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A rather novel approach to predict jet noise is the Stochastic Noise Generation and Ra-
diation (SNGR) method. The SNGR method uses the linear Euler equations as an acoustic
analogy together with source terms which are modeled. In other studies (Bechara1 and
Bailly2) the Euler equations on primitive form are used. In the present work the linear
Euler equations on conservative form are used. Due to this, new source terms have to be de-
rived for the conservative set of equations. A formal derivation of the correct source terms
for the linear Euler equations on conservative form is presented. Simplified versions of the
derived source terms are also developed. To validate the derived source terms a direct si-
mulation of a forced 2D mixing layer is carried out. The solutions to the linearized Euler
equations with source terms are compared to the solution of the direct simulation and show
a good agreement. All simulations are performed using Tam and Webb’s3 fourth order DRP
scheme and a four step fourth order Runge-Kutta time marching technique. Artificial se-
lective damping introduced through the numerical scheme is used to avoid spurious waves.
Absorbing boundary conditions based on characteristic variables, Engquist and Majda,4,5

are used at the free boundaries and a buffer layer is added at the outflow.

Introduction
Using a Navier Stokes solver for the near field

combined with an acoustic analogy for the far fi-
eld is quite common in aeroacoustics. There are
a variety of analogies which could be used, Light-
hill’s6 analogy for free turbulence in a homogene-
ous medium, Lilley’s analogy,7 Curle’s8 extension
to Lighthill’s analogy for the presence of solid walls
just to mention a few. Lighthill’s analogy is most
often solved as an integral solution and limited by
the assumption of sound generation and radiation
in a homogeneous medium and the same holds for
Curle’s extension to Lighthill’s analogy. Although
Lilley’s analogy does include refractional effects it
is somewhat sensitive to the way the source terms
are evaluated.9 The linear Euler equations with
source terms are not limited by the homogeneous
medium assumption and can handle refractional
effects and reflection at solid boundaries. The sca-
lar wave equation governs acoustic wave propaga-
tion but not entropy and vorticity waves. The linear
Euler equations on the other hand govern both ac-
oustic propagation as well as entropy and vorticity
waves.

This work is a part of the evaluation and de-
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velopment of the SNGR (Stochastic Noise Genera-
tion and Radiation) method originally presented by
Bechara1 and further developed by Bailly.2 The
present work focus on the formulation of source
terms for the linear Euler equations. Bailly2

use a formulation of the linear Euler equations
based on �����
	 ���
��	 �����
	 ������	������ as solution variables.
In that formulation, the source terms only en-
ter the momentum equations. The formulation
of the linear Euler equations used in the present
work is entirely based on conservative variables,
������	������
����	����������
	�����������	�������������� . In this formulation the
source terms enter not only the momentum equa-
tions but also the energy equation. The correct
formulation of the source terms for the linear Euler
equations on conservative form are derived below.
It is shown that the source terms not only depend
on the unsteady Reynolds stresses but also on uns-
teady total enthalpy. This causes some problems in
the SNGR method. In the present formulation of
the SNGR,2 only velocity fluctuations are modeled,
assuming that all other variables are constant. For
this reason different simplifications of the source
terms are derived.

The use of a forced 2D mixing layer as a test
case for different methods of sound prediction was
first presented by Colonius.9 Colonius performed a
direct numerical simulation of a free mixing layer
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forced at its first three harmonics. The results were
used and compared with Lilley’s acoustic analogy.7
Later Bogey10 made a sound prediction with LES
and Lighthill’s analogy on a free mixing layer ex-
cited by the first two harmonics. The results were
in both cases in good agreement between the direct
simulations and the analogies. To validate the de-
rived source terms a forced mixing layer is compu-
ted by direct simulation using a 2D compressible
Navier-Stokes solver. The solution from the direct
simulation provides a reference solution (time ave-
rage) and is used to evaluate the source terms for
the linear Euler equations which are solved and
the results are compared. Comparisons of the com-
putational results using the different source terms
with direct simulation of a forced free mixing layer
are presented and discussed.

