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Abstract

The main focus of the study was to investigate the influence of at-
taching vortex generators to the surface of floor mounted cubes on the
heat transfer. The flow and heat transfer around a matrix of these
cubes was performed by large-eddy simulation, LES. The numerical
simulations were made for a fully developed turbulent flow over one
cube mounted in the middle of a matrix of surface-mounted cibes. There
was a constant heat flux generated equally from each cube of the ma-
trix. Due to the periodicity of the flow, periodic boundary conditions
were applied in both, the streamwise and the spanwise directions.

In order to study the influence of vortex generators on the flow
structures and heat transfer coefficient, the flow and the convective
heat transfer equations were solved around three different cubes con-
figurations: a smooth cube, a cube with vortex generator 1 and a cube
with vortex generator 2.

The vortex generators used in this investigation were a simple rib
(vortex generator 1) and five small cubes (vortex generator 2) attached
to the top and each of the side faces of the cube close to the streamwise
edges. The flow Reynolds number based on the bulk velocity and the
height of the channel was 13000 and the Reynolds number based on
the bulk velocity and the height of the cube was 3860.

The standard Smagorinsky subgrid-scale model was used to model
the unresolved scales and heat fluxes. The dependency of the meshes
on the results was investigated by performing two computations with
meshes having different numbers of nodes in case of the cube with vor-
tex generator 2.

The LES results were compared with the experimental results and
good agreement was found. Numerical flow visualization was used to
provide a better insight into the flow structures and the heat transfer
coefficient around the cubes. The LES results showed that the flow in
the boundary layer around the cube with vortex generators was more
turbulent and unsteady than the flow around the smooth cube without
vortex generators. More turbulent structures were generated close to
the surface of the cube resulting in a good mixing of the heat and hence
high heat transfer coefficient arises.
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Nomenclature

Upper-case Roman

A area

Cy specific heat at constant pressure

Cy Smagorinsky model coefficients

F; flux component

E energy

Gr Grashof number

Gry Grashof number based on the height of the cube, H
H height of the cube

K kinetic energy K = Julu;

L integral length scale

M Mach number

Pr Prandtl number

Pra Prandtl number of air, 0.71 (at 294 K)

Q state vector in equations on conservative form
Qij residual stresses

Q heat flow per unit time

Re Reynolds number

Rey Reynolds number based on the height of the cube, H
R gas constant

Sii strain rate tensor

T temperature

Thi bulk temperature of the incoming flow, 294 K
U, filtered velocity component

U/ subgrid-scale velocity component

Lower-case Roman

a speed of sound

s specific heat

g acceleration due to gravity
h heat transfer coefficient
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h; subgrid heat fluxes

k thermal conductivity constant

[ integral length scale

l size of a body

m mass flow rate

P pressure

D mean pressure

4 fluctuating part of the pressure

t time

u fluid velocity

u axial velocity component

Ug upstream velocity

U Cartesian components of velocity vector
Uy bulk velocity of the incoming flow, 3.86 m/s
w mean velocity

u’ fluctuating part of the velocity

Uy friction velocity

v radial velocity component

v velocity scale

VK Kolmogorov micro-scale of velocity

w tangential velocity component

T; Cartesian coordinate vector component
yt non-dimensional resolution in the wall normal direction

Upper-case Greek

At time step
A filter width
A size of one cell

AXgeparation length of the separation bubble
Aygown  height of the stagnation line

Lower-case Greek
SGs subgrid scale eddy diffusivity

o
16} volumetric thermal expansion coefficient
dij Kronecker’s delta
€
€

~

rate of dissipation of turbulent kinetic energy
specific emissivity

n length scale
Nk Kolmogorov micro-scale of length
K specific heat ratio
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i dynamic viscosity

e dynamic eddy viscosity

v kinematic viscosity (v = 1/p)

vsas Smagorinsky eddy viscosity

p density

Dair density of air, 1.16 kg/m?

o Stefan-Boltzmann constant, ¢ = 5.67 - 107%
or standard deviation of the temperature
T time scale

TK Kolmogorov micro-scale of time

Tij subgrid scale stress tensor

Tw wall-shear stress

Abbreviations

CFD Computational Fluid Dynamics
DNS Direct Numerical Simulation
FVM Finite Volumes Method

LES Large Eddy Simulation

RANS Reynolds Averaged Navier-Stokes
SGS Subgrid Scale

TDMA  Tridiagonal Matrix Algorithm

VG Vortex Generator
VG1 a simple rib as Vortex Generator
VG2 small cubes as Vortex Generator
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Chapter 1

Introduction

When electronic components are attached to a printed circuit, they, un-
der concentrated heat dissipation conditions, act as a strong source
of heat which might cause local overheating. It is generally believed
that local overheating of integrated circuits (IC) is the major cause for
the technical failure of electronic equipment. Hence, finding a way for
an efficient heat removal from these components is crucial to ensure
steady reliable long-term operations.

The production and development of a new generation of power-electronic
components is controlled by the efficient design to remove the heat gen-
erated by these components.

In general the heat removal from an integrated circuit depends very
much on the flow structures around it. The electronic component is
a bluff body that produces flow with separations. The flow around an
integrated electronic circuit can be approximated to be similar to the
flow around a cube mounted on a surface.

Previous investigations of the flow around a surface-mounted cube found
that different kinds of flow instabilities give rise to different flow struc-
tures around the cube.

At low and moderate Reynolds numbers, the flow separates from the
side of the cube to form separation bubbles. The flow inside these bub-
bles circulates and it might be raped in its place if the bubbles are
steady. The shear layers between these separation bubbles and the
exterior fluid are highly turbulent and this gives rise to the so-called
Kelvin-Helmholtz flow instability. This flow instability is responsible
for shedding of vortex tubes in a regular fashion to the wake flow be-
hind the cube, distortion of large scale vortices, production of small
scales and eventually transition from laminar to turbulent flow. There
is also flow instability in the wake flow behind the cube which is asso-
ciated with the shedding of large scale vortices from the recirculation
region to the far wake flow.
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This flow instability is controlled by the flow Reynolds number and
hence the high frequency mode in the shear layers between the re-
circulation region and the exterior fluid. The dominated shear layers
around the cube make the flow structures very complicated.

Different numerical methods have been used in the past to study the
flow around a single cube mounted on a surface. Krajnovi¢ and David-
son [1] and [3] used large-eddy simulation to investigate the flow struc-
tures around a surface-mounted cube in a fully developed channel flow.
They used different techniques to visualize the flow. In their simula-
tion, the Reynolds number was 40000 based on the incoming mean bulk
velocity and the cube height. They found that the flow separates from
the surface of the cube on the lateral and the top side faces of the cube.
They visualized a horse-shoe vortex attached to the mounting surface,
as shown in figure 1.1.

Figure 1.1: Streamlines of the mean flow projected onto the channel
floor, Krajnovi¢ and Davidson [1]

Cone-like vortices are formed on the top-side face. These complex-flow
structures are obtained using different flow simulations. The results
are in a good agreement with the experimental results of Martinuzzi
and Tropea [4], having done measurements in a low-speed wind tunnel.
Yakhot et al. [5] studied the same cube at the relative low Reynolds
number of 1870, based on the incoming bulk velocity and the cube
height, using Direct Numerical Simulation (DNS) and they got simi-
lar flow structures.

The local heat transfer around such a wall mounted cube was also sub-
ject of some studies. Nakamura [6] experimentally discovered the heat
transfer of a cube oriented 45 ° to flow direction to be lower than of a
cube oriented perpendicular to the flow at the range of Reynolds num-
bers 4.2 - 10 — 3.3 - 10%.
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The turbulent flow around multiple cubes is even more complicated.
The wake structures from one cube interact with the structures of the
other cubes and the mounting surface. The flow is characterized by
the complex interior topology which induces the flow to separate and
recirculate locally between the mounting surface and the cubes. The
shedding of the large scale structures in the wake flow depends mainly
on the flow Reynolds number and on the separation distance between
the cubes. The flow structures, however, are highly unsteady and three-
dimensional.

