cause the length scale and
the time scale of the synthesized velocity field to
be under-predicted. The reason for this lies in the
limitations of the SNGR method connected to the
spatial grid resolution.

A simulation using a modified length scale and
amplitude is shown to agree well with measured
far-field data. Amplitude, directivity and spectra
are close to those of the measurements, but the ge-
nerality of the method is unclear since a far-field
calibration is the basis for the obtained results.

Acknowledgment
This work was conducted as part of NFFP (Na-

tional Flight Research Program) as well as the
EU 5th Framework Project JEAN (Jet Exhaust
Aerodynamics & Noise), contract number G4RD-
CT2000-000313. Computer time at the Sun-cluster,
provided by UNICC at Chalmers, is gratefully ack-
nowledged.

References* Bechara, W., Bailly, C., Lafon, P., and Candel, S. M.,
“Stochastic Approach to Noise Modeling for Free Turbulent
Flows,” AIAA Journal, Vol. 32 , No. 3, 1994, pp. 455–463.!
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