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Abstract

An existing Computational Fluid Dynamics (CFD) solver is parallelized by means

of MPI. The solver includes a dynamic and adaptive grid generator for Cartesian

Quadtree and Octree grids, which therefore also have to be parallelized. The grid

generator generates grids fulfilling a specific set of rules, that have to be enforced

also in parallel. The assembly of the large sparse matrices resulting from the im-

plicit discretization of Navier-Stokes equations is done in parallel, as is the solving

process. The parallel performance of both of these processes depends heavily on a

good load balancing in order to reach satisfactory speedup. Two versions of load

balancing are demonstrated, one based on block swapping, and the other by utiliz-

ing the Metis or Parmetis software packages for load balancing of graphs. Results

are presented for load balancing and for the parallel speedup of solving the linear

algebra system of equations.
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1 Introduction

An existing serial code for generating structured computational grids based on

Quadtree and Octree structures developed at Fraunhofer-Chalmer Centre (FCC)

have been parallelized by means of MPI. The grid generator is only a small part

of a larger solver framework primarily used for fluid dynamics simulations where

it is tightly integrated and both builds the initial grid and adaptively refines it over

time. As the overall goal for the software package is to minimize the total solution

time: grid generation, matrix assembly, and solution of the equation system it does

not make sense to look at scalings with problem size and cluster size of only the

grid generator isolated. The main focus in this regard will therefore be on the load

balancing of the computational grid, and not the running time of the parallel grid

generator.

2 Load balancing

The total solution time can be divided in two parts: computation and communica-

tion. The computation time may be assumed to be proportional to the number of

computational cells, raised to some power γ ≥ 1. Communication time is assumed

to be proportional to the number of cells at the boundary of a process’ block of

cells.

Assume a homogeneous cubic grid with N3 cells parallelized on P number of

processes, where P is the cube of some natural number. In this setting each process

would be assigned a sub-cube of the computational domain. The solution time can

then be written,

Ts = α

(

N3
)γ

P
+ β

(

N3

P

)2/3

= α
N3γ

P
+ β

N2

P 2/3
, (1)

where the first term corresponds to the computation time and the second term to

the communication time, and α and β are two constants. We see that both terms

decrease with increasing P , and this is because each process only communicates

with its six closest neighbors, and there is no need to gather the result at the end.

This partition is a very idealized one that is not very realistic. In general, the

communication cost when dealing with sparse problems is proportional to the num-

ber of cells having a neighbor on another process. This becomes a topological

problem, where the assignment of blocks to processes has to take the position of

the blocks into account.

When dealing with octrees the most natural building block is a cube, which

corresponds to a node at some level of the tree. For simplicity, assume that the

computational grid is being divided into M equal size cubes, where M ≥ P . This

corresponds to taking all nodes at a given level of the octree. The task is then to

assign these cubes to processes in such a way that the total solution time is mini-

mized. In our case, synchronization among the processes will take place frequently
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so we can focus on the process with largest solution time for one iteration. That is,

TI = max
i∈[1, P ]

[α (N s
i )

γ + βN c
i ] , (2)

where N s
i is the number of computational cells in process i, and N c

i is the cor-

responding number of cell faces that have a neighbor on another process. In the

above idealized example N s = N3/P and N c = N2/P 2/3.

Given a partitioning in equal sized cubic blocks as mentioned above N s
i and

N c
i are easy to evaluate, but the number of possible partitions soon becomes very

large as M and P grows. Given that the number of computational cells in the

cubic blocks may vary considerably, M in general needs to be much larger than

P . A rule of thumb could be that the largest block of cells, where a block is the

smallest unit assigned to a process, should contain less than approximately N3/P
cells. The first term in eq. (2) may become prohibitively large otherwise, unless

the communication cost is very large compared to computation cost, i.e. β ≫ α.