At present, there are remarkably few studies on local heat transfer
around multiple three-dimensional objects. Meinders and Hanjali¢ [2]
experimentally investigated the influence of the relative obstacle posi-
tion on the convective heat transfer from a configuration of two wall-
mounted cubes located in a fully developed turbulent channel. They
found that the crucial parameter that influences the flow pattern and,
consequently, the heat transfer is the longitudinal spacing between the
cubes. Meinders and Hanjali¢ [7] also investigated experimentally a
matrix of equidistant cubes mounted on one of the walls of a plane
channel. Their investigation provided reference data on flow and heat
transfer relevant to electronics circuitry. The investigations were done
on an internally heated cube that was placed in the middle of the ma-
trix of identical but non-heated cubes; all mounted on a constant tem-
perature channel wall (See [7] and [8]). The surrounding cubes on the
matrix ensured a fully developed flow with periodic boundary condi-
tions. Due to the well-known boundary condition and its computational
simplicity, their case and data are considered the bases for many of
computational fluid dynamic simulations to get insight into the physics
of the flow structures and heat transfer. Cheng et al. [9] and Zhong and
Tucker [10] used the experimental data of Meinders and Hanjali¢ [7] to
compare different simulation techniques (large-eddy simulation (LES),
standard k£ — ¢ Reynolds-Averaged Navier-Stokes (RANS) and £ — [
based hybrid LES/RANS). RANS simulation for flow with large scale
unsteadiness was found not to perform as well as hybrid LES/RANS.
LES calculations reproduced the complex features of the fully devel-
oped flow better than RANS calculations, but the associated computa-
tional cost and time were much bigger.

Despite that many attempts have been done in the past to understand
the physics of the flow around single or multiple cubes very few at-
tempts were performed to find a way to enhance the heat transfer from
the cubes.

In this study, we investigate the influence of altering the turbulent
boundary layer on the surfaces of the cubes on the enhancement of
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heat transfer. This is done by generating small vortices on the surface
of the cube using different vortex generators. The vortex generators in
the present work are a simple rib and small dices mounted on the top
and the side faces of the cubes. The Reynolds number of the flow is
13000, based on the incoming bulk velocity and height of the channel.
The objective of the present work is to employ LES to investigate the
influence of the vortex generators on the flow structures and the local
heat transfer coefficient.

1.1 Vortex Generator

A vortex generator (VG) is a small device that influences the flow around
a body. It creates small vortices and affects the flow separation. Vortex
generators are used to delay the flow separation to control the bound-
ary layer and to decrease the drag coefficient of vehicles (see [11] and
figure 1.2 (a)). Very often VGs are used in aircraft at the wing as shown
in figure 1.2 (b) to increase the lift coefficient by having less flow sep-
aration and therefor less air resistance. VGs can also be found in gas
turbines to reduce the pressure drop. Another application of vortex

(a) VG at a cars back side [12] (b) VG at the wing of an airplane [13]

Figure 1.2: Examples for vortex generators

generators is to enhance the heat transfer of a cooling surface. Here
it is highly desired to have turbulent boundary layers that imply high
mixing of the fluid particles. This could be arranged by the small scale
vortices produced by the vortex generators, and in fact leads to a better
convective heat transfer than without vortex generators. For this pur-
pose the vortex generators should be tiny bluff bodies attached to the

4
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cooling surface at the position where separation of the flow would start
without them.

In case of multiple cubes behind each other, vortex generators could
also change the size of the recirculation region in the wake of one cube
and therewith it could change the incoming flow for the next cube.



Franziska Spehr, Numerical study of passive flow control on the
cooling of a matrix of surface-mounted cubes using LES




Chapter 2

Turbulence

2.1 Introduction to Turbulence

Turbulence is the natural state for many flows. It differs from laminar
flow in the way that its attributes like velocity or pressure are fluctuat-
ing in both, time and space. There is no precise and unique definition
of turbulence, but one can see turbulent flow as a tangle of vortices.
The turbulent motions are often generated in the flow as a result of
the three-dimensional flow instabilities. These instabilities are concen-
trated near the solid boundaries and behind bluff bodies. That is why
the turbulent flow starts first in the boundary layer and then spreads
to the external flow. That could be seen by studying transitional flow
over a flat plate for instance. In case of bluff bodies, the flow instabil-
ities and hence the transition to turbulence depends on the size of the
body [, the velocity of the fluid u, and the kind of the fluid, which is
described for example by the kinematic viscosity v. These properties
can be combined together to obtain the Reynolds number Re:

U |

Re = (2.1)

14

By increasing the Reynolds number, the flow behind the body becomes
more and more likely a turbulent flow. Figure 2.1 shows the flow struc-
tures around a circular cylinder at different Reynolds numbers. At very
low Reynolds numbers, the flow is laminar everywhere and the flow in-
stability, due to the existence of the cylinder, is too small to generate
turbulent flow (see figure 2.1 (a)).

By increasing the Reynolds number, an adverse pressure gradient arises
at the surface of the cylinder. Due to this adverse pressure gradient,
the flow is likely to separate from the surface of the cylinder. The sep-
aration happens, if the inertia of the flow, the convective part in the

7
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Navier-Stokes equation (2.9), is not high enough to overtake the ad-
verse pressure gradient. Owing to the flow separation, the flow insta-
bility is strong enough to initiate turbulence in the wake (see figure 2.1
(b)). At that point, the flow is turbulent only in the wake of the cylinder
but laminar upstream and in the boundary layers.

At high Reynolds numbers, the flow separates from the surface of the
cylinder and it is completely turbulent in the wake and in the boundary
layer (see figure 2.1 (c)).

The critical value of Re for the flow to develop a fully turbulent wake is
about 10°.

—/_\
UO_/\ /% ) )
—\)—/x > \// —\_/
(a) low Re (b) medium Re (c) high Re

Figure 2.1: Flow around a cylinder at different Reynolds numbers Re

The point where the flow separates from the surface is called the
separation point. The position of this point on the surface of the cylin-
der depends mainly on the flow Reynolds number. Depending on the
shape of the bluff body, the flow may form a separation bubble and reat-
tach to the surface. The separation bubble is the region that enclosed
the flow between the separation point and the reattachment point. The
separation bubble is always associated with low pressure inside the
bubble. Moreover the temperature of the flow in the separation bub-
ble is higher than the surrounding flow temperature if the separation
occurs next to a heated surface. This is because of some of the high tem-
perature fluid might be trapped and circulating inside the separation
bubble.

In case of high Reynolds number flow, there exists a broad spec-
trum of length scales. The largest vortices in the flow are characterized
by the size of the body that created them. This is called the integral
length scale [. The big scale eddies take their energy from the mean
flow. They are unstable and they break up into smaller scale eddies,
which themselves are unstable too, and they pass their energy to even
smaller scale eddies. This is called the energy cascade and it is shown
schematically in figure 2.2. The wide field of length scales 7 in the
turbulent flow ranges from the integral length scale [ to the smallest
length scale of the flow.
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Production of Energy flux » Dissipation of
large eddies small eddies
& & ¢
o 3
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o e
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1
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containing range ! range

. 1/ (eddy size)

Figure 2.2: Energy cascade of a turbulent flow

Besides the length scale 1 there are two other scales of the motion, the
time scale 7, the time which needs an eddy to turn over and the velocity
scale v, which is v = n/7.

In the energy cascade, the viscosity plays no important part, as long
as Re = “1 >> 1. At those high Reynolds numbers the viscous forces
can be neglected compared to the inertial forces, but when the vortex
becomes small enough, the viscous forces are significant and the eddy
disappears at the end. The energy of the vortex never disappears, but
it is converted to internal energy of the flow by rising its temperature.
The size of the smallest scales of the motion were described by Kol-
mogorov (1941). He premised, that they only depend upon the dissipa-
tion of kinetic energy ¢ and the kinematic viscosity ». The Kolmogorov
microscales are:

Nk = (V3/€)1/4, TK = (1//6)1/2, Vg = (V€)1/4. (2.2)

Close to the solid boundaries, the scales of the flow are very small
and they are of the same order of magnitude as the Kolmogorov mi-
croscales. The Reynolds number based on the turbulent scales in that
region is very small and the dissipation of kinetic energy is very high.