Theory
In this section a derivation of the linearized Eu-

ler equations and energy equation on conservative
form with source terms is presented. The deriva-
tion starts with the Euler equations and is a rewri-
ting of the full Euler equations in a way that the
left hand side of the equations are the linear Euler
equations. The remaining non-linear terms in this
derivation are put in the right hand side and form
the source terms.

Start with the compressible Euler equations on
conservative form.

� ������
� �������� �

�
	 (1)

� ����������
�

��� � ����� � � � � ��
 ��� � ��	 (2)

� ��� ������
�

��� � ����� � � � � �
	 (3)

where ����	 ��� 	�����	 ��� 	���� � � are the density, the
�
, �

and � momentum and total internal energy per unit
volume; ��� � is the total enthalpy per unit volume.
Introducing a decomposition of the variables in a
time averaged part and a fluctuating part as

� � � � � �
��� �
���� � � � ��
� � � � � �
��� ��� ��� � � � ��
� � � � � � � � � ��

(4)

where bar denotes time averaged and prime fluctu-
ating variable. The average of for example ��� is a
Favre time average defined by

���� � ��� �
� (5)

and the double prime is the fluctuation associated
with the Favre time averaged velocity.

The momentum can be decomposed in two ways

��� � � ��� � � ����� � � � � � �� � � ����� � � � ���
��� � � �
� �� � � � � �� � � � �� � � ��� � �� (6)

� ����� � � � � � � �� � � ��� � �� (7)

The first decomposition in equation 6 is done by
time averaging ��� � and the second by Favre ave-
raging � � . Both are valid and will be used in the
following derivation. Combined they give equation
7. The same holds for ��� � and ��� � which gives the
following equalities

����� � � � � � � � � � � ��� � ��
����� � � � � � � � � � � ��� � ��

(8)

Furthermore

��� � � � � � � � � � � � � �� � � �� � � � � �� �
� � � � � ���� � � � � ��� � �� � ��� � �� ���� � ��� � �� � � ��

(9)

� ��� � � � � � � � � �� � � ��� � �� � � �� (10)

Taking the time average of the continuity equa-
tion 1 gives

� ���� �
� �������� �

�
	 (11)

Subtraction of equation 11 from equation 1 results
in the continuity equation for the fluctuations

� ������ �
� �������������� �

��	 (12)

Averaging the inviscid momentum equation 2 gi-
ves

� � �� ������
�

��� � � � �� � �� � � ��� � �� � � �� � ��
 � � � �
	 (13)

and subtracting the resulting equation 13 from 2
gives an equation for the fluctuations

� �����"! � ������� �
�

��� � �����������#! � ���� ����$! ��� � �� � � �� � � �%! � �&
'� � � ��	 (14)
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Using equation 6 on the first term and expanding
��� � � � gives

� ��������� ���� �
�

��� � ��� � ���� ���� � ��� � �� ���� � ��� � �� ���� �

��� � �� � � �� ! ��� � �� � � �� � � � 
 � � � �
	

(15)

Using equation 7 on the second term and rewriting
the resulting equation by moving all non-linear
terms to the right hand side gives

� �������
� ���� �
�

��� � � �������������� � � �������������� � ! � � ���� ���� � � � 
'� ��� �

!
�

��� � ����� � �� � � �� ! ��� � �� � � �� �

(16)

Equation 16 is the linearized momentum equation
on the left hand side with source terms on the right
hand side. That the left hand side of 16 is the li-
nearized momentum equation can be seen through
differentiation of the term ��������� as

� ����� � � � � � ��� �������
� ���������
� �

� � � � ����� � � � � � � ����� � � ! � � � � � ��� � (17)

Now we proceed to derive the linear equation for
total energy. Averaging the inviscid energy equa-
tion (equation 3) gives

� ����������
�

��� � � ��� � � � � �
	 (18)

and subtracting equation 18 from equation 3

� ��������� ���� �
�

��� � ����� �����$! ��� � ����� �
	 (19)