2.1 Mathematical formulation

The problem of finding a partition P of the blocks minimizing eq. (2) can be stated

as the minimax problem

argmin
P

[

max
i∈[1, P ]

[α (N s
i )

γ + βN c
i ]

]

. (3)

In order to evaluate N s
i and N c

i we need to store some information about the blocks.

Let the vector ns of length M store the number of computational cells in each

block, and the matrix nc of size M×M store the number of faces at the boundary

between two blocks if they are neighbors, and 0 otherwise. Let the vector x of

length M be the solution vector that in each position stores a number in the interval

[1, P ] that states which process a block is assigned. With these definitions we can

evaluate N s
i and N c

i as

N s
i =

M
∑

k=1

ns
k δi,x(k), (4)

N c
i =

M
∑

k=1

nc
ik

(

1− δi,x(k)
)

, (5)

where δk,l is the Kronecker delta that is equal to 1 if k = l and 0 otherwise.

This type of problem is what the Metis [1, 2] package is designed to solve. By

thinking of the blocks and their connections as a graph with weights associated with

both vertices and edges the problem can be formulated in a format suitable for the

Metis package. With the above definitions of ns and nc the vertex cost is α (ns
k)

γ

and the edge cost is βnc
kl. There is another cost that needs to be taken into account,

however, when the grid is updated, and that is the cost of transferring blocks from

one process to another. There is no way of telling the Metis package which process
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a vertex initially belongs to, so the solution found may very well require that each

and every block has to be transferred to a new process. The Parmetis [3] packages

has a solution to this problem, where the cost of transferring a block can be weighed

against the extra cost of having a slightly unbalanced partition. Parmetis is in

addition parallel, which may reduce the solution time slightly compared to solving

it on the master process as the Metis package does.

2.2 Simplified load balancing scheme

In addition to the Metis/Parmetis solution described above, a simple load balanc-

ing scheme have been implemented where blocks of cells are assigned different

processes with the aim of minimizing TI in the case of β = 0, i.e. communication

time is negligible. This assumption reduces the problem to finding a partition P

fulfilling

argmin
P

[

max
i∈[1, P ]

(

N s
i −

N3

P

)]

. (6)

As an example of the load balancing an homogeneous grid in two dimensions

with side length N = 514 was created on P = 2 processes. The minimum amount

of equal sized blocks larger than P is M = 4. The largest block is of size 512×512,

there are two blocks of size 512×2 and one 2×2 block, see fig. 1(a). This results in a

very bad load balancing, as the minimax partitioning of eq. (6) gives 5122/5142 ≈
99.2% cells on one processor. By splitting the blocks into smaller pieces a better

partitioning of blocks is possible. See fig. 1(b) where 25 blocks have been created,

sixteen 128×128, eight 128×2 and one 2×2 block. By assigning these blocks to

two different processes the most well balanced partitioning has two more cells on

one process than the optimal value, 5142/2. See fig. 2 for an example of such a

partitioning. Note that this partition does not minimize the full time consumption

formula in eq. (2) as the rectangular blocks in the lower right corner are assigned

to process 1 and therefore creating unnecessary communication. Exchanging these

two red blocks with two equal size blocks from the upper row would reduce the

communication cost a little bit.

2.2.1 Implementation

The strategy implemented that attempts to solve eq. (6) is a simple block transfer

procedure, where in each round all processes evaluates how many computational

cells they are currently assigned. Initially all processes are assigned equally many

blocks sequentially. As blocks may contain different number of cells this may or

may not be a good solution. In order to balance the partition the process with most

elements and the one with least are then assigned the task to transfer a block of

cells so that the maximum cells on any single process is smaller than before the

exchange took place, and that the local balance between these two processes is as

even as possible. If a transferable block is found the loop continues until no more

block transfer gives a better solution to eq. (6). The end result is not guaranteed
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(a) 4 blocks. Note the three very small blocks on

the upper and right sides.

(b) 25 blocks.