2.1.1 Incompressible Flow

If the density p of all fluid particles is constant, then the flow is called
incompressible flow. This does not imply that the density is the same

9
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everywhere in the fluid. The density may be varying in space and time,
but it must do so in precise way.

Dp  0p JOp

—r_ZF i 2.3

Di o Ox; ’ (2:3)
where ¢,u; and z; are the time, velocity of the flow and coordinates,
respectively. No fluid is truly incompressible, but one may say a flow
is almost incompressible, if the density variations of the fluid particles
are negligibly small compared to the variation of flow velocity.

@ ou

o << ar (2.4)

To decide whether to treat a flow as incompressible or not, the dimen-
sionless Mach number M is useful. It compares the fluid velocity with
the speed of sound,

- fluid velocity _ zi. 2.5)
speed of sound a

For ideal gas,

a:HB:VFQRT
p

and equation 2.5 can be written as:

u

VK T’

where « is the ratio of specific heat, R is the gas constant and T is the
temperature.

For M < 0.2, the flow is incompressible and subsonic. Thus one can say,
the flow of liquids or gases is incompressible, if their velocity is small.
The flow in ventilation ducts and the flow around automobiles can be
considered to be incompressible and subsonic, for instance.

M = (2.6)

2.1.2 Governing Equations in Fluid Dynamics

The conservation laws can be applied to fluid dynamics to deduce equa-
tions governing the motion of the flow.
The continuity equation can be derived from the law of conservation

10
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of mass, detailed explanations can be found in the book “Stroemu-
ngsmechanik” [14].
Using the Cartesian tensor notation, the resulting equation is:

dp  9(pus)
ot om

=0, i=1,23. 2.7

For incompressible and Newtonian flow equation (2.7) can be written
as:
8ui

8lll'i
The principle of momentum conservation can be applied to the same

fluid to deduce the momentum equations (Navier-Stokes equations). It
can be written as a nonlinear partial differential equation:

=0. (2.8)

ou; ou; 1 dp 0*u;

ot ]813]' p@xz 8@8@-

where p is the instantaneous pressure. The kinematic viscosity v and
the dynamic viscosity ;. are connected over p as follows:

(2.9)

v=u/p. (2.10)

The conservation of energy yields to the following equation for incom-
pressible flow, neglecting heat transfer by radiation:

aor aT v 0T 1

— , = — —€i 2.11
ot T Ox; Pr 0z;0x; + 06] ( )

where c is the specific heat capacity, which is a quantity of the fluid.
The specific heat capacity c for air is about 1.005 kgLK. The variable ¢
represents the dissipation of energy. It is defined as:

Ou; Ou;

v 8xk 8xk .

(2.12)

€ij:2

The properties of turbulent flow seem to fluctuate randomly. Statistical
approach can be used after decomposing the flow into a mean part and
a fluctuating part.

ul
P,

+
+
+1Tr .

I
N3

u
p
T

In many cases, it is easier to analyse time averaged flow and to compare
modified flow situations, while the instantaneous flow already differs

11
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for the same flow problem over the time.
The time average of a flow variable as f(Z,t) is defined by

1 t+At
f(Z,t) = AltlinOO E/t f(& t)dt. (2.13)

Using the decomposed variables of the flow, the continuity equations
and the momentum equations can be written as the Reynolds averaged
Navier Stokes equations:

8@- 8u’-
=0, —=0 (2.14)
8.731' ’ (91;1
and
=p
ou; ou; ap 0 ou;
U; __Ou; P U; 7
+ U, —— — — +— 1% — U, U, .
P ot P49 B an Ton," " o, puity )
~—— N—— S—— —— N——
time dependence convection pressure term viscous stress Reynolds’stresses’
(2.15)

The last term in equation (2.15) are the turbulent Reynolds stresses
(—W). This term represents the influence of the turbulent motion on
the averaged flow. There are no fluctuating scales in equation (2.15)
since it is an equation for the averaged motion, however that makes
it useful in studying turbulence. Due to the fact that the Reynolds
stresses are unknowns, there are less available equations than de-
manded variables. Hence the big problem of equation (2.15) is a closure
problem.

Neglecting the dissipation, the energy equation for time averaged flow
can be written as:

oT T _ o v T
ot Oz, N Oz, “Pr Ox;

Tu); 4+ T'u; + T'u)))

o v aT _
" Oa; [P—ra_xj = (Tw; = Twy)]. (2.16)

The letters Pr stand for the Prandtl number, which is a dimensionless
quantity of the fluid. It describes the ratio between the kinetic viscos-
ity to the conductibility of temperature.

12
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2.2 Heat Transfer

There exists three different modes of heat transfer, conduction, radia-
tion and convection.

e Conduction
The conductive heat transfer is thermal diffusion due to the molec-
ular motion inside solids, liquids and gases. The direction of the
heat flux corresponds to the temperature gradient and is always
from higher temperature to lower temperature on account of the
second law of thermodynamics. The heat flow per unit time () in
xz-direction through the z-normal Area A, is:

. T
O——ka L 2.17)
dx
where k is the conductivity constant that depends on the nature

of the material and its temperature.

e Radiation
A body with the temperature 7" emits over its faces of the area A
to the environment with the temperature 7, the following heat
per unit time:
Q=0ceA(T*—T2), (2.18)

with the Stefan-Boltzmann constant ¢ = 5.67 - 1078 mg‘;(4 and the
specific emissivity ¢ < 1.

e Convection
The convective heat transfer happens due to the transport of par-
ticles in a flow, that are carrying their kinetic energy along. The
convective heat transfer equation is:

Q =hA(T - Ty), (2.19)

with the heat transfer coefficient .

A distinction is made between free or natural, and forced convec-
tion.

Free convection explains motions of the fluid driven by buoyant
forces that result from density differences. The density gradients
are caused by temperature variations in the fluid.

The term forced convection refers to heat transport that results
from fluid motion caused by external means such as a pump, a
fan, or atmospheric winds for instance.
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Chapter 3

Numerical Methods of Flow
Simulation

Direct Numerical Simulation (DNS), Reynolds-Averaged Navier Stokes
Simulation (RANS) and Large Eddy Simulation (LES) are methods to
numerically solve for the pressure p, the velocity u; and the tempera-
ture T of the fluid in space and time.

3.1 Direct Numerical Simulation (DNS)

Doing Direct Numerical Simulations (DNS) means to numerically solve
the governing equations of the flow to generate the exact instantaneous
motions in a computer. These equations are the Navier Stokes equa-
tions (2.9), the continuity equation (2.8) and the energy equation. In
case of incompressible flow is the energy equation not coupled with the
continuity equation and the momentum equation. It is possible to first
solve them and afterwards the energy equation using the results of the
mean velocity field and the mean pressure to obtain the temperature
field. In contrast, for compressible flow are these equations coupled
and should be solved together.

We do not need any assumption or simplification for DNS, since we
have as many equations as unknowns (u;, p, and 7). The problem of
the DNS is, that the minimum vortex size that can be obtained from
the numerical simulation is the size of the cell Az. So to resolve all the
scales of the flow, the cells should have the same size as the smallest
scales in the flow, the Kolmogorov dissipation scales,

N ~ 1+ Re™3/*,
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where [ is the integral length scale and Re is the Reynolds number
based on the integral scales.

The number of cells needed for DNS increases with the Reynolds num-
ber. The time step At required for DNS should be very small to resolve
the flow in time. There are two factors that control the choice of the
time step. It should be smaller than the Kolmogorov time scale 7 and
in order to maintain numerical stability and accuracy, the time step
should be small enough, that the fluid particles do not move more than
one grid spacing in each time step. This yields:

At = min(rg, £2).

Therefore DNS is restricted to low or moderate Reynolds numbers. For
high Reynolds numbers, the flow is dominated with very fine structures
associate with very small scales. The total number of cells needed to
resolve all the scales is very high and hence the computational cost too.
This makes DNS not feasible nowadays to solve high Reynold’s number
flow.