Inserting the expressions 9 and 10 into equation 19
keeping the linear terms on the left side and mo-
ving the non-linear terms to the right hand side
gives

� ����� � � ���� �
�

��� � ��� � � � � ���� � � � � � � � �� � ��� � �� ������ �

!
�

��� � ����� � �� � � �� ! ��� � �� � � �� �
(20)

Using the decomposition 7 and 8, equation 20 can
now be rewritten on the form

� ��������� ���� �
�

��� � � � � ����������� � � ���������� � � � ! � � � � � ������ �

!
�

��� � ����� � �� � � �� ! ��� � �� � � �� �
(21)

where the left side is the linear energy equation
and the right hand side contains all non-linear
terms. The resulting linear Euler equations with
source terms are here summarized

� ������ �
� �������������� �

��	
� ����� � � ���� �
�

��� � � �� � ����� � � � � �� � ����� � � � ! � � �� � �� � � � � 
 � � � �

!
�

��� � ����� � �� � � �� ! ��� � �� � � �� �
� ����� � � ���� �
�

��� � � � � � ����� � � � � �� � ����� � � � ! � � � � � �� � � �

!
�

��� � ����� � �� � � �� ! ��� � �� � � �� �

(22)

The linear Euler equations above, equations 22,
have been derived from the Euler equations wit-
hout approximations or assumptions of the nature
of the flow. The equations above are in fact still
the non-linear Euler equations. But if one argue
that the right hand side of equations 22 is in some
way known, then the equations on the left hand
side are the linear Euler equations. The right hand
side could for example be given by a large eddy
simulation or DNS which also provides the refe-
rence solution for the linear Euler equations. The
equations 22 would then be an analogy for acoustic
generation and radiation.

Unlike scalar wave operators, the linear Euler
equations also supports vorticity and entropy wa-
ves. This is both an advantage and a disadvantage
for the linear Euler equations as an analogy. The
advantage is that entropy and vorticity waves ge-
nerated by the source term are indeed governed by
the linear Euler equations. The disadvantage is
that this may cause instabilities. Stability analy-
sis of the linear Euler equations show that vorticity
and entropy waves can in some cases grow without
bound in the presence of mean shear. The near
field solution would then be dominated by this ho-
mogeneous solution instead of the forced solution
which is sought for. This does not necessarily mean
that the far field solution is affected by these in-
stabilities. The instabilities will not radiate sound
and contaminate the far field as long as the ac-
oustic characteristic variables are not too strongly
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coupled with the vorticity and entropy characte-
ristic variables. There were no problems with in-
stabilities in the simulations presented in the pre-
sent work but it is important to know that control
of entropy and vorticity waves may be necessary in
some flows to avoid potential problems.

Approximations of source terms
One of the purposes of this work is to evaluate

the effect of simplifications of the source terms in
the linear Euler equations. In the SNGR only the
velocities are modeled. This means that fluctua-
tions of total enthalpy and density are not known.
The first step in simplifying the source terms is to
rewrite and approximate the heat source term in
the energy equation. Begin by identifying

��� � �� ��
�
� !��� � � ��� �� � !���� � �� �
	������
� !���
� �
��� (23)

The first term can be written in terms of tempera-
ture. The first Reynolds term can be decomposed
in Favre averages of velocities and the associated
fluctuations. The last term can also be decompo-
sed and rewritten in the same manner. After some
algebra the following expression is obtained

��� � �� � ������� � � � � ��
��� � �� � �� ��� � � �� � � �� ! �� � �� � � ���� (24)

which leads to

��� � �� � � �� �

��� � � � � � � �� � � �� � � � �� � � �� � �� � � � � �� � � �� ! �� � �� � � �� � � � ��
(25)

If we neglect trippel correlations of velocities we ob-
tain

��� � �� � � �� � ������� � � � � �� � � ��
� � � �� � � �� (26)

and thus

��� � �� � � �� ! ��� � �� � � �� �� ��� ��� � � � � �� ! ��� � � � � �� � � �� ��� ��� � �� � � �� ! ��� � �� � � �� � (27)

