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ABSTRACT
Numerical simulations of flow in a rotating square
duct at high rotation rates are presented.
Computation and analysis of the different terms of
the averaged momentum budget near the sidewalls
have shown the dominant mechanisms of
momentum transfer in these regions. A model for the
velocities has been developed by analytically solving
simplified versions of these budgets within the
lateral three-dimensional boundary layers. The
resulting predictions of the velocity profiles and the
boundary layer quantities are in good agreement
with present numerical results.

INTRODUCTION
Prediction and analysis of the effects of rotation on
turbulent flows have been motivated mainly by their
implications in engineering fields concerned with
flow and/or heat transfer processes in rotating
devices. Numerical and experimental studies dealing
with rotating channel flows, subjected to rotation
around an axis parallel to the spanwise direction,
have shown that turbulent mixing of fluid particles is
enhanced in the regions of the flow where the
streamwise momentum is unstably stratified with
respect to the Coriolis force (unstable side or
pressure side) while a reduction of mixing is
observed where the streamwise momentum is stably
stratified (stable side or suction side) (Johnston et
al., 1972; Kristoffersen and Andersson, 1993 and
Alvelius, 1999). It should be noted that, here, the
concept of stability is related to the augmentation
(unstabilization) or reduction (stabilization) of the
turbulence level of the flow caused by rotation. In
finite aspect ratio ducts, Coriolis force generates
persistent secondary flows, which contribute to the
mixing processes between the stable and unstable
side of the duct. Essentially, the time averaged
secondary flows consist in two large counter-rotating
cells that convect low momentum fluid from the
stable side to the unstable side across the central
region of the duct and from the unstable to the stable

side along the sidewalls (Murata and Mochizuki,
1999 and Pallares and Davidson, 2000).

MODEL
The present study analyzes the flow in a rotating

straight square duct at high rotation rates (Ω) using
the large-eddy simulation (LES) technique. The
smooth duct is rotating with respect to an axis

parallel to the z direction, ),0,0( Ω=Ω , as indicated

in figure 1. The flow, which is driven by an
externally imposed pressure gradient, is assumed to
be fully developed, incompressible and isothermal.
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Figure 1: Physical model and coordinate system. The
components of the Coriolis acceleration are also
indicated.

The large-eddy simulation (LES) technique has
been chosen to keep the computational requirements
at a moderate level. LES is based on decomposition
of the flow variables into a large-scale (or resolved)
component and a subgrid scale component. The
resolved scales and the corresponding governing
transport equations are defined by the filtering
operation. The non-dimensional filtered continuity
and Navier-Stokes equations are
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respectively.
The scales used to obtain the non-dimensional

variables are the hydraulic diameter (D) and the
average friction velocity (uτ). Pressure is scaled with
the average wall shear stress, ρuτ

2. The different
terms on the right hand side of equation (2) are, from
left to right, the imposed non-dimensional pressure
gradient along the streamwise direction, the gradient
of the fluctuating pressure, the subgrid scale
contribution, the viscous diffusion term and the
Coriolis term. Figure 1 shows the direction of the
components of the Coriolis force according to the
system of coordinates adopted. The centrifugal
acceleration, which is considered constant, is
included in the non-dimensional mean pressure
gradient. In equation (2), ∈ is the Levi-Civita´s
alternating tensor, Reτ= uτ D/ν and Roτ=2ΩD/uτ , are
the Reynolds and the rotational numbers,
respectively.

The Reynolds number based on the hydraulic
diameter of the duct and the averaged friction
velocity has been kept constant, Reτ =300, (i.e.
constant imposed pressure gradient) in the range of
rotation numbers studied (3≤Roτ ≤40). The
numerical simulations were carried out with the
CALC-LES code, a finite volume second order
accuracy code, using the localized one-equation
dynamic subgrid-scale (SGS) model proposed by
Kim and Menon (1997). The details about the code
can be found in Sohankar et al. (2000). The
computation of the SGS stresses using a localized
dynamic procedure is an important feature when
simulating rotating turbulent flows because of the
stabilizing/destabilizing effects of rotation on
turbulence. In the present simulations, the localized
dynamic SGS model predicts a negligibly small SGS
viscosity, in comparison with the molecular
viscosity, in the regions where the flow has been
relaminarized by the effect of rotation. LES of
stationary duct flow and rotating channel flow were
initially carried out and results were in good
agreement with existing experimental and direct
numerical simulation data (Pallares and Davidson,
2000)