At low Reynolds numbers it is a useful tool in fundamental research
of turbulence. Using DNS, one can perform "numerical experiments”,
and extract from them information difficult or impossible to get in the
real laboratory, allowing a better understanding of the physics of tur-
bulence.

However even if our computers were able to solve a more complicated
flow in an adequate time, sometimes we would need to average the
huge random data in order to understand turbulence.

It may sound easier to average the governing equations in the begin-
ning and (2.9) and then to solve them afterwards. That could be done
by simulating Reynolds-averaged Navier-Stokes equations (RANS).

3.2 Reynolds-Averaged Navier-Stokes (RANS)

In the Reynolds-Averaged Navier-Stokes equations (2.15), there are six
extra terms, that take the fluctuating of the flow into account. These
terms are called Reynolds-stresses. Hence there are more unknowns
than equations. This is a manifestation of the closure problem and the
reason why we need turbulence models.

There exists mainly two different kinds of turbulence models, the turbulent-
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viscosity models and the Reynolds-stress models.

The turbulent-viscosity models act on the assumption that the Reynolds
“stresses” could be acquired analogously to the viscous stress term, be-
cause it also resists the flow motion some how. This leads to:

0w o,

B 2

3

Zj

Here §;; is the Kronecker’s delta, defined as:

1 ifi=j
0ij .
0 otherwise |,

and K, the kinetic energy is:

The second term on the right hand side of equation (3.1) is to balance
the equation when i = j.

The turbulent dynamic eddy viscosity u; has to be modelled, it is not
a property of the fluid, but a feature of the flow. It is not constant but
it depends on position and time. Some models describe this with alge-
braic equations and some use partial differential equations.

The Reynolds-stress models characterise all the six terms separately
by differential transport equations.

3.3 Large Eddy Simulation (LES)

Large eddy simulation (LES) decomposes the structures of the flow into
large and small scales. The large motions of the flow are directly sim-
ulated but the influence of the small scale motions on the large scale
motions are modelled. Hence LES is a kind of compromise between

RANS and DNS.

The attributes of the coarse and the fine structures can be described
as follows (quoting [15]):

17



Franziska Spehr, Numerical study of passive flow control on the
cooling of a matrix of surface-mounted cubes using LES

coarse structured turbulence | fine structured turbulence

affected by the geometry of the flow | universal

inhomogeneous homogeneous
anisotropic isotropic
long-lasting short-lasting
diffusive dissipative
difficult to model easier to model

The table above includes Kolmogorov’s assumptions from 1941 about
the energy cascade. These attributes are the reason, why it is useful to
model only the small structures and simulate the big ones.

LES consists of four conceptual steps:

@)

(ii)

Filtering
In this step, the actual velocity u;(Z,t) is decomposed into a fil-
tered part and a subgrid component of velocity.

u(#,t) = Ui(7,t) + Ul(Z,t) : (3.2)

filtered component subgrid—scale component

where U; represents the motion of the large eddies and U/ is the
residual velocity field.
The temperature 7 is filtered as well:

T(Z,t) =T(Z,t)+ T'(Z, ).

Solving the filtered velocity field

The equations for the large scale eddies can be derived from the
Navier-Stokes equations by inserting equation (3.2) and filter-
ing that afterwards. It is analogously to the derivation of the
Reynolds averaged Navier-Stokes equation, noticing that in gen-
eral the filtered subgrid velocity does not equal zero and second
filtering yields a different result from the first filtering:

Wi#Oandi#E.

The filtered continuity and momentum equations for incompress-

ible flow are: o
ou;
aZL'i N

0, (3.3)
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(iii)

and
U,  O(U;U; + UU! + UlU; + U;U}) op oU;
_ . (34
Por TP oz, ou Fanor, GY

The numerator of the second term in equation (3.4) can be refor-
mulated as:

(U;U; + UU; + UU; + GUS) =
~0 :gij
UU;+UU; —UU; + ulu; + U/U; + UU; = um;. (3.5)

Leonard stress SGS Reynoldstress crosstermstress

If the Leonard stresses are neglected in equation (3.5), then equa-
tion (3.4) can be written as:
ou; ~ oU;U; op 0 oU;

"ot TP or, T om +8x](8]

Q) (3.6)

where ();; are the residual stresses defined as:

Qi = UlU} + UU; + U;U} = wu; — U,U; .
Similarly, the filtered energy equation arises as:

8T 0 v 0*T Oh;

ot ax] 5z, \UiT) = Pr O0x;0x; Gx]

(3.7)

Here is h; the unknown subgrid heat fluxes. They are defined as:

hj:UjT UT

modelling the residual stress tensor and the subgrid heat
fluxes

The turbulence models for the residual stresses are analog to the
models used for the Reynolds stresses by RANS. The most sim-
ple one is proposed by Smagorinsky 1963, it neglects not only the
Leonard-stress, but also the cross term stress. It models the SGS
Reynold stress analogously to the eddy viscosity models.

Qij = UjUj = 2wsasSi (3.8)
where S, is the resolved strain rate tensor, defined as:

g_laE oU;
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(iv)

and vggg is the subgrid scale viscosity that can be written as:

vsas = (Cs A)*1/28;;S;;. (3.10)

Here Cs is the model constant that is often called Smagorindky’s
coefficient and ranges from 0.1 to 0.2. The subgrid scale A is the
cubic root of the volume of the cell, A = (A;A;A3)'/3. Tt should be
about the same magnitude as the filter width.
Using the Smagorinsky model, the subgrid heat fluxes can be
written as: _

hj = _O-/SGSS_T . (311)

J

Here, agqg is the subgrid scale eddy diffusivity and using Prggg
for the subgrid Prandtl number, it is defined as:

_ vsas 1 2 [0 T
asgs = PTSGS — PTSGS (CSA) QSZ]SZ] . (312)

More information about subgrid-scale modelling can be found in
[16], [17] or [18].

numerically solve for the large eddy velocity
The last step is to solve the filtered equations (3.6) and (3.7 to get
the large eddy velocity field U; and the Temperature 7.

The computing cost for LES is very low compared to that for DNS, since
one does not resolve all the turbulent scales in the flow. Contrary, in
DNS all the scales down to the Kolmogorov scales should be resolved.
In LES, the smallest scales are modelled and the grid spacing is ade-
quate being slightly smaller than the size of the smallest energy con-
taining motions.

Of course, the computational expense of LES is higher than for RANS,
but one can expect LES to be more accurate for flow in which large scale
unsteadiness is significant. The large scales dominate the transfer of
momentum, heat and chemical pollutants.
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Chapter 4

Numerical Details

Large eddy simulations are made for the heat transfer and flow around
a heated cube placed in the middle of a matrix of several cubes. Dif-
ferent simulations have been performed to investigate the influence of
attaching vortex generators to the surface of the cube in the flow field
and the heat transfer. This chapter describes the numerical details of
the simulations. The size and design of the vortex generators and the
computational meshes are explained.

4.1 Physical Model

The physical model is a heated cube placed in the middle of an equidis-
tant matrix of surface-mounted cubes as shown in figure 4.1.

A -Computationa\y

ROOF

J /
l FLOOR

Figure 4.1: Central part of the Matrix of cubes mounted on a wall

The matrix of cubes is placed on one of the walls of a two-dimensional
channel. It consists of a total of 25x10 cubes in the streamwise and
spanwise directions, respectively. The side length of the cubes, H, is
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15 mm. The height of the channel is 51 mm (3.4H). The distances be-
tween the centerlines of the cubes in the streamwise and the spanwise
directions are 60 mm (4H).

4.2 Computational Domain and Boundary
Conditions

The size of the computational domain is 44 x 3.4H x 4H as shown in
figure 4.2. Similar to the experimental setup of Meinders and Hanjali¢
[2], the test cube is chosen to be in the middle of the matrix of cubes
where the flow is fully developed in both the streamwise and the span-
wise directions. Due to the periodicity of the flow around the cubes,
periodic boundary conditions are applied in the streamwise and the
spanwise directions for the velocity field. No-slip boundary conditions
are employed at solid the walls.