The following notation is introduced � � � ��� � �� � � �� ! ��� � �� � � ��! � � � ��� ��� � � � � �� ! ��� � � � � �� � (28)

Then the simplified source terms for the linear Eu-
ler equations can be written as

" ��#�$&%'#�()%'$+* ��	, ��-/.0#�$1(2- � !
�

��� � �  ��� �3 #). �145* � !
�

��� � � ! � � �� �  ��� �
(29)

The next step in the simplification of the source
terms is to neglect temperature fluctuations. The
source terms are then" �5#�$1%6#�(2%7$+* ��	, ��-/.8#5$&()- � !

�
��� � �  � � �3 #2.'�&4�* � !
�

��� � � �� �  � � �
(30)

In the last step of simplifications of the source
terms fluctuations of density are neglected, i.e." ��#�$1%6#�()%7$+* ��	, �5-9.8#�$1()- � !

�
��� � ��� � �� � �� ! � �� � �� �3 #).'�&4�* � !
�

��� � � � � � � �� � �� ! � �� � �� � (31)

where the primed velocities now are fluctuations
associated with the ordinary time averaged veloci-
ties.

Numerical simulation and validation
of theory

Numerical scheme
The code for direct simulation and the linear Eu-

ler code are based on the same numerical scheme.
The convective terms are discretized with a six
point stencil. The coefficients of Tam’s3 fourth or-
der dispersion relation preserving finite difference
scheme is converted to the equivalent finite volume
coefficients. The diffusive terms in the direct simu-
lation code are discretized using a compact second
order scheme. A fourth order four step Runge-
Kutta time marching technique is used for the time
stepping. Artificial selective damping is used to
prevent spurious waves from the boundaries and
regions with stretching to contaminate the solu-
tion. The manner in which the artificial selective
damping is introduced is described in Eriksson.11

Boundary Conditions
The mixing layer consists of an upper stream

with a Mach number of :<; � 	2= > and a lower
stream with Mach number :@? ��	)= � > . At the inter-
face between the two streams a hyperbolic-tangent
profile is used as inflow boundary profile. The inlet
streamwise profile is
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����� �
� ; � � ?� �

� ; ! � ?� $���#�� � � �

�� � 	 � � (32)

where
� ; and

� ? are the upper and lower velocities
respectively. The initial vorticity thickness 
	� � 	 �
defines the thickness of the incoming velocity pro-
file, see figure 1. The velocity at the inflection point
is defined by

� � � � � ; � � ? ��
 � . The spanwise ve-
locity � � is set to zero at the inlet. The pressure
and density are constant over the inlet and are set
to normal atmospheric conditions. The Reynolds
number for this flow based on the initial vorticity
thickness 
 � � 	 � is � � � � 
 � � 	 � � �


� � � = >���� � 	�� .

The absorbing boundary conditions used are ba-
sed on local analysis of characteristic variables,
Engquist and Majda.4,5 The boundary conditions
handle radiation boundaries quite well as long as
the outgoing waves to be absorbed are not at too
high incidence angle and they are exact and non-
reflecting for waves normal to the boundary. The
amount of reflection from the radiation boundary
is very small for these boundary conditions. The
same holds for the inlet boundary. The reason
for this is that the only disturbances reaching
these boundaries are acoustic waves with compa-
rably small amplitudes. At the outflow boundary,
however, there are vorticity and entropy waves
as well as acoustic waves convected through the
boundary. The large difference in energy of the vor-
ticity and entropy waves leaving the computational
domain at the outflow compared to the acoustic wa-
ves cause a major problem. Although most of the
energy in the outgoing vorticity and entropy waves
is absorbed and only a small portion of the energy is
reflected back into the computational domain, the
reflected part comes back as acoustic waves conta-
minating the solution.