The non-slip boundary condition was applied at
the four walls and periodic boundary conditions
were used at the inlet and outlet of the duct. The
computational domain (Lx=6D, Ly=Lz=D) was
divided into 66x66x66 grid nodes. The grid nodes
were stretched near the wall using a tanh function
and uniformly distributed along the homogeneous
streamwise direction (∆x+=29). For the Reynolds
number considered, Reτ=300, the minimum and

maximum grid spacing in the directions
perpendicular to the walls are (∆y+)min=
(∆z+)min≈0.4 and (∆y+)max= (∆z+)max≈9.

RESULTS AND DISCUSSION

Mean flow fields
In the simulations, the averaging procedure was
started when the flow was statistically fully
developed. Flow quantities were averaged along the
homogeneous x-direction as well as in time,
typically during 50-70 non-dimensional time units.
Time and x-direction averaged flow fields
progressively tended to be symmetric with respect to
z=0.5 as the sampling size was increased.
Consequently, symmetry of the mean flow field with
respect to z=0.5 was enforced in order to increase
the sampling size.

(a)

(b)

Figure 2 : Averaged cross-stream vector fields and
streamwise velocity component contours at Reτ=300
and (a) Roτ=3 and (b) Roτ=40. The vectors near the
bottom left corners have length 1.

Figures 2.a and 2.b show the average flow fields at
Roτ=3 and Roτ=40, respectively. In these figures, the
cross-stream vector fields are represented on the left



while the streamwise velocity contours are depicted
on the right. On the left part of Figures 2.a and 2.b
only every second vector is shown.

The effects of low rotation rates (0≤Roτ ≤1.5) in
turbulent duct flow at Reτ=300 were investigated by
Pallares and Davidson (2000). These authors found
that at Roτ =1.5, the turbulence intensities of the flow
are concentrated near the unstable wall (y=0) and
near the sidewalls (z=0 and z=1). The flow can be
considered laminar in the central part of the duct
where cross-stream convection of x-momentum from
the stable side to the unstable side produce the
stabilization of the flow to a Taylor-Proudman
regime (i.e., the streamwise velocity component does
not vary along the direction of the axis of rotation).
Figure 3 shows the evolution of the non-dimensional
volume averaged turbulent kinetic energy, V

K ,
scaled with the bulk velocity (Ub) as a function of
the rotational number. The important reduction of

V
K  in the range 1.2<Roτ ≤3 corresponds to the

decrease of the streamwise Reynolds stress
component which receives energy from the main
shear stresses (∂u/∂y and ∂u/∂z). For example, the
reduction of V

K  at Roτ=1.5 (Re=3900) is 48% and
at Roτ=3 (Re=3420) is 73%, with respect to the
volume averaged turbulent kinetic energy of the non-
rotating case (Re=4500). Note that the increase of
the rotational number produces a reduction of the
Reynolds number (Re=Reτ Ub) based on the bulk
velocity, if, as in the present simulations, Reτ is kept
constant (i.e., constant imposed pressure gradient
along the x-direction).

Figure 3 : Volume averaged turbulent kinetic energy as a
function of the rotational number Ro=Roτ/Ub. The values
of Roτ are indicated near the corresponding symbols. Data
from Pallares and Davidson (2000) in the range
0<Roτ ≤1.5 is also included in this figure.