< 4H >
4H — Isolated roof
A .
FLOW Y F|LOW>
3.4H il Tx
v ! > Isolated floor

¥Z  \-Heated cube

Figure 4.2: The computational domain

The z- and y-axis are taken in the streamwise and floor-normal direc-
tions, respectively while the z-axis denotes the spanwise direction. The
coordinate system originates at the channel floor, where the center of
the grounded edge of the cubes windward face is located, as shown in
figure 4.2. The bulk velocity u;; of the incoming flow is 3.86 m/s. It is
the velocity of the mean flow, defined as:

1
(Ai)

Here A, is the area of the channel inlet, 3.4H x4H, and u(Z) is the time-
averaged velocity at the inlet of the cahnnel.
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This yields to the value of the Reynolds number of 13100, based on the
incoming bulk velocity and the height of the channel. If the Reynolds
number is based on the size H of the cube, then its value is 3860. The
density of the air is 1.16 kg/m?® and its dynamic viscosity is 1.5x 107> m?/s.
A constant mass flow rate 1 of 0.0137 kg/s is passing the sub channel.
The value of the Prandtl number of the air is 0.71.

4.3 Heat Transfer between the Cube and
its Environment

The different modes of heat transfer, as conduction, radiation and con-
vection, are described in chapter 2.2. This section here is about the
specific details of the cooling cube and its heat transfer with the envi-
ronment.

The rate of heat dissipated from an individual cube to the air, Q, is
constant and equal to 2 Watt. It implies a constant heat flux of 1777.8
W/m? through the cubes surfaces. This makes the temperature rise
between any two successive cubes to be constant. Periodic boundary
conditions for the temperature and temperature rise are applied in
the spanwise and streamwise directions, respectively. The investigated
model includes heat transfer in a periodically repeating geometry and
since the thermal boundary conditions are of the constant wall heat
flux type, periodic thermal conditions may be established, referring to
the fluent6.2 documentation [19].

The bulk temperature 7;; for the incoming flow is 294 K. It is defined
as a temperature average, that takes the different mass flow 7 over
the inlet area A; in account,

f puTdA;

T din 4.2
m / pudA (4.2)
(A:)

Conservation of energy between inlet and outlet leads to the bulk tem-
perature at the outlet 7;, with the following equation:

Q = (Tyo — Tyi) 120, (4.3)

where c, is the specific heat of the fluid. In case of air, it is approxi-
mately 1000 5. It yields to the outlet bulk temperature of 294.146 K
and a bulk temperate difference between in- and outlet less than 0.146 K.
The channel walls are insulated and there is no heat flux through the
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small faces of the vortex generators, which are explained below in sec-
tion 4.5.

The effects of heat transfer by radiation from the different cubes are
assumed to be negligible small. To ensure that this is an acceptable
simplification, the heat that could be emitted from the varied cubes
per unit time is calculated below.

Q =o0eA(T"-TL), with (¢ < 1),

= Q <oA(T*-T%), whereT =T(Z,1).

For the time-averaged heat flux follows:

= éza(/ﬂdA—AT;g), (4.4)
A

TI_ (T L TN — T L AT . T LGT2 . T2 4 AT. TB LA
T=(T+T)*=T +4T i +6T" -T2 +4T T0 +1".
The fluctuating temperature 7" is much smaller than the mean vallue
of the temperature 7', hence to simplify and to get an approximation
for the vallue of the time-averaged heat flux @), the terms including 7"’
are less important. It follows:

=4

T4 ~T . (4.5)

Table 4.1 lists the computed values for the time-averaged heat that
could be emitted by the cubes approximative. It shows that radiation
is not very important and to simplify the investigated heat-transfer
problem, it can be neglected.

Cube without VG | Cube with VG1 | Cube with VG2
[T dA [K*m?] 1.378 - 107 1.324 - 107 1.234 - 107
A
Q [W1] 0.305 0.274 0.223

Table 4.1: Table of the approximated time-averaged heat emitted by
the cubes

The following discusses, if the effects of free convection are also negli-
gible or if combined effects of free and forced convection must be con-
sidered.
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The Grashof number Gr is a ratio of the buoyancy forces to the viscous
forces acting on the fluid. The root of the Grashof number Gr'/2? plays
the same role in free convection as the Reynolds number Re in forced
convection, since the Reynolds number is the ratio of the inertial to vis-
cous forces acting on the fluid. Hence, if Gr/Re? ~ 1, free and forced
convection are influencing the heat transfer in similar intensity. One
may neglect the free convection, if Gr/Re? < 1. Conversely, forced con-
vection effects are negligible, if Gr/Re? > 1.
Based on the size of the cube, the Grashof number Gry can be written
as [20]:
98(T =T, )H ’
V2 '
Here, g is the acceleration due to gravity. On earth its value is about
9.81 m/s?. The coefficient 3 is known as the volumetric thermal expan-
sion coefficient and is defined as:

1/0p
T o\aT : 4.
p <0T>pconst ( 7)
If the fluid is an ideal gas, p = p/RT, then it follows:
L(0p 1 p 1
~p\or =R T 4.
ﬁ p <8T>p=const P RTC?O T, ( 8)

The temperature 7' at the surface of the cube is always lower than
370K. Now, the equation (4.6) can be rearranged and the Grashof num-
ber can be estimated:

. 3 2, — . 3
g(T —Tw)H < 9.81m/s* - (370K — 294K) - (15mm) — 3.804-10%.
T (15-10-m?/5)? - 204K

(4.9)
The Reynolds number Rey based on the height of the cube H and the
bulk velocity of the incoming flow w,; is:

Gryg ~

U,biH

Rey = ~ 3860. (4.10)

Hence, the ratio of the buoyancy forces to the inertial forces is:
Gry/Re3; ~2.55-107° <« 1, (4.11)

and the effects of the free convection may be neglected.
The remaining modes of heat transfer for the investigated problem of

cooling down surface mounted cubes are forced convection and conduc-
tion.
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4.4 Equations for LES

For the investigated case of flow simulation, it is assumed to have in-
compressible conditions. Hence the Mach number should be smaller
than 0.2, as explained in chapter 2.1.1. For air the value of s is 1.4 and
R is 287 J . The temperature is at least 294K and the incoming fluid
velocity ub 1s 3.86 m/s. The expected maximum of the velocity is four
times the bulk velocity. Therefore the Mach number M, based on the
maximum velocity, can be estimated as follows:

-4 3.86m/s - 4

M < = 0.04. 4.12)
\/HR \/14 287 - 204K

It is distinguishable that incompressible flow can be assumed (see sec-
tion 2.1.1).

4.4.1 The Filtered Continuity, Momentum and En-
ergy Equations

The filtered equations that are used in LES to derive the velocity and

temperate fields are explained in section 3.3, “Large Eddy Simulation

(LES)”.
The filtered continuity equation for incompressible flow is:

oU,;
3 €T;

=0. (4.13)

Choosing the model constant C, to be 0.1, the following filtered momen-
tum equation is used:

ou; ~ oUU;  Op o . oU; oU; 90U,
Pt TP an = on o Mo, — OV 2SuSa (5 5]
(4.14)
LES is done to solve for the temperature field after solving for the

velocity field, since these equations are not coupled for incompressible
flow. The filtered equation for the heat transfer is:

oT 0 — = v 0T 1 1 ——
T P N)?4/25,5,). (4.1
at T oz, ax] (U ) PT 8xjaa:j + axj (PrSGS (CS ) M) ( 5)
Here, Pr is the Prandtl number of the air, 0.71, and Prggs is the subgid

scale Prandtl number. The value of Prgsg is set to be 0.6 in all the
simulations.
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4.5 Vortex Generators

There are three different cubes included in this work. One is just a
simple smooth cube, but the two other cubes are varied to have vortex
generators, little bodies mounted on their surfaces. The first is called
vortex generator 1 (VG1) and the second is vortex generator 2 (VG2).

1mm

FLOV

Figure 4.3: The shape of the vortex generator 1

VGl is a simple rib attached to the side and top faces of the cube at
a distance 1 mm from the windward edge of the cube. This position cor-
responds to the start of flow separation at the side and top faces of the
cube without any vortex generator. The thickness of the VG is 0.3 mm
and its height is 0.5 mm. Figure 4.3 shows the details of the shape of
VG1.