Figure 1: Different block divisions of a 514×514 grid.

to be a true solution, but is is a local minimum with respect to the block transfer

operator, and in practice it seems to work reasonably well.

As described above the algorithm halts when no block can be transferred from

the largest process to the smallest one without increasing the unevenness of the

load balancing. The maximum number of iterations in the algorithm is determined

by the initial state and on how large the blocks are. Assuming the smallest block

is of size αN3/M , for some α < 1, and the initial partition is the worst possible,

i.e. all blocks on one process, it would take at most
(

N3 −N3/P
)

/
(

αN3/M
)

=
M (1− 1/P ) /α = O(M) transfers, as each transfer improves the quality by at

least αN3/M units.
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Figure 2: Partitioning of the 25 blocks in fig. 1(b) on two processes.
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3 Grid balancing

A requirement on the meshes generated is the so-called factor-of-2 rule, stating that

neighboring cells may differ in size by at most a factor of 2. Neighbors in this con-

text can be interpreted as either von Neumann or Moore neighbors, i.e. either Man-

hattan or Chebyshev distance of 1, depending on the discretization scheme applied.

For cell centered Finite Volume discretization it is enough with the von Neumann

neighbors, but Finite Element nodal basis functions require the Moore neighbor-

hood to fulfill the factor-of-2 rule.

This constraint implies that once a subgrid on one process has been refined,

the neighboring block has to be notified and refined accordingly. This becomes an

iterative process that stops when no part of the grid is updated.

Figure 3(a) shows a situation where the lower left subgrid has been refined in

the corner three times. This information is propagated to the lower right and upper

left block which are refined two times to fulfill the factor-of-2 rule, see fig. 3(b). In

the next iteration of the algorithm the upper right block is refined one time and the

balancing is complete for the von Neumann neighborhood, see fig. 3(c). If a Moore

neighborhood fulfilling the factor-of-2 rule is desired, the algorithm continues one

more step and refines the lower left cell in the upper right block one more time, see

fig. 3(d).
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(a) The upper right corner of the lower left block

has been refined three times.

(b) The upper left and lower right block has been

refined as a consequence of the balancing rule.

(c) The upper right block has been refined and the

balancing is complete for a von Neumann neigh-

borhood.

(d) The upper right block has been refined twice

and the balancing is complete for a Moore neigh-

borhood.

Figure 3: The different stages of grid balancing.
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4 Results

4.1 Load balancing

Figure 4 shows the distribution of computational cells in a homogeneous square

grid in two dimensions on two processes as a function of mesh size. Two partition-

ings are shown, first a naive one with a minimal number of blocks M ≥ P where

the number of cells in each block is not taken in consideration when assigning

blocks to processes. The alternative partitioning is optimized as described above

in section 2.2.1 and the number of blocks available were at least 5 per process, i.e.

M ≥ 5P . We see that the former partitioning often assigns almost all cells to one

process and close to none to the other one. The pattern resembles a sawtooth when

plotted against the total number of cells, and this is because the process with the

largest number of cells is assigned the same number of cells in each interval, until

perfect balance is reached and after that it gets all of them again.

The optimized partitioning has a worst case of about 10% more cells than the-

oretical optimum in this case with 5 blocks per cell. Splitting the blocks further

reduces this number, but has the drawback that the partitioning may be very frag-

mented, in effect introducing large communication costs if that is not taken into

account.

Figure 5 shows the same scaling, but for P = 7 processes.
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Figure 4: Least and largest amount of computational cells on a single process as a

function of grid size. Dashed line corresponds to a naive partitioning and full lines

optimized partitionings as described in section 2.2.1. Horizontal full black lines

shows worst case for the optimized version.
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Figure 5: Same as fig. 4 but for 7 processes.

Figures 6 and 7 show the load balancing for the same two cases, but for the

balancing scheme described in section 2.2.1 and that obtained by the Metis pack-

age. We see that the worst case is worse for the Metis package when it comes to

number of computational cells, but this is a simplified view as the communication

cost is not plotted.