The topology of the average flow field at Roτ=3,
shown in Fig 2.a, is similar to that reported in
Pallares and Davidson (2000) at Roτ=1.5. The
averaged cross-stream vector field consists in two

large stretched secondary flows near the sidewalls
(z=0 and z=1) and two small secondary cells near the
unstable wall (y=0). The increase of the rotation
number from Roτ=1.5 (Re=3900) to Roτ=3
(Re=3420) produces the enlargement of the small
secondary cells and a displacement of maxima of the
axial velocity component towards the sidewalls (see
figure 2.a). These changes in the mean flow field
near the unstable wall can be attributed to the
reduction of the Reynolds number, which produces
transition of the boundary layer near the unstable
wall.

Figure 3 shows that, in the range 7≤Roτ ≤40, the
vertical component of the Reynolds stress tensor,

2'v , is the main contributor to the unsteadiness of
the flow. As shown in figure 2.b, at the highest
rotation rate (Roτ=40) the secondary flow which
consists in two large stretched cells generates thin
three-dimensional boundary layers near the
sidewalls. These boundary layers are the major
contributors to the overall head loss of the flow as
can be inferred from the concentration of the contour
levels near the sidewalls in figure 2.b.

Averaged momentum budgets
In this section a model to predict the velocities and
the head loss produced by the three-dimensional
boundary layers developed at the sidewalls is
presented. This model is based on the analytical
solution of the simplified averaged momentum
budgets. The non-dimensional averaged x- and y-
momentum budgets can be written as,
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The different terms in equations (3) and (4) are
responsible, from left to right, for the convective,
viscous and turbulent momentum transport. The
fourth and the fifth terms are the Coriolis force and
the SGS transport. The terms on the right side of
equations (3) and (4) represent the average pressure
gradient along the x- and y-directions, respectively.

Figures 4.a and 4.b shows the terms of the
momentum budgets, as they appear in equations (3)
and (4), along the line y=0.5 at the highest rotation
rate analyzed in this study (Roτ=40). The SGS terms
make no significant contribution to the momentum
budgets shown in Figure 4 and have been omitted. It



can be seen in Figure 4.a that the imposed pressure
gradient along the x-direction is balanced by the
viscous diffusion along the z direction and the
Coriolis term. Figure 4.a allows to rewrite equation
(3) near the sidewalls as
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and in the central part of the duct as

4VRo c −≈τ . (6)

Note that the vertical velocity component is
approximately constant in the central part of the duct
(see Fig. 4) and is denoted in equation (6) as Vc,
Vc≈-4/Roτ.

(a)

(b)

Figure 4 : Averaged x- (a) and y-momentum (b) budgets
along the line y=0.5 at Reτ=300 and Roτ=40. The
corresponding velocity profiles are also included in this
figure. In figure 4.b the vertical axis for V is on the right.

Similarly, the simplified y-momentum budgets near
the sidewalls and in the central part of the duct are
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respectively. Figure 4.b shows that pressure does not
depend on z indicating that the W velocity
component is negligibly small compared with V.
Inspection of the momentum budgets at high rotation
rates and at different y positions shows that
equations (5) to (8) are valid approximations of the
complete momentum budgets in most of the cross
section of the duct, as can be inferred from the flow
topology in figure 2.b.

Rearranging equations (7) and (8), the simplified
y-momentum budget can be written as
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The boundary conditions for equations (5) and (9)
are z=0, U=0, V=0 and z=0.5, ∂U/∂z=0, ∂V/∂z=0.
The solutions to equations (5) and (9) and the
corresponding boundary conditions can be expressed
as,

( )( ) ( )( )zaezasincVzaezacos1cUU −−−−= (10)

( )( ) ( )( )zaezasincUzaezacos1cVV −+−−= (11)

where a is a constant related with the Ekman number

(Ek=ν/ΩD2), a= Ek/12Re/Ro = . Note that the
only unknown parameter in equations (10) and (11)
is the streamwise velocity component in the center
of the duct, Uc, since Vc=-4/Roτ. It can be seen in
figure 5 that the numerically predicted velocity
profiles at Roτ=40 along the line y=0.5 agree with
the analytical solutions using the value of Uc

obtained in the simulations. A similar agreement
between the analytical solutions and the numerical
results is found in the range 0.15<y<0.85.