The VG2 consists of five small cubes at the top side and at each
of the lateral sides. This leads to a total number of 15 small cubes at-
tached to the surface of the big cubes. The small cubes are placed 1 mm
apart from the front edge of the big cube like the VG1. They have the
same thickness and height as the VG1 of 0.3 mm and 0.5 mm, respec-
tively. The width of these small cubes is 0.5 mm and the gap between
is 2 mm. Without the gaps between the small cubes, VG2 would be the
same as VG1. The geometric design of VG2 can be seen in figure 4.4.

27



Franziska Spehr, Numerical study of passive flow control on the
cooling of a matrix of surface-mounted cubes using LES

1 mm

Figure 4.4: The shape of the vortex generator 2

4.6 Mesh

Three structured meshes are used for the simulations of the flow around
the cube without a vortex generator, around the cube with VG1 and
around the cube with VG2. The comercial software ICEM-CFD is used
to generate the geometries and meshes. The meshes consist of O— and
C'—grid topologies as shown in the figures (4.5) till (4.7). This makes it
possible to have very fine mesh near the solid surfaces but coarse mesh
in other parts. Hence it helps to have an adequate number of cells and
to save computational time.
The meshed domain consists of different blocks to enable the creation
of the desired whole grid with its different scales of cells.

There are 408,016 hexahedral cells forming the mesh for the cube
without a VG. It is the mesh one can see in figure 4.5.
The grid around the cube with VG1 has 928,298 hexahedral cells. It is
shown in figure 4.6.

The mesh used for the domain of the cube with VG2 has 431,064
hexahedral cells (see figure 4.7). Using C— and O—grid topologynot
only around the big cube but also around the small cubes, makes it
possible to decrease the number of needed cells around the cube with
VG2 compared with the mesh around the cube with VG1.

Since resolving the boundary layers is important in these simula-
tions, the meshes are made very fine next to the solid walls.
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be reduced to:

u? ~ y@. (4.16)
dy
u, is the friction velocity, defined as:
Here,u? = w , 4.17)
p
with the wall-shear stress
Tw = ,u% : (4.18)
8y y=0

It is called the linear sublayer because of the linear mean-velocity pro-
file. If the centers of the first layer of cells are in that region, then
the mesh is not too course and the flow can be resolved in this part.
The thickness of the linear sublayer is usually expressed with the non-
dimensional coordinate y™:

+ _ YUx

Y )
1%

where y is the physical wall-normal distance between the center of the
boundary cell and the wall. Experimental data shows, that the extent
of the linear sublayer is y* = 3 (see [22]).

The centers of the boundary cells of the cube with vortex generator 1
have at most the displacement y of 3.5-107° m and the wall-shear stress
Tw 18 everywhere at the walls less than 1.62 N/m?. As a consequence,
yt < 2.79.

For VG2 the normal distance y between the wall and the center of the
first cell is always smaller than 6.5-:10~% m and the wall-shear stress 7
at the cube and the roof and floor is smaller than 3.06 N/m?. These val-
ues leads to a maximal y* of 0.71. Hence the resolution of the meshes
for the cube with VG1 and the cube with VG2 should be very good.

It is desired not to have influence of the mesh in the results of nei-
ther the flow nor the heat transfer.

To assure that these results are independent of the mesh, a second
mesh is generated around the cube with vortex generator 2. That new
mesh, shown in figure 4.8, is finer than the first one and hence it has
more cells. The fine mesh has 761,277 nodes and 737,664 hexahedral
cells. The number of cells of the fine mesh is almost twice times bigger
than the number of the cells of the first coarser mesh. The results
of the simulations with to different meshes have to be compared with
each other.
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(a) xz-plane at y = 0

Figure 4.8

ter of it. Hence there emerges one linear equation for each cell and
a resulting system of equations has to be solved. Fluent does this in
an iterative way. It uses the tridiagonal matrix algorithm (TDMA),
also known as the Thomas algorithm, which is a simplified form of the
lems arises really a matrix with three diagonals, but for 2D there are

five diagonals and for 3D there are seven diagonals. This means, that
there are more steps needed to solve the equations of a 3D than of a 1D

problem, even though the number of cells would be the same.
The number of time steps is at least 20,000 for each of the simulations.

volumes (FVM) concentrates all the properties of the cell at the cen-
Gaussian elimination method. Only for the discretisation of 1D prob-



Chapter 5
Results

This chapter addresses the results of the different simulations. Mesh-
independency is shown in the first section. The validation of the nu-
merical simulations is done by comparison with the available experi-
mental data. The rest of the chapter shows the contrast between the
results that obtained from the different simulations. The comparisons
investigate the influence of vortex generators on the flow field and the
heat transfer.

5.1 Validation of the Results

5.1.1 Comparison between Results of the Fine and
the Coarse Meshes

Two large eddy simulations with a fine mesh and a coarser mesh around
the cube with vortex generator 2 were made to show the results’ inde-
pendence of the grid. A constant mass flow rate of 0.0174 kg/s was used
in these computations.

Figure 5.1 shows nine profiles of the mean streamwise velocity and the
mean temperature of the air for each of the two meshes beginning at
z = 0 and ending at z/H = 2. The first two figures 5.1 (a) and (b) in-
clude the results in front of the cube at the height of y/H = 1/2 and the
streamwise position of x/H = —1/2and x/H = —1/4, respectively. Then
there are five profiles from above of the cube at the height of y/H = 1.01
and two profiles behind the cube at the height of y/H = 1/2 again. The
mean temperature profiles (black) are very similar for the fine (dashed
line) and the coarse (solid line) mesh, the difference is mostly less than
1K. The agreement of the data of the mean z-velocity (grey) is even
better as one can see in that figure 5.1.
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Figure 5.1: Mean streamwise velocity (grey) and mean temperature

(black) profiles for the cube with VG2. Solid line: coarse mesh; dashed
line: fine mesh.
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(a) z/H=-0.3 (b) z/H=0.3
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Figure 5.2: Streamwise velocity profiles in the vertical zy-plane at
z/H=0. Dots: experimental results for a smooth cube (Meinders [2]);
LES: solid line: smooth cube; dashed line: cube with VG1; dash-dot
line: cube with VG2.
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The differences of the two results from the varied meshes are small
enough to be neglected and hence, the resolution of the coarse mesh is
fine enough to use it for the comparison between the cubes with and
without vortex generator.

5.1.2 Comparison with Experimental Results

The results of the experiments of Meinders [2] for a smooth cube are
used to validate the LES data. But there are no experiments found
about cooling cubes having vortex generators attached to their sur-
faces.

Figure 5.2 shows the streamwise velocity distribution on the vertical
ry—plane at z/H=0 at five different locations in the streamwise direc-
tion. The profiles of the cube without vortex generator of the exper-
imental data and the LES data show good agreement, verifying that
the mesh resolution is fine enough to resolve the flow and hence the
heat transfer.

5.2 Time-Averaged Flow

The streamlines of the time-averaged flow might show a difference for
the three varied cubes.

(a) Cube without vor- (b) Cube with vortex (c) Cube with vortex
tex generator generator 1 generator 2

Figure 5.3: time-averaged streamlines around the different cubes

One can see the three dimensional time-averaged streamlines in
figure 5.3. It is very complex and difficult to compare these lines for
the cube without a VG, figure 5.3 (a), with the lines for the cubes with
VG1 and VG2, figure 5.3 (b) and figure (c), in 3D. Thus, the following
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(a) Cube without vor- (b) Cube with vortex (c) Cube with vortex
tex generator generator 1 generator 2

Figure 5.4: time-averaged streamlines projected on planes parallel to
the faces of the cube with a normal distance of 0.0001H.

describes the time-averaged streamlines in some planes instead of 3D.

The time-averaged streamlines are projected on planes parallel to
the faces of the cubes with a very small distance of 0.0001H as shown
in figure 5.4.

The streamlines projected at the cube without vortex generator (figure
5.4 (a)) and those which are projected at the cubes with VG1 and VG2
(figure 5.4 (b) and (c)) still look very similar.