To aid the absorbing boundary conditions at the
outflow region a buffer region is applied at the last
section of the computational domain. The mesh is
also stretched in the flow direction in this region to
help attenuate disturbances through the artificial
dissipation in the numerical scheme. This method
of taking care of outgoing disturbances was suc-
cessfully used by Colonius9 and Bogey et al.10 The
term added to the governing equations is

���
��� �����
� !���� �

� 	 � ���� � � � � (33)

where

� �
� 	 � � � ��� �"!

� � ! � ��
� �"! ! � � � ? (34)

�
denotes the solution vector and �#� �"! � 	2= � ; � �

and
�
� �"! are the beginning and end of the buffer

region. The disturbance
� � is in the direct simu-

lation computed as
� ! �%$

. The term
�&$

is a time
average calculated using a low pass filter where the
average from time step ' is calculated from the ave-
rage at time step ' ! � and the solution at time step
' as

�%$( �
) �+* �%$( �-, ; ) � �+�$! * � � ( ��) (35)

where * is a number close to one (further details
below).

The parabolic shape of � �
� 	 � � ensures that the

damping term will not cause reflections into the
computational domain. The stretching of the mesh
in the buffer region is also done gradually with very
small amount of stretching at the beginning and
more aggressive once the damping term in the buf-
fer region is larger.

PSfrag replacements
Flow direction

abs. b.c.

abs. b.c.

abs. b.c. abs. b.c.
Buffer

Stretched grid

�� � 	 �

�

�

Fig. 1 Computational domain

Forcing
A two-dimensional laminar shear layer is

unstable by nature and will start to break up if
the computational domain is long enough. This
process might take some time though and the lami-
nar part of the shear layer can be quite long in the
streamwise direction. The acoustic field produced
in this process will also be more or less stochas-
tic with peaks in the spectra for the frequencies
corresponding to the natural instability frequen-
cies of the shear layer. To get better control of the
shear layer and to make it break up faster, forcing
is applied at the inflow boundary. This forcing is
done using the inflow absorbing boundary condi-
tions. The incoming vorticity characteristic vari-
able is modulated at the fundamental frequency of
the incoming profile. The resulting forcing enters
the spanwise inflow velocity component as

� ��� � � � �/.10 %'# �32 � � � (36)

where . is the amplitude of the forcing. The for-
cing is only applied in the region of the hyperbolic-
tangent profile. Since the forcing is included as
a part of the absorbing boundary conditions, the
forcing does not interfere with the absorbing pro-
perty of the boundary condition and the amount
of spurious waves created by the forcing is kept to

5 OF 9

2002–2582
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER



a minimum. An important detail is that the for-
cing added in the direct simulation is also added
in the linear Euler simulation. The reasoning be-
hind this is that unless this is done, the boundary
condition for the linear Euler simulation is not con-
sistent with the sources evaluated from the direct
simulation. The result from not using forcing in the
linear Euler simulation is growing instabilities.

Bogey10 computed the fundamental frequency
based on the instability theory of Michalke12 as

� � ��	)= ��� ��� � �
�� � 	 ��� (37)

The shear layer is forced at two frequencies. The
fundamental frequency

� � and half the fundamen-
tal frequency

� �	
 � . In this way the forcing at the
fundamental frequency will induce the creation of
vortices at a frequency of

� � which are convected
downstream by the convection velocity. The second
forcing at half the fundamental frequency will in
turn induce a process where two successive vortices
start to roll up around each other. This pair of vor-
tices will after a short period of time start to merge
and form a larger vortex. The frequency of this pai-
ring will be denoted

� � � � �	
 � and the pairing time� � � � �
� . In this work, . � 	2= � for the forcing at
the fundamental frequency

� � and . ��	2= � for
� �	
 � .