Figure 8 shows the distribution of computational cells in a homogeneous cubic

grid in three dimensions as a function of mesh size. Two partitionings are shown,

first one obtained by the Metis package, and the other one is optimized as described

above in section 2.2.1. The number of blocks available were at least 5 per process,

i.e. M ≥ 5P . We see that, as in the two dimensional example described above,

the worst case is worse for the Metis package when it comes to number of compu-

tational cells assigned to a single process.

4.2 Paraver analysis

The program has been analyzed with Paraver which is a graphical program that

displays traces of the communication pattern. Figure 9 shows a trace of a 1500×
1500 grid parallelized on P = 7 processes, with load balancing as described in

section 2.2.1. From left to right the program builds the grid, balances it according

to the factor-of-2 rule, saves the grid to disk, performs the load balancing, and saves

it to disk once more. The first three bursts of communication are part of the grid

balancing, and the last communication is part of the load balancing. Figures 10

and 11 show the two balancing operations in some more detail. It is clear from

the traces that the first and last processes have less load than the five middle ones.
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Figure 6: Least and largest amount of computational cells on a single process as a

function of grid size. Dashed line corresponds to a partitioning obtained by Metis

and full lines optimized partitionings as described in section 2.2.1. Horizontal full

black lines shows worst case for the optimized version.
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Figure 7: Same as fig. 6 but for 7 processes.
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(a) P = 2
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(b) P = 7

Figure 8: Least and largest amount of computational cells on a single process as a

function of grid size on a three dimensional homogeneous grid. Dotted lines cor-

respond to a partitioning obtained by Metis and full lines optimized partitionings

as described in section 2.2.1. Horizontal full black lines shows worst case for the

optimized version.

This can be seen in many ways, but perhaps most apparent during the disk output

part where the first process completes about five times faster than the middle ones.

By looking at the load balancing part in fig. 11 we see that the first process is

sent four blocks from processes 2-5. The result is a much more even balance

as apparent during the final store that completes the program. In this case the

smallest process had 20.5% of the optimally load balanced number of cells before

the balance operation and 96.2% after. The largest process had 122.3% before and

105.5% after.

Figure 12 shows the communication pattern when the load balance is per-

formed by the Metis package. The grid balancing part is the same as above but

if we look closer to the load balancing part, see fig. 13, we see that it is drastically

different from the communication in fig. 11. The Metis load balancing results in

massive amounts of communication, but it can be done in parallel as it is known

in advance what the partition is. On the other hand, the load balancing described

in section 2.2.1 creates a more even load balancing in terms of number of com-

putational cells in just 4 block transfers. By comparing figs. 9 and 12 we see that

the final store to disk is less balanced for the Metis package. The smallest process

is allotted 81.6% of the optimally load balanced number of cells and the largest

process had 116.6%.
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Figure 9: Trace of the program generating a 1500×1500 grid run on 7 processes.

Blue indicates non-MPI work, red is MPI Wait() of some kind, and orange is

various collective operations. Load balancing as described in section 2.2.1.

Figure 10: Zoom on the grid balancing part of fig. 9.
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Figure 11: Zoom on the load balancing part of fig. 9.

Figure 12: Trace of the program generating a 1500×1500 grid run on 7 processes.

Blue indicates non-MPI work, red is MPI Wait() of some kind, and orange is

various collective operations. Load balancing by the Metis package.
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Figure 13: Zoom on the load balancing part of fig. 12.
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Figure 14 shows the amount of parallelism as a function of time for the load

balancing described in section 2.2.1, and fig. 15 shows parts where the program

performs useful work and where it waits for communication.

Figure 14: Number of running processes as a function of time. Load balancing as

described in section 2.2.1.

