
A very brief Matlab introduction

 Siniša Krajnović January 24, 2006

This is a very brief introduction to Matlab and its purpose is only to introduce students of
the CFD course into Matlab. After reading this short note and truing the presented
examples one should be able to write short programs that are required in the CFD course.
Matlab itself provides a comprehensive help that can be reached by typing help in the
command window or by using the Matlab Help window.

Vectors and Matrices

Every variable in Matlab is a matrix. Here we show how to assign numbers, vectors and
matrices to variables. The Matlab prompt is >> and the commands below are typed in
after the prompt and concluded with a carriage return. The response of Matlab appears on
the next line.

Ex:

>> a=10

a =

 10

>> v=[1;7;9]

v =

 1
 7
 9

>> B=[1,2,3;4,5,6;7,8,9]

B =

 1 2 3
 4 5 6
 7 8 9

As we can see from these examples, the rows of a matrix are separated by semicolons,
while the entries on any given row are separated by commas (Note that spaces can be
used instead of commas). Each of these three variables a, v and B is regarded as a matrix.
The scalar a is a 1 x 1 matrix, the vector v is a 3 x 1 matrix and B is a 3 x 3 matrix.

 Indices of variables must be positive integers. Thus, x(0), x(-3), x(1.2) or B(0,1)
are not allowed. The size of a matrix can be found using the function size(B), which
returns the pair of numbers m, n when B is an m x n matrix.

Ex:

>> size(B)

ans =

3 3

>> size(v)

ans =

 3 1

The length of the vector v is found by using the function length(v).

Ex:

>> length(v)

ans =

 3

If we want to prevent Matlab from displaying the entered matrix immediately afterward,
we need to end the line with a semicolon

Ex:

>> v=[1;7;9];
>>

Although Matlab says nothing when you ended the line with a semicolon, it has
remembered your definition of v.

The square root function sqrt is a built-in feature

>> sqrt(27)

ans =

 5.1962

The variable ans contains the result of the most recent computation which can then be
used as an ordinary variable in subsequent computations:

>> ans*10

ans =

 51.9615

In this example the result of sqrt(27) from previous computation that was stored in ans
was multiplied with 10 and the result of this multiplication is stored in ans overwriting
the old value of ans.

Another built-in variable is pi:

 >> pi

ans =

 3.1416

The predefined functions in Matlab (besides the square root) include:

abs absolute value
angle phase angle of a complex number
real,imag real part, imaginary part of complex number
conj complex conjugation
exp exponential function
round round to the nearest integer
fix round towards zero
sign signum function
rem remainder
sin, cos, tan trigonometric functions
asin, acos, atan inverse trigonometric functions

Ex:

>> sin(1)^3*tan(1)

ans =

 0.9279

>> exp(1)

ans =

 2.7183

>> log(ans)

ans =

 1

Matlabs’ online help includes a list of built-in special functions and routines, as well as a
list of other commands on which help is available. To obtain the list type help. For help
on a particular command, type help followed by the command. You can also get help by
using the Matlab Help window, which is accessed by going to the Help menu at the top
of the screen.

Ex:

>> help sin
 SIN Sine of argument in radians.
 SIN(X) is the sine of the elements of X.

 See also ASIN, SIND.

You can also type help help to find out how to find help. For demonstrations of Matlab
features type demo in the command window.

Operations on matrices

For matrices A and B, Matlab can compute the sum, difference and the product of these
two matrices. To do this, type A+B, A-B, and A*B, respectively. Note! The order is
important in matrix multiplication:

>> A=[1,2;3,4]

A =

 1 2
 3 4

>> B=[1,0;1,0]

B =

 1 0
 1 0

>> A*B

ans =

 3 0
 7 0

>> B*A

ans =

 1 2
 1 2

Typing A^2, for a square (n x n) matrix A , yields the matrix product A*A.

Applying to a matrix A any of the built-in functions returns a matrix of the same
dimensions containing the values of the functions as if it had been applied
componentwise:

>> A=[pi,0;pi/2,3*pi/2]

A =

 3.1416 0
 1.5708 4.7124

>> cos(A)

ans =

 -1.0000 1.0000
 0.0000 -0.0000

When we want Matlab to multiply two matrices A and B that have the same dimension
in a comprehensive fashion (rather than the matrix multiplication), we use the operator .*
rather than *. Similarly, componentwise division of two matrices of the same dimension
can be accomplished by writing A./B which creates a matrix whose entries are
A(i,j)/B(i,j).