Computational Setup
The computational mesh consists of >5> � � ��� �

� � 	 � � mesh points. The physical size of the mesh
is 	
	 � 	 �

and !�� 	 � 	 � , equivalent of	�	 � 	 � 	�	 
 � � 	 � and !�� > 	 
 � � 	 � 	 � 	 � > 	 
 � � 	 �
for 
 � � 	 � � 	2= 	 ��
 ��� . The mesh is uniform in the
streamwise direction for the first � > � points with a
cell length of

� � � 	)= ��� > 
 � � 	 � . The last hundred
points are used to build the buffer region in which
the mesh is stretched and damping terms are ad-
ded to the equations. The last cell at the outflow
boundary has a cell length of

� � � � = � 
 � � 	 � . In the
spanwise direction the mesh points are concentra-
ted to the mixing region and stretched towards
the outer boundary. The minimum cell height in
the mixing region is

� � � 	)= � � � 
 � � 	 � and increa-
ses slowly to

� � � 	)= � 
�� � 	 � at � ����� > 
�� � 	 � . The
stretching continues all the way to the boundary
where the cell height is

� � � � = 	 
 � � 	 � . With a fun-
damental frequency

� � of � ������� the emitted sound
waves have a wavelength of � � 	2= � � 
 ��� which cor-
respond to ��� � � in the outer region so the propa-
gating sound is well resolved in the entire domain.
How the wavelength is related to the fundamental
frequency will be discussed when presenting the re-
sults below.

Direct Simulation
The direct simulation started with the

hyperbolic-tangent profile as initial solution.
To achieve a periodic solution the simulation was

run for 30 000 time steps at
" �"! � 	2= > which is

equivalent to 40 pairing periods � � . During this
time the low-pass filter average (equation 35) was
sampled with increasing value of the factor * . For
the last 20 periods * � 	)= ������� was used before* was finally set to � = 	 . This to ensure that the
reference solution for the buffer layer would be
representative of the true time average of the flow
in the buffer layer. The sampling of the solution
was then performed during 18432 time steps. With
a fixed time step at

" �"! � 	2= > this is equivalent
to

� � periods with � � � time steps per period.
In each time step a limited part of the solution
called the source region was saved. The source
region was defined as ! � 	 
 � � 	 � 	 � 	 � 	 
�� � 	 �
and 	#	 � 	 � 	�	 
�� � 	 � . The total amount of disk
space required for this simulation was about 30
Gigabytes and the sampling took about 20 hours
on an alpha XP-900 466 MHz processor.

Linear Euler Simulation
The linear Euler simulation used the solution

from the direct simulation as initial solution and
was performed during 18432 time steps. The time
averaged solution from the direct simulation was
used as reference solution. At each time step the
solution from the direct simulation was used to eva-
luate the source terms. After the initial disturban-
ces had left the computational domain the solutions
could be compared. This procedure was repeated
with all four sets of source terms; the full source
terms (equation 22), the temperature based (equa-
tion 29), constant temperature (equation 30) and
constant density source terms (equation 31).

Acoustic Solution
The far field acoustic solution is displayed by the

dilatation
� � � 
 ��� � . It is favorable to use dilata-

tion as acoustic variable instead of pressure. The
pressure in the direct simulation has a tendency
to fluctuate in the computation at a very low fre-
quency. The reason for this is probably associated
with the absorbing boundary conditions. This ma-
kes it hard to compare the direct simulation with
the linear Euler solutions. The dilatation is in the
far field related to pressure as

$ �
� ������ �

� ! �
�
?� ��� � � ���� � � �

� ���� � � (38)

Given that the drift in pressure is linear in time the
dilatation will show a non-zero but constant time
average. This seems to be confirmed with the re-
sults of the dilatation of the time averaged solution
which show a nearly constant and non-zero dila-
tation in the whole domain. The dilatation of the
direct simulation is thus instead compared to the
dilatation of the fluctuations of the linear Euler so-
lutions. Vorticity is used to display the near field of
the mixing layer.
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Results
Figure 2 shows a snapshot of the vorticity in the

near field and the dilatation in the far field for the
direct simulation and the linear Euler simulation
with full source terms (equation 22). The solutions
seem to be very similar. The phase and ampli-
tude also seem to be correct. Some wiggles that
are visible in the direct simulation are absent in
the linear solution. The reason for this is probably
non-linearities in the direct simulation. The solu-
tions from the linear Euler simulations using the
simplified sources (equations 29-31) are not shown
due to the fact that it is hard see any difference in
the solutions compared to the full source term si-
mulation.

a) Direct simula-
tion

b) Linear Euler si-
mulation with full
source terms

Fig. 2 Vorticity and dilatation for direct simu-
lation and linear Euler equations using the full
source terms, equation 22.