Figure 5 : Velocity profiles along the line y=0.5 at Roτ=40.
Symbols: Numerically predicted profiles. Lines:
Analytical solutions



The use of equations (10) and (11) to predict the
velocity profiles is subjected to the validity of the
simplified momentum budgets in equations (5), (6)
and (9). These equations express the balance
between the pressure gradient terms and the Coriolis
force in the central part of the duct where the flow
has been relaminarized by the effect of rotation. At
moderate rotation rates (1.5≤Roτ≤10) the vertical
convection of x-momentum (-V∂U/∂y) contributes,
in the central part of the duct, together with the
Coriolis term (Roτ V) to balance the imposed
pressure gradient along the x-direction. For example
the ratio (-V∂U/∂y)/(Roτ V) is about 12 at Roτ=1.5,
0.9 at Roτ=10, 0.2 at Roτ=20 and 0.03 at Roτ=40.

Consequently, equations (10) and (11) can be used
to estimate boundary layer quantities for Roτ≥20.
For example, the boundary layer thicknesses defined
as the distance from the wall to the position of the
maximum velocity are for U, δU≈3πEk1/2/4 and for
V, δV≈πEk1/2/4. The ratio between the non-
dimensional secondary flow rate per unit length (QV)
pumped by the Coriolis force and the bulk velocity
is,
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where δV=0≈π Ek1/2 is the non-dimensional distance
from the sidewall to the position where V=0 (see
figure 5). In equation (12) Ub is the non-dimensional
bulk velocity (Ub= bU /uτ) and can be expressed as,
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Equation (13) assumes that the velocity profiles,
along the z direction, given in equations (10) and
(11) are valid for most of the cross section of the
duct.

Figure 6 shows the overall friction factor

(Cf=2τw/ρ 2
bU ) and the local friction factors at the

unstable (y=0, Cfu), stable (y=1, Cfs) and lateral
walls (z=0 and z=1, Cfl) as a function of Ek1/2. Local
friction factors are based on the main shear stress
averaged along the wall. Note that by definition,
Cf=Cfu+Cfs+Cfl. It can be seen that the local friction
factor corresponding to the sidewalls is the main
contributor to the total head loss at high rotation
rates. At Roτ=40, the average wall shear stress
associated with the boundary layers near the two
lateral walls is responsible for the 80% of the total
head loss.

The definition of Cfl, i.e. the sum of the friction
coefficients of both sidewalls, can be rewritten in
terms of the velocity gradient at the wall, which can
be calculated using the velocity profile given in
equation (10).
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Figure 6 : Overall and local friction factors in a rotating
square duct. Filled symbols: Overall friction factor. Open
symbols: Average local friction factors at the sidewalls
z=0 and z=1 (ο), at the unstable wall y=0 (∇) and at the
stable wall y=1 (∆). The lines show the predictions of the
friction factors of equations (14) and (17). The values of
Roτ, Ro=Roτ/Ub and Re=Reτ Ub are also included at the
top of the figure.

Figure 6 shows that equation (14) provides a good
estimation of Cfl in the range Roτ≥20 according to
the fact that in this range a balance between the
Coriolis force and the imposed pressure gradient is
established in most of the area of the cross section of
the duct.

An estimation of the overall friction factor at the
sidewalls can be obtained rewriting equation (6) as,

bU

Vc
Ro

2

1
Cf −= . (15)

The ratio Vc/Ub in equation (15) can be obtained
from global continuity of the secondary flow.
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Substituting equation (16) in (15) and using the
approximate expression for Qv given in equation
(12), Cf can be written as,
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As shown in figure 6, equation (17) underpredicts
the overall friction factor (Cf) by about a 15% in the
range Roτ≥20. It should be noted that the apparent
agreement found in figure 6 between the numerically
predicted local friction factor at the sidewalls and the



overall friction factor given in equation (17) has no
theoretical basis, following the assumptions and
procedures described above.

The final conclusions are that, at high rotation rates,
equation (14) constitutes a good approximation to
compute the friction factor at the lateral walls and
that equation (17) gives a reasonable prediction of
the overall friction factor for rotation dominated duct
flows.
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