Figure 5.5 shows the time-averaged streamlines around the cube

without a vortex generator, the cube with vortex generator 1 and the
cube with vortex generator 2 in the plane y/H = 0.5.
The whole pictures seem to be very similar. There is always a sepa-
ration region at the lateral sides of the cube that begins at the front
edges. Later on the flow reattaches to the surfaces and then separates
again at the back edge. It forms a big bubble in the wake and gener-
ates a saddle point in the end, marked with a red cross in figure 5.5.
The distance from the lee side to this point varies only slightly. For the
cube without a VG it is 1.087H, for the cube with VG1 it is 1.095H and
for the cube with VG2 it is 1.143H. That small difference in one plane
could still represent an important change for the 3D case.

Another difference between these three figures of the time-averaged

streamlines can be seen, if one looks more precisely at the lateral sep-
aration bubble. figure 5.6 zooms in these bubbles.
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tor

(c) Cube with vortex generator 2

Figure 5.5: Time-averaged streamlines at the plane y/H = 0.5.

The reattachment of the flow at the lateral sides of the cubes at
y/H = 0.5 is not the same for the different cases. Figure 5.6 shows that
the distance from the front edge until the end of separation A Xg.,qration
is largest for the cube without a vortex generator (figure 5.6 (a)) and
smallest for the cube with VG2 (figure 5.6 (c)). The value of AXs.puration
for each cube is listed in table 5.1.

Cube without VG | Cube with VG1 | Cube with VG2

AXseparation H 0.75 0.70 0.65

Table 5.1: Length of the separation at the lateral side of the cube at the
plane y/H = 0.5, corresponding to figure 5.6
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AXseparation Reattachment Point

(b) Cube with vortex generator 1

A)(Separation Reattachment Point

(c) Cube with vortex generator 2

Figure 5.6: Time-averaged streamlines of the flow at the lateral sides
of the cubes at the plane y/H = 0.5

Figure 5.6 and table 5.1 demonstrate, that the vortex generators short-
ens the distance of flow separation.
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The three dimensional streamlines, displayed in figure 5.3 show
that there is a difference in the incoming flow, which is caused by the
changes of the wake of another cube. In front of the cube, one part of
the flow moves upwards, another part goes to the left and right of the
cube and the remaining flow that is confronted with the cube surface
turns its direction down. When this part reaches the ground, it has to
change its route again. Doing so, it is forming a bubble.

It might be interesting to compare those flow structures in front of the
cubes for the variable cases. Streamlines in the plane z=0, that cuts
the cube vertically in its center, are chosen in figure 5.7.

The time-averaged flow splits at the front sides of the cubes upwards
and downwards. The height of that stagnation line differs. It is largest
for the cube with VG1 (figure 5.7 (b)) and smallest for the cube with
VG2 (figure 5.7 (c)). Table 5.2 lists the exact values.

Cube without VG | Cube with VG1 | Cube with VG2
AYdown/H 0.8 0.86 0.65

Table 5.2: Height of the stagnation line at the front side of the cube in
the plane z=0

The analysis of the time-averaged streamlines shows a difference in
the flow around the smooth cube and the cubes with vortex genera-
tors. These differences certainly influence the convective heat transfer
process.
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(a) Cube without vortex generator

Stagnation Line

Aydown

(c) Cube with vortex generator 2

Figure 5.7: Time-averaged streamlines in the plane 2=0
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5.3 Instantaneous Flow

In this section, the instantaneous flow around the varied cubes is in-
vestigated to show the differences that appear due to the existence of
vortex generators.

Figure 5.8 shows instantaneous streamlines close to the lateral face of
the cube.

=\ A

(c) Cube with vortex generator 2

Figure 5.8: Instantaneous streamlines in the plane y/H=0.5

Because of the vortex generators, there is a different boundary layer
on the surface of the cubes than on the cube without any VG. The new
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boundary layer is dominated with vortices that are more turbulent and
more unsteady. This leads to an increasing heat transfer while these
structures help to carry the heat from the surface and the viscous sub-
layer to the bulk flow.

The temperature distributions around the cubes are shown in fig-

j—‘r j—T j_——r o
293 K
(a) Cube without vortex generator

pw—

H 293K

(b) Cube with vortex generator 1

-
!ﬁ ﬂ m 306 K
293 K

(c) Cube with vortex generator 2

Figure 5.9: Distribution of the instantaneous temperature in the plane
z/H=0

ure 5.9 in three different instants for each of the varied cubes. Over
the cube without a vortex generator (figure 5.9a), the more steady tem-
perature layers seem to be closer to the cube, than over the cubes with
vortex generators. That leads to a better mixing of the upper colder
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and the lower and warmer air in case of a cube with VG than a cube
without a VG.
Figure 5.10 shows instantaneous velocity fields around two cubes in a

— - “c‘- - — -
< E<s B pe Bme B 14 Ex. Ko

(a) Cube without VG (b) Cube with VG1 (¢) Cube with VG2

Figure 5.10: The plane z/H=0 colored with the velocity magnitude in
one instant. [m/s]

line for each case. The wake of one cube affects the conditions of the
next cube. If the wake of the cube is more turbulent, then the heat
transfer of the next cube can be enhanced. The vortices that are shed
from the cubes with vortex generators are more turbulent than the
vortices in the wake of the smooth cube. Hence, the vortices behind
the cubes with vortex generators involve colder air from above in the
cooling of the following cube in line.

The influence of the vortex generators on the instantaneous flow is
also studied by means of several movies displaying instantaneous flow
properties around the varied cubes. These movies show that the fre-
quency of vortex shedding behind the VGs is higher than the dominant
vortex shedding in the flow. More about these movies can be found in
the Appendix A.

5.4 Heat Transfer

The heat transfer between the cube and the air is changing due to the
existence of vortex generators.

The temperatures around the cubes and at the cubes’ surfaces are
showing a change due to the different flow structures with vortex gen-
erators than without. Figure 5.11 shows the contours of the time-
averaged temperatures at the plane y/H = 0.5 for the different cubes.
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(¢) Cube with vortex generator 2

Figure 5.11: The contours of the time-averaged temperature at the
plane y/H = 0.5. [K]
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In figure 5.12 some temperature profiles in the vertical zy-plane
z/H=0 close to the surface of the cube are displayed. The black lines
represent the profiles of the cube without vortex generator and the
dashed grey lines are the profiles of the cube with vortex generator 1,
while the light grey dash-dot lines are representing the profiles of the
cube with vortex generator 2.
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cube with vortex generator 2

Figure 5.12: Temperature boundary layer profiles in the vertical xy-
plane z/H=0.

As expected, high temperatures at the surface of the cube are found,
where the flow is separated from the faces or where the flow circulates.
Figure 5.7 of the time-averaged streamlines at the zy—plane at z/H=0
shows that there is a circulation region in front of the cube close to
the grounded edge and also behind the cube close to the upper edge. A
separation region can be found at the at the top-side face close to the
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windward edge of the cube. All these locations at the surface of the
cube are characterised with high temperatures, figure 5.12 (a), (f) and
(k).

One can also see in figure 5.12, that the temperature of the air around
the cube with VG2 is nearly always the lowest. The temperature around
the cube with VG1 is in most of the pictures lower than the tempera-
ture around the cube without VG, but it is very high in picture (f) and
(g) close to the cube. The VG1 leads to high temperature spots behind
the rib by trapping the heat inside the circulating flow, and hence a bad
heat transfer in that area can be expected.

At the distance of 0.1/H to the cube’s surface, all the three lines seem
to be very close in every picture. Thus the gradient of the temperature
of the smooth cube is always higher than the gradient of the cube with
VG2.

The temperature of the surface of the cube 7" and the inlet bulk tem-
perature T}; are used to get to know the local heat transfer coefficient
h as:

Q/A

h:m.

(5.1)

Here () is the heat dissipated by the cube and A is the cubes surface.
Figure 5.14 shows the time-averaged local heat transfer coefficient h at
each face of the different cubes.

As expected, the heat transfer coefficient / is low, where the flow is
separated and high, where the flow is attached to the surface. Due to
the figure 5.4 of the time-averaged streamlines, at the top faces of the
cubes the flow separates first and later on it reattaches to the surface.
Hence the heat transfer coefficient 5 is low on the top-side face close to
the windward edge and high close to the leeward edge.