Figure 3 shows the instant pressure fluctuation
at a line at

� � � = 	 
 ��� and 	2= > 	 � 	 � = 	 
 � � for
the direct simulation and the different linear Euler
solutions. The average pressure has been corrected
for the solution to the direct simulation to avoid the
problem with the drift in the average pressure. The
phase and amplitude of the linear Euler solutions
are in good agreement with the direct simulation
except very near the mixing layer. The deviation
in this region is probably a result of the error in
the time averaged pressure. The solutions for the
different source terms are clearly very similar.

Figure 4 shows a pairing of two vortices at four
different stages. The time difference between two
subsequent figures from (a) to (d) is equivalent to
one fourth of a pairing period. The pairing takes
place at half the fundamental frequency so the pai-
ring period time is � � � � � � . During this time the
merging vortices complete one half rotation around
each other. The vortex pair is a rotating quadru-
pole and has as such four lobes. Thus, the merging
process results in one full period of sound emitted
at a period time of � � , i.e. at the pairing frequency� � of the mixing layer. The resulting wavelength of
the emitted sound is � � � �	


� � � ���2� = > � 
�� � � = > �
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Fig. 3 Pressure disturbance at �����	� 
�� 
�� , 
�� �������� � 
�� . Solid line: direct simulation; others: different
source terms
	)= � � 
 - � . It is during this time that most of the
sound is generated and emitted.

So far the results are similar to the ones achie-
ved by Bogey.10 But because the physical region in
this simulation is relatively a little longer than the
one in Bogey,10 there is room for merged vortices
to continue emitting sound as they are convected
downstream. This is evident from figure 4 where
one can see that there are two regions where more
sound is produced than elsewhere. This gives a
slightly biased directivity with two lobes in the lo-
wer and upper regions and it is especially clear in
the upper half of the computational domain.

Figure 5 shows the directivity of the time average
of the square of the dilatation. Two lobes of directi-
vity for the lower and upper regions are clearly
marked at � ����! ��>�� 	'! > � � 	 � ��� 	 � � ���5= This asym-
metry in the directivity is a result of the different
velocities in the upper and lower halves of the com-
putational domain. One can again see that there
are very small differences in the solutions for the
different source terms.

Conclusions
The exact source terms for the linear Euler equa-

tions and the inviscid linear energy equation has
been derived from the non-linear Euler equations
and inviscid energy equation. Simplifications of
the source terms have also been presented. These
source terms have been validated through nume-
rical simulations. The solutions from the direct
simulations and the solutions from the proposed
equations are in good agreement. Some differences
are present but the cause is believed to be due to
effects of the boundary conditions. The differences
are very small between the solutions from the dif-
ferent source terms. Even when the source terms
are based only on velocity fluctuations and all ot-
her instationary effects are neglected, the solution
was nearly exactly the same as for the full source
terms. This implies that the major source of sound
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a) b)

c) d)

Fig. 4 Vorticity and dilatation for direct simulation. 
���� � � � � � , ��� � ��������� � �
in this flow is fluctuations of vorticity. Whether this
is true at higher Mach numbers or with larger dif-
ferences in temperature remains to be seen.
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Fig. 5 Directivity displayed as time average of
square of dilatation at an arc around � � � ��� 
 , � � � 

with radius ��� � � 
 at angles ��� � � ��� � 
 degrees
from the � -axis and � � � � � � , � � � 
 with radius
� � � � 
 at angles 
 ��� ��� � � degrees. Direct simula-
tion, full source terms (full st); temperature based
(t-based st); constant temperature (c-temp st); con-
stant density (c-dens st).
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