Ex:

>> A=[1,2;3,4]

A =

 1 2
 3 4
>> B=[2,4;6,8]

B =

 2 4
 6 8

>> A*B

ans =

 14 20
 30 44

>> A.*B

ans =

 2 8
 18 32

There are several commands in Matlab which helps you to easy input certain standard
types of matrices. The built-in function zeros(m,n) returns an m x n matrix of zeros. ones
(m,n) returns an m x n matrix of ones.

When the matrix contains only one row, we have a row vector instead of a matrix, and a
Matlab provides a special ways to input certain types of row vectors. In Matlab, the
notation start:step:stop denotes a row vector whose first entry is start and whose
consecutive entries differ by step, and whose last entry does not excide stop.

Ex:

>> a=2:2:8

a =

 2 4 6 8

The parameters start, step and stop do not have to be integers:

Ex:

>> v=-5.1:0.2:-4

v =

 -5.1000 -4.9000 -4.7000 -4.5000 -4.3000 -4.1000

If the parameter step is omitted, Matlab assumes it equal to one

Ex:
>> x=3:6

x =

 3 4 5 6

Graphics

The ability to do plotting in Matlab is very useful. Here we shall describe how to plot 2D
graphs, 3D surfaces, 2D contours of 3D surfaces and vector arrows.

To plot a number of ordered pairs (x,y) connected by straight lines, we built row vectors
x and y containing the x and y values and ask Matlab to make a plot.

Ex:

>> x=1:5;
>> y=0:0.2:.8;
>> plot(x,y)

Vectors x and y contain two different coordinates of the same set of points in the plane
and thus must have the same length.

Matlab functions are vectorized and constructing the needed vectors to graph a build –in
function is done by first constructing a vector of the desired x values, and than the
corresponding y values come from applying the buil-in function to the x vector:

Ex:

>> x=0:0.1:pi;
>> y=sin(x);
>> plot(x,y)

Some useful commands in making plots are

xlabel(‘x axis label’), ylabel(‘y axis label’), title(‘title) labels the horizontal and the
vertical axes and the title, respectively, in the current plot.

axis([a b c d]) changes the viewing window of he current graph
grid adds a rectangular grid to a current plot
hold on freezes the current plot so that the subsequent plots will be

displayed on the same axes
hold off releases the current plot
subplot puts multiple plots in one graphics window
legend creates a small box inside the current plotting window that

identifies multiple plots in the same window

Three-dimensional plots

Making a 3D plot in Matlab is often done in two steps. First we define a mesh in an area
where we want to make a 3D plot. This area is defined by two vectors x and y, of the
length n and m, which represent x- and y-values in the mesh. Now we make a mesh with
a command [X,Y]=meshgrid(x,y). The matrix X contains the vector x copied in m
rows, and the matrix Y contains the vector y copied in n columns. The second step is to
compute the value of a function using X and Y matrices.
To plot a surfaces of a function in Matlab we can use following commands

mesh(Z), surf(X,Y,Z), surfc(X,Y,Z)

Ex:

>> [X, Y]=meshgrid(x,y);
>> R=sqrt(X.^2+Y.^2)+eps;Z=sin(R)./R;
>> surfc(X,Y,Z)

If we want to plot only contours of function Z above we can use command
contour(x,y,Z,n) where n is the number of contour lines-2 we want to display.

Vector arrows can be plotted with a command quiver(X,Y,dZdx,dZdy,n)
where n controls the size of the arrows.

Ex:

[dZdx,dZdy]=gradient(Z);
quiver(X,Y,dZdx,dZdy,3)

Assigning the values in the matrices

Ex: If we want to put the value of the third column in a matrix A equal to 5 and we know
that matrix A has size n x m, than we can write A(:,3)=5*ones(n,1)

Ex: If we want to make a matrix B from several existing vectors a, x and d where all
three vectors are of the same length we can write B=[a x d] .

A simple FOR loop

Ex:

for i=2:N_i-1
 for j=2:N_j-1

 Expression such as k_E(i,j)=…
 end
end

A simple WHILE loop

Ex:

while (res>max_e)
………
end

Printing out the figure in some JPG file

For printing out figures we can use command print –djpg filename

Measuring the time of the calculation

If we want to measure the time a calculation requires we can use commands tic and toc

Ex: If we want to find out the time that our while loop requires we can write

tic
while (res>max_e)
………
end
toc

Plotting several plots

If we want to plot several plots in separate windows we can use command figure(n)
where n is the number of the figure.

Ex: figure(1)

Cleaning the memory of the Matlab

If we start writing a new program and want to be sure that our variables don’t have some
old values we can write command clear all at the beginning of the program.