4.3 Linear solvers

A very large fraction of the total simulation time is spent solving large sparse lin-

ear algebra systems. It is therefore important to have a solver that scales good,

but it of course also has to be fast. Figure 16 shows the scaling for the GMRes

solver of the Hypre [4] package and the algebraic multigrid solver AGMG [5, 6]

for the momentum equation of a standard channel flow case. Load balancing is per-

formed by the Metis package. We see that for both solvers the scaling is good. The

Hypre solver even scales slightly super-linearly for 5 million computational cells,

which can happen due to cache effects. However, if we look at the solution time in

fig. 17, we see that Hypre performs really bad in terms of total solution time. Thus,

regardless of how good it scales it will anyway be too slow for practical use.

The momentum equation is a parabolic one, that in this case is dominated by

the convection term. This makes it relatively easy to solve in terms of how many

iterations are required to reach the desired accuracy. The pressure equation on

the other hand is elliptic and the solution is truly globally dependent on the right

hand side vector, even for moderate solution accuracies. In other words more iter-

ations are needed for convergence with a standard Krylov subspace solver without

preconditioning. In all cases presented here the stopping criteria is a norm of the

relative residual less than 10−6.
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Figure 15: Useful (dark blue) and wait (light blue) time for each process. Load

balancing as described in section 2.2.1.
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Figure 16: Solution time scaling with the number of computational nodes for the

momentum equation. Four different sizes of the system of equations are shown

with different marker types. Two solvers are shown, Hypre with full lines and

AGMG with dashed lines. The linear scaling is shown as a dash-dotted black line

without markers.
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Figure 17: Total solution time as a function of the number of computational nodes

for the momentum equation. Four different sizes of the system of equations are

shown with different marker types. Two solvers are shown, Hypre with full lines

and AGMG with dashed lines.

Figure 18 shows the scaling for the solution of the pressure equation with the

AGMG solver. The Hypre GMRes solver is not presented as it is not a realistic

example due to excessive solution time. Figure 19 shows the actual solution time.

We see that the scaling is good in this case as well, but that, especially in 2D, a few

million cells per node is required for optimal scaling. In 3D this is not an as strong

requirement, even though large systems certainly scales better.

0 5 10 15
0

5

10

15

20

Nodes

S
p

e
e

d
u

p

 

 

  5M cells
10M cells
25M cells
50M cells
Linear

(a) 2D

0 5 10 15
0

5

10

15

20

Nodes

S
p

e
e

d
u

p

 

 

  5M cells
10M cells
25M cells
50M cells
Linear

(b) 3D

Figure 18: Solution time scaling with the number of computational nodes for the

pressure equation. Four different sizes of the system of equations are shown with

different marker types. Results for the AGMG solver. The linear scaling is shown

as a dash-dotted black line without markers.
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Figure 19: Total solution time as a function of the number of computational nodes

for the pressure equation. Four different sizes of the system of equations are shown

with different marker types. Results for the AGMG solver.
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5 Conclusions

An existing CFD solver including its grid generator for Cartesian Quadtree and

Octree meshes have been parallelized by means of MPI. Grid balancing as well

as two versions of load balancing have been implemented. A cost function for the

load balancing problem has been derived and the two solutions to it have been com-

pared. The simplified version is shown to perform very well in terms of assigned

number of computational cells. When solving the systems of linear equations it

is however also important to minimize the cost of communication. The communi-

cation volume is proportional to the surface area of a process’ assigned block of

cells, and it is therefore important to assign neighboring cells to the same process

as much as possible.

The Metis [1] and Parmetis [3] takes this into account and produces cell parti-

tions suitable for solving the linear equations. The solvers AGMG [5] and Hypre [4]

are demonstrated to scale very well with the number of processors, even though

Hypre is a bit too slow for practical use. The AGMG solver is very fast on the

other hand, giving a total solution time for both the momentum and pressure equa-

tions of less than 30 s for 50 million computational cells on 16 nodes on the C3SE

cluster Beda.
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