The influence of the vortex generators is also shown in figure 5.13
by means of the quantitative representation of the mean heat trans-
fer coefficient at three different cross sections of the cube. That figure
presents a higher heat transfer coefficient at the cubes with VGs except
close behind the VG1. Here the heat transfer coefficient is found to be
very low.
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Figure 5.13: Distribution of the time-averaged local heat transfer co-

efficient along different paths. Solid line: Smooth cube; dashed line:
Cube with VG1; dash-dot line: Cube with VG2.
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96 W
60
24

(a) Cube without vortex (b) Cube with vortex genera-
generator tor 1

(¢) Cube with vortex gen-
erator 2

Figure 5.14: The faces of the cubes, colored by the time-averaged heat
transfer coefficient h. [W/m?K]

Further more, the mean heat transfer coefficient is calculated at
each face of the varied cubes as an average over the surface as the
following:

—/ Q/A d (5.2)
(A)

Where ( is the constant heat loss of the cube and A is the area of
the face of the cube.
Globally, the mean heat transfer coefficient of the cube without a vortex
generator is 48.92 -
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of 57.07 -
of the heat transfer coefficient h between the smooth cube and the cube
with VG1. The percentage of increase of h between the different vortex
generators VG1 and VG2 is not very big, but the most intensification
of heat transfer can be found between the cube without a VG and the
cube with VG2. The percentage of increasing h is about 16.66% here.

Table 5.3 lists all the values of the mean heat transfer at each face of
the cube and table 5.4 includes the percentage of increase of h between
the varied cubes for each face and the total cube.

Cube face Cube without VG | Cube with VG1 | Cube with VG2
Front 65.96 82.87 73.30
Top 49.75 52.93 59.75
Lee-side 38.79 44.19 43.03
Lateral-sides 45.05 49.06 54.69
Total cube 48.92 55.62 57.07

Table 5.3: The mean heat transfer coefficient / at each face of the cube

[7]

Cube face without VG to VG1 | VG1 to VG2 | without VG to VG2
Front 25.64 —11.55 11.13
Top 6.39 12.88 20.10
Lee-side 13.92 -2.63 10.93
Lateral-sides 8.90 11.48 21.40
Total cube 13.70 2.61 16.66

Table 5.4: The percentage of increase of h

Although the increase of h between the cube with VG1 and VG2 is only
2.61%, the VG2 might still be prefered, since the heat transfer for that
cube is more consistent over all faces of the cube. At the cube with VG1,
there are local spots with a very low heat transfer coefficient behind the
rib, as one may see in figure 5.14 (b). Hence, the temperature at the
faces of this cube differs more and there are parts with much higher
temperature as the mean temperature at the surface of the cube.
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To compare the temperature variation at the faces of the three cubes,
it is useful to calculate the root mean square deviation o7:

or= |3 / (T - T(#)%dA . (5.3)
(4)

Here, A is the area of the faces of the cube, T is the mean temperature
averaged over this area and 7' is the local time-averaged temperature.

The standard deviation or for the cube without a VG is 8.56 K,
for the cube with VG1 it is 10.90 K and for the cube with VG2 it is
7.55 K. It is obvious, that the temperature of the cube with VG2 is
distributed the most even and hence this cube is most resistant against
local overheating.
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Chapter 6

Conclusions

Large-eddy simulation was successfully used to investigate the influ-
ence of attaching different vortex generators on the surface of wall-
mounted heated cubes on the local heat transfer coefficient.

Meshes consisting of C- and O-grids topologies were used in the
simulations which reduced the number of cells needed for a good spa-
tial resolution considerably. LES results for the flow and the temper-
ature distributions were obtained for surface-mounted smooth cubes
and cubes with two different vortex generators, the first rib-shaped and
the second composed of small cuboids. A very fine and a coarser mesh
around the cube with the second vortex generator were made to ensure
that the results are independent of the mesh resolution. The LES re-
sults were found to be in a good agreement with the experimental data
for the case without vortex generator for which the experimental data
exists.

The relation between the flow structures around the cube and the
temperature distribution is explained in this thesis. The streamwise
front face of the cube was found to have a high heat transfer coefficient
especially where the flow moves upwards carrying the heat from the
face. A lower local heat transfer coefficient is reported at places where
flow circulation occurs such as on the lee-side face close to the cube’s
edges and also at the top-side face and the lateral faces close to the
windward edges where flow-separation regions can be found.

Attaching vortex generators to the top and the lateral faces of the
cube turned out to shorten the distance of flow separation at these
faces. Hence, the length of reattached flow increased and the local heat
transfer coefficient is enhanced especially at these locations.
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It was found that the vortex generators altered the boundary layer
on the surface of the cube. As a result, vortices are shed from the wake
of the vortex generator at a higher frequency than the dominant vortex
shedding in the flow. These vortices are characterized by higher un-
steadiness and more complex structures than the boundary layer vor-
tices without the vortex generator. Globally these vortices enhanced
the mixing of heat in the boundary layer which led to high mean heat
transfer coefficients at the cubes with vortex generators.

The present investigation showed that the increase of the heat trans-
fer coefficient is considerable. Local high temperature spots were found
in the circulation region behind the rib-shaped vortex generator (VG1),
but the temperature distribution at the cube with the second vortex
generator (VG2) was found to be very even, actually more evenly dis-
tributed than at the smooth cube. Hence, the overheating problem be-
hind the VG1 disappeared in case of VG2. There was an increase of
the mean heat transfer coefficient of about 13.7% having a rib-shaped
vortex generator at the cube’s surfaces instead of a smooth cube. There
was an increase in the time-averaged heat transfer coefficient of 16.66%
for the cube with vortex generator 2.
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Appendix A

In addition, for the analysis of the influence of the different vortex gen-
erators on the instantaneous flow, several movies are made, consisting
of 500 time steps. The movies can be found in Appendix B.

The velocity magnitude and the temperature distribution around

the smooth cube and the cubes with VG1 and VG2 in the vertical plane
z/H=0 are shown in the movies 5.1, 5.2 and 5.3, respectively.
Generally, high temperatures close to the cube can be found especially
at places with a low velocity magnitude at the same time. While flow
with high velocity carries the heat away from the cubes.
The temperatures over the cube without a vortex generator seem to be
more steady in the upper streams than over the cubes with vortex gen-
erators. That leads to a better mixing of the upper colder and the lower
and warmer air in case of a cube with VG than a cube without a VG.
Close to the surface of the cube, there are more turbulent structures
generated by the vortex generators than without a VG.

The movies 5.4 and 5.5 show a matrix of four and two cubes, respec-
tively, without vortex generators and its velocity field around it in the
horizontal plane y/H=0.4. The wake of one cube affects the conditions
of the next cube. If the wake of the cube is more turbulent, then the
heat transfer of the next cube can be enhanced. The velocity magni-
tudes around two cubes with VG1 can be beheld in the vertical plane
z/H=0 in the movie 5.6. One may notice, that the vortices are shed
from the wake of the vortex generators at a higher frequency than the
dominant vortex shedding in the flow. These vortices are very unsteady
and they consist of complex structures, so they involve colder air from
above in the cooling of the cube.

The sequences of the velocity magnitude and the temperature around
the cube without a vortex generator and around the cube with VG2
in the horizontal plane y/H=0.5 are displayed in the movies 5.7 and
5.8a). In the movie 5.8b) one can see the same, but closer to the cube
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with VG2. It turns out, that the flow in the boundary layer around
the cubes with vortex generators is more turbulent and unsteady than
without VG.

The movies 5.9, 5.10 and 5.11 show the vertical velocity component,
the y-velocity, in the horizontal plane y/H=0.4 around the smooth cube
and the cubes with vortex generators. One can see much more velocity
changes at the lateral sides behind the vortex generators than at the
smooth cube, comparing the distance of the contour-lines close to the
cube with those of the bulk flow.

The vortex generators lead to a high frequency of vortex shedding
and these vortices are very unsteady and turbulent